123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 |
- from ._basic import _dispatch
- from scipy._lib.uarray import Dispatchable
- import numpy as np
- __all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
- @_dispatch
- def dctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
- workers=None, *, orthogonalize=None):
- """
- Return multidimensional Discrete Cosine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- s : int or array_like of ints or None, optional
- The shape of the result. If both `s` and `axes` (see below) are None,
- `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
- ``numpy.take(x.shape, axes, axis=0)``.
- If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
- If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
- ``s[i]``.
- If any element of `s` is -1, the size of the corresponding dimension of
- `x` is used.
- axes : int or array_like of ints or None, optional
- Axes over which the DCT is computed. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized DCT variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- idctn : Inverse multidimensional DCT
- Notes
- -----
- For full details of the DCT types and normalization modes, as well as
- references, see `dct`.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fft import dctn, idctn
- >>> rng = np.random.default_rng()
- >>> y = rng.standard_normal((16, 16))
- >>> np.allclose(y, idctn(dctn(y)))
- True
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def idctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
- workers=None, orthogonalize=None):
- """
- Return multidimensional Inverse Discrete Cosine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- s : int or array_like of ints or None, optional
- The shape of the result. If both `s` and `axes` (see below) are
- None, `s` is ``x.shape``; if `s` is None but `axes` is
- not None, then `s` is ``numpy.take(x.shape, axes, axis=0)``.
- If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
- If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
- ``s[i]``.
- If any element of `s` is -1, the size of the corresponding dimension of
- `x` is used.
- axes : int or array_like of ints or None, optional
- Axes over which the IDCT is computed. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized IDCT variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- dctn : multidimensional DCT
- Notes
- -----
- For full details of the IDCT types and normalization modes, as well as
- references, see `idct`.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fft import dctn, idctn
- >>> rng = np.random.default_rng()
- >>> y = rng.standard_normal((16, 16))
- >>> np.allclose(y, idctn(dctn(y)))
- True
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
- workers=None, orthogonalize=None):
- """
- Return multidimensional Discrete Sine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DST (see Notes). Default type is 2.
- s : int or array_like of ints or None, optional
- The shape of the result. If both `s` and `axes` (see below) are None,
- `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
- ``numpy.take(x.shape, axes, axis=0)``.
- If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
- If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
- ``s[i]``.
- If any element of `shape` is -1, the size of the corresponding dimension
- of `x` is used.
- axes : int or array_like of ints or None, optional
- Axes over which the DST is computed. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized DST variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- idstn : Inverse multidimensional DST
- Notes
- -----
- For full details of the DST types and normalization modes, as well as
- references, see `dst`.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fft import dstn, idstn
- >>> rng = np.random.default_rng()
- >>> y = rng.standard_normal((16, 16))
- >>> np.allclose(y, idstn(dstn(y)))
- True
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def idstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
- workers=None, orthogonalize=None):
- """
- Return multidimensional Inverse Discrete Sine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DST (see Notes). Default type is 2.
- s : int or array_like of ints or None, optional
- The shape of the result. If both `s` and `axes` (see below) are None,
- `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
- ``numpy.take(x.shape, axes, axis=0)``.
- If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
- If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
- ``s[i]``.
- If any element of `s` is -1, the size of the corresponding dimension of
- `x` is used.
- axes : int or array_like of ints or None, optional
- Axes over which the IDST is computed. If not given, the last ``len(s)``
- axes are used, or all axes if `s` is also not specified.
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized IDST variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- dstn : multidimensional DST
- Notes
- -----
- For full details of the IDST types and normalization modes, as well as
- references, see `idst`.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.fft import dstn, idstn
- >>> rng = np.random.default_rng()
- >>> y = rng.standard_normal((16, 16))
- >>> np.allclose(y, idstn(dstn(y)))
- True
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None,
- orthogonalize=None):
- r"""Return the Discrete Cosine Transform of arbitrary type sequence x.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the dct is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized DCT variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- idct : Inverse DCT
- Notes
- -----
- For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
- MATLAB ``dct(x)``.
- .. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
- correspondence with the direct Fourier transform. To recover
- it you must specify ``orthogonalize=False``.
- For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
- overall factor in both directions. By default, the transform is also
- orthogonalized which for types 1, 2 and 3 means the transform definition is
- modified to give orthogonality of the DCT matrix (see below).
- For ``norm="backward"``, there is no scaling on `dct` and the `idct` is
- scaled by ``1/N`` where ``N`` is the "logical" size of the DCT. For
- ``norm="forward"`` the ``1/N`` normalization is applied to the forward
- `dct` instead and the `idct` is unnormalized.
- There are, theoretically, 8 types of the DCT, only the first 4 types are
- implemented in SciPy.'The' DCT generally refers to DCT type 2, and 'the'
- Inverse DCT generally refers to DCT type 3.
- **Type I**
- There are several definitions of the DCT-I; we use the following
- (for ``norm="backward"``)
- .. math::
- y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
- \frac{\pi k n}{N-1} \right)
- If ``orthogonalize=True``, ``x[0]`` and ``x[N-1]`` are multiplied by a
- scaling factor of :math:`\sqrt{2}`, and ``y[0]`` and ``y[N-1]`` are divided
- by :math:`\sqrt{2}`. When combined with ``norm="ortho"``, this makes the
- corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).
- .. note::
- The DCT-I is only supported for input size > 1.
- **Type II**
- There are several definitions of the DCT-II; we use the following
- (for ``norm="backward"``)
- .. math::
- y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
- If ``orthogonalize=True``, ``y[0]`` is divided by :math:`\sqrt{2}` which,
- when combined with ``norm="ortho"``, makes the corresponding matrix of
- coefficients orthonormal (``O @ O.T = np.eye(N)``).
- **Type III**
- There are several definitions, we use the following (for
- ``norm="backward"``)
- .. math::
- y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
- If ``orthogonalize=True``, ``x[0]`` terms are multiplied by
- :math:`\sqrt{2}` which, when combined with ``norm="ortho"``, makes the
- corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).
- The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
- to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
- the orthonormalized DCT-II.
- **Type IV**
- There are several definitions of the DCT-IV; we use the following
- (for ``norm="backward"``)
- .. math::
- y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
- ``orthogonalize`` has no effect here, as the DCT-IV matrix is already
- orthogonal up to a scale factor of ``2N``.
- References
- ----------
- .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
- Makhoul, `IEEE Transactions on acoustics, speech and signal
- processing` vol. 28(1), pp. 27-34,
- :doi:`10.1109/TASSP.1980.1163351` (1980).
- .. [2] Wikipedia, "Discrete cosine transform",
- https://en.wikipedia.org/wiki/Discrete_cosine_transform
- Examples
- --------
- The Type 1 DCT is equivalent to the FFT (though faster) for real,
- even-symmetrical inputs. The output is also real and even-symmetrical.
- Half of the FFT input is used to generate half of the FFT output:
- >>> from scipy.fft import fft, dct
- >>> import numpy as np
- >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
- array([ 30., -8., 6., -2., 6., -8.])
- >>> dct(np.array([4., 3., 5., 10.]), 1)
- array([ 30., -8., 6., -2.])
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False,
- workers=None, orthogonalize=None):
- """
- Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the idct is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized IDCT variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- idct : ndarray of real
- The transformed input array.
- See Also
- --------
- dct : Forward DCT
- Notes
- -----
- For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
- MATLAB ``idct(x)``.
- .. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
- correspondence with the inverse direct Fourier transform. To
- recover it you must specify ``orthogonalize=False``.
- For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
- overall factor in both directions. By default, the transform is also
- orthogonalized which for types 1, 2 and 3 means the transform definition is
- modified to give orthogonality of the IDCT matrix (see `dct` for the full
- definitions).
- 'The' IDCT is the IDCT-II, which is the same as the normalized DCT-III.
- The IDCT is equivalent to a normal DCT except for the normalization and
- type. DCT type 1 and 4 are their own inverse and DCTs 2 and 3 are each
- other's inverses.
- Examples
- --------
- The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
- inputs. The output is also real and even-symmetrical. Half of the IFFT
- input is used to generate half of the IFFT output:
- >>> from scipy.fft import ifft, idct
- >>> import numpy as np
- >>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
- array([ 4., 3., 5., 10., 5., 3.])
- >>> idct(np.array([ 30., -8., 6., -2.]), 1)
- array([ 4., 3., 5., 10.])
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None,
- orthogonalize=None):
- r"""
- Return the Discrete Sine Transform of arbitrary type sequence x.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DST (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the dst is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized DST variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- dst : ndarray of reals
- The transformed input array.
- See Also
- --------
- idst : Inverse DST
- Notes
- -----
- .. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
- correspondence with the direct Fourier transform. To recover
- it you must specify ``orthogonalize=False``.
- For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
- overall factor in both directions. By default, the transform is also
- orthogonalized which for types 2 and 3 means the transform definition is
- modified to give orthogonality of the DST matrix (see below).
- For ``norm="backward"``, there is no scaling on the `dst` and the `idst` is
- scaled by ``1/N`` where ``N`` is the "logical" size of the DST.
- There are, theoretically, 8 types of the DST for different combinations of
- even/odd boundary conditions and boundary off sets [1]_, only the first
- 4 types are implemented in SciPy.
- **Type I**
- There are several definitions of the DST-I; we use the following for
- ``norm="backward"``. DST-I assumes the input is odd around :math:`n=-1` and
- :math:`n=N`.
- .. math::
- y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
- Note that the DST-I is only supported for input size > 1.
- The (unnormalized) DST-I is its own inverse, up to a factor :math:`2(N+1)`.
- The orthonormalized DST-I is exactly its own inverse.
- ``orthogonalize`` has no effect here, as the DST-I matrix is already
- orthogonal up to a scale factor of ``2N``.
- **Type II**
- There are several definitions of the DST-II; we use the following for
- ``norm="backward"``. DST-II assumes the input is odd around :math:`n=-1/2` and
- :math:`n=N-1/2`; the output is odd around :math:`k=-1` and even around :math:`k=N-1`
- .. math::
- y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
- If ``orthogonalize=True``, ``y[0]`` is divided :math:`\sqrt{2}` which, when
- combined with ``norm="ortho"``, makes the corresponding matrix of
- coefficients orthonormal (``O @ O.T = np.eye(N)``).
- **Type III**
- There are several definitions of the DST-III, we use the following (for
- ``norm="backward"``). DST-III assumes the input is odd around :math:`n=-1` and
- even around :math:`n=N-1`
- .. math::
- y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
- \frac{\pi(2k+1)(n+1)}{2N}\right)
- If ``orthogonalize=True``, ``x[0]`` is multiplied by :math:`\sqrt{2}`
- which, when combined with ``norm="ortho"``, makes the corresponding matrix
- of coefficients orthonormal (``O @ O.T = np.eye(N)``).
- The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
- to a factor :math:`2N`. The orthonormalized DST-III is exactly the inverse of the
- orthonormalized DST-II.
- **Type IV**
- There are several definitions of the DST-IV, we use the following (for
- ``norm="backward"``). DST-IV assumes the input is odd around :math:`n=-0.5` and
- even around :math:`n=N-0.5`
- .. math::
- y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
- ``orthogonalize`` has no effect here, as the DST-IV matrix is already
- orthogonal up to a scale factor of ``2N``.
- The (unnormalized) DST-IV is its own inverse, up to a factor :math:`2N`. The
- orthonormalized DST-IV is exactly its own inverse.
- References
- ----------
- .. [1] Wikipedia, "Discrete sine transform",
- https://en.wikipedia.org/wiki/Discrete_sine_transform
- """
- return (Dispatchable(x, np.ndarray),)
- @_dispatch
- def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False,
- workers=None, orthogonalize=None):
- """
- Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DST (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the idst is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {"backward", "ortho", "forward"}, optional
- Normalization mode (see Notes). Default is "backward".
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- workers : int, optional
- Maximum number of workers to use for parallel computation. If negative,
- the value wraps around from ``os.cpu_count()``.
- See :func:`~scipy.fft.fft` for more details.
- orthogonalize : bool, optional
- Whether to use the orthogonalized IDST variant (see Notes).
- Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
- .. versionadded:: 1.8.0
- Returns
- -------
- idst : ndarray of real
- The transformed input array.
- See Also
- --------
- dst : Forward DST
- Notes
- -----
- .. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
- correspondence with the inverse direct Fourier transform.
- For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
- overall factor in both directions. By default, the transform is also
- orthogonalized which for types 2 and 3 means the transform definition is
- modified to give orthogonality of the DST matrix (see `dst` for the full
- definitions).
- 'The' IDST is the IDST-II, which is the same as the normalized DST-III.
- The IDST is equivalent to a normal DST except for the normalization and
- type. DST type 1 and 4 are their own inverse and DSTs 2 and 3 are each
- other's inverses.
- """
- return (Dispatchable(x, np.ndarray),)
|