12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121 |
- #
- # Author: Damian Eads
- # Date: April 17, 2008
- #
- # Copyright (C) 2008 Damian Eads
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- #
- # 2. Redistributions in binary form must reproduce the above
- # copyright notice, this list of conditions and the following
- # disclaimer in the documentation and/or other materials provided
- # with the distribution.
- #
- # 3. The name of the author may not be used to endorse or promote
- # products derived from this software without specific prior
- # written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- import numpy as np
- from numpy.testing import assert_allclose, assert_equal, assert_, assert_warns
- import pytest
- from pytest import raises as assert_raises
- import scipy.cluster.hierarchy
- from scipy.cluster.hierarchy import (
- ClusterWarning, linkage, from_mlab_linkage, to_mlab_linkage,
- num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster,
- is_isomorphic, single, leaders,
- correspond, is_monotonic, maxdists, maxinconsts, maxRstat,
- is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram,
- set_link_color_palette, cut_tree, optimal_leaf_ordering,
- _order_cluster_tree, _hierarchy, _LINKAGE_METHODS)
- from scipy.spatial.distance import pdist
- from scipy.cluster._hierarchy import Heap
- from . import hierarchy_test_data
- # Matplotlib is not a scipy dependency but is optionally used in dendrogram, so
- # check if it's available
- try:
- import matplotlib
- # and set the backend to be Agg (no gui)
- matplotlib.use('Agg')
- # before importing pyplot
- import matplotlib.pyplot as plt
- have_matplotlib = True
- except Exception:
- have_matplotlib = False
- class TestLinkage:
- def test_linkage_non_finite_elements_in_distance_matrix(self):
- # Tests linkage(Y) where Y contains a non-finite element (e.g. NaN or Inf).
- # Exception expected.
- y = np.zeros((6,))
- y[0] = np.nan
- assert_raises(ValueError, linkage, y)
- def test_linkage_empty_distance_matrix(self):
- # Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected.
- y = np.zeros((0,))
- assert_raises(ValueError, linkage, y)
- def test_linkage_tdist(self):
- for method in ['single', 'complete', 'average', 'weighted']:
- self.check_linkage_tdist(method)
- def check_linkage_tdist(self, method):
- # Tests linkage(Y, method) on the tdist data set.
- Z = linkage(hierarchy_test_data.ytdist, method)
- expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method)
- assert_allclose(Z, expectedZ, atol=1e-10)
- def test_linkage_X(self):
- for method in ['centroid', 'median', 'ward']:
- self.check_linkage_q(method)
- def check_linkage_q(self, method):
- # Tests linkage(Y, method) on the Q data set.
- Z = linkage(hierarchy_test_data.X, method)
- expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method)
- assert_allclose(Z, expectedZ, atol=1e-06)
- y = scipy.spatial.distance.pdist(hierarchy_test_data.X,
- metric="euclidean")
- Z = linkage(y, method)
- assert_allclose(Z, expectedZ, atol=1e-06)
- def test_compare_with_trivial(self):
- rng = np.random.RandomState(0)
- n = 20
- X = rng.rand(n, 2)
- d = pdist(X)
- for method, code in _LINKAGE_METHODS.items():
- Z_trivial = _hierarchy.linkage(d, n, code)
- Z = linkage(d, method)
- assert_allclose(Z_trivial, Z, rtol=1e-14, atol=1e-15)
- def test_optimal_leaf_ordering(self):
- Z = linkage(hierarchy_test_data.ytdist, optimal_ordering=True)
- expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_single_olo')
- assert_allclose(Z, expectedZ, atol=1e-10)
- class TestLinkageTies:
- _expectations = {
- 'single': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 1.41421356, 3]]),
- 'complete': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 2.82842712, 3]]),
- 'average': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 2.12132034, 3]]),
- 'weighted': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 2.12132034, 3]]),
- 'centroid': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 2.12132034, 3]]),
- 'median': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 2.12132034, 3]]),
- 'ward': np.array([[0, 1, 1.41421356, 2],
- [2, 3, 2.44948974, 3]]),
- }
- def test_linkage_ties(self):
- for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']:
- self.check_linkage_ties(method)
- def check_linkage_ties(self, method):
- X = np.array([[-1, -1], [0, 0], [1, 1]])
- Z = linkage(X, method=method)
- expectedZ = self._expectations[method]
- assert_allclose(Z, expectedZ, atol=1e-06)
- class TestInconsistent:
- def test_inconsistent_tdist(self):
- for depth in hierarchy_test_data.inconsistent_ytdist:
- self.check_inconsistent_tdist(depth)
- def check_inconsistent_tdist(self, depth):
- Z = hierarchy_test_data.linkage_ytdist_single
- assert_allclose(inconsistent(Z, depth),
- hierarchy_test_data.inconsistent_ytdist[depth])
- class TestCopheneticDistance:
- def test_linkage_cophenet_tdist_Z(self):
- # Tests cophenet(Z) on tdist data set.
- expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
- 295, 138, 219, 295, 295])
- Z = hierarchy_test_data.linkage_ytdist_single
- M = cophenet(Z)
- assert_allclose(M, expectedM, atol=1e-10)
- def test_linkage_cophenet_tdist_Z_Y(self):
- # Tests cophenet(Z, Y) on tdist data set.
- Z = hierarchy_test_data.linkage_ytdist_single
- (c, M) = cophenet(Z, hierarchy_test_data.ytdist)
- expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
- 295, 138, 219, 295, 295])
- expectedc = 0.639931296433393415057366837573
- assert_allclose(c, expectedc, atol=1e-10)
- assert_allclose(M, expectedM, atol=1e-10)
- class TestMLabLinkageConversion:
- def test_mlab_linkage_conversion_empty(self):
- # Tests from/to_mlab_linkage on empty linkage array.
- X = np.asarray([])
- assert_equal(from_mlab_linkage([]), X)
- assert_equal(to_mlab_linkage([]), X)
- def test_mlab_linkage_conversion_single_row(self):
- # Tests from/to_mlab_linkage on linkage array with single row.
- Z = np.asarray([[0., 1., 3., 2.]])
- Zm = [[1, 2, 3]]
- assert_equal(from_mlab_linkage(Zm), Z)
- assert_equal(to_mlab_linkage(Z), Zm)
- def test_mlab_linkage_conversion_multiple_rows(self):
- # Tests from/to_mlab_linkage on linkage array with multiple rows.
- Zm = np.asarray([[3, 6, 138], [4, 5, 219],
- [1, 8, 255], [2, 9, 268], [7, 10, 295]])
- Z = np.array([[2., 5., 138., 2.],
- [3., 4., 219., 2.],
- [0., 7., 255., 3.],
- [1., 8., 268., 4.],
- [6., 9., 295., 6.]],
- dtype=np.double)
- assert_equal(from_mlab_linkage(Zm), Z)
- assert_equal(to_mlab_linkage(Z), Zm)
- class TestFcluster:
- def test_fclusterdata(self):
- for t in hierarchy_test_data.fcluster_inconsistent:
- self.check_fclusterdata(t, 'inconsistent')
- for t in hierarchy_test_data.fcluster_distance:
- self.check_fclusterdata(t, 'distance')
- for t in hierarchy_test_data.fcluster_maxclust:
- self.check_fclusterdata(t, 'maxclust')
- def check_fclusterdata(self, t, criterion):
- # Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set.
- expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t]
- X = hierarchy_test_data.Q_X
- T = fclusterdata(X, criterion=criterion, t=t)
- assert_(is_isomorphic(T, expectedT))
- def test_fcluster(self):
- for t in hierarchy_test_data.fcluster_inconsistent:
- self.check_fcluster(t, 'inconsistent')
- for t in hierarchy_test_data.fcluster_distance:
- self.check_fcluster(t, 'distance')
- for t in hierarchy_test_data.fcluster_maxclust:
- self.check_fcluster(t, 'maxclust')
- def check_fcluster(self, t, criterion):
- # Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set.
- expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t]
- Z = single(hierarchy_test_data.Q_X)
- T = fcluster(Z, criterion=criterion, t=t)
- assert_(is_isomorphic(T, expectedT))
- def test_fcluster_monocrit(self):
- for t in hierarchy_test_data.fcluster_distance:
- self.check_fcluster_monocrit(t)
- for t in hierarchy_test_data.fcluster_maxclust:
- self.check_fcluster_maxclust_monocrit(t)
- def check_fcluster_monocrit(self, t):
- expectedT = hierarchy_test_data.fcluster_distance[t]
- Z = single(hierarchy_test_data.Q_X)
- T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z))
- assert_(is_isomorphic(T, expectedT))
- def check_fcluster_maxclust_monocrit(self, t):
- expectedT = hierarchy_test_data.fcluster_maxclust[t]
- Z = single(hierarchy_test_data.Q_X)
- T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z))
- assert_(is_isomorphic(T, expectedT))
- class TestLeaders:
- def test_leaders_single(self):
- # Tests leaders using a flat clustering generated by single linkage.
- X = hierarchy_test_data.Q_X
- Y = pdist(X)
- Z = linkage(Y)
- T = fcluster(Z, criterion='maxclust', t=3)
- Lright = (np.array([53, 55, 56]), np.array([2, 3, 1]))
- L = leaders(Z, T)
- assert_equal(L, Lright)
- class TestIsIsomorphic:
- def test_is_isomorphic_1(self):
- # Tests is_isomorphic on test case #1 (one flat cluster, different labellings)
- a = [1, 1, 1]
- b = [2, 2, 2]
- assert_(is_isomorphic(a, b))
- assert_(is_isomorphic(b, a))
- def test_is_isomorphic_2(self):
- # Tests is_isomorphic on test case #2 (two flat clusters, different labelings)
- a = [1, 7, 1]
- b = [2, 3, 2]
- assert_(is_isomorphic(a, b))
- assert_(is_isomorphic(b, a))
- def test_is_isomorphic_3(self):
- # Tests is_isomorphic on test case #3 (no flat clusters)
- a = []
- b = []
- assert_(is_isomorphic(a, b))
- def test_is_isomorphic_4A(self):
- # Tests is_isomorphic on test case #4A (3 flat clusters, different labelings, isomorphic)
- a = [1, 2, 3]
- b = [1, 3, 2]
- assert_(is_isomorphic(a, b))
- assert_(is_isomorphic(b, a))
- def test_is_isomorphic_4B(self):
- # Tests is_isomorphic on test case #4B (3 flat clusters, different labelings, nonisomorphic)
- a = [1, 2, 3, 3]
- b = [1, 3, 2, 3]
- assert_(is_isomorphic(a, b) == False)
- assert_(is_isomorphic(b, a) == False)
- def test_is_isomorphic_4C(self):
- # Tests is_isomorphic on test case #4C (3 flat clusters, different labelings, isomorphic)
- a = [7, 2, 3]
- b = [6, 3, 2]
- assert_(is_isomorphic(a, b))
- assert_(is_isomorphic(b, a))
- def test_is_isomorphic_5(self):
- # Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random
- # clusters, random permutation of the labeling).
- for nc in [2, 3, 5]:
- self.help_is_isomorphic_randperm(1000, nc)
- def test_is_isomorphic_6(self):
- # Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random
- # clusters, random permutation of the labeling, slightly
- # nonisomorphic.)
- for nc in [2, 3, 5]:
- self.help_is_isomorphic_randperm(1000, nc, True, 5)
- def test_is_isomorphic_7(self):
- # Regression test for gh-6271
- assert_(not is_isomorphic([1, 2, 3], [1, 1, 1]))
- def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0):
- for k in range(3):
- a = np.int_(np.random.rand(nobs) * nclusters)
- b = np.zeros(a.size, dtype=np.int_)
- P = np.random.permutation(nclusters)
- for i in range(0, a.shape[0]):
- b[i] = P[a[i]]
- if noniso:
- Q = np.random.permutation(nobs)
- b[Q[0:nerrors]] += 1
- b[Q[0:nerrors]] %= nclusters
- assert_(is_isomorphic(a, b) == (not noniso))
- assert_(is_isomorphic(b, a) == (not noniso))
- class TestIsValidLinkage:
- def test_is_valid_linkage_various_size(self):
- for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
- (1, 4, True), (2, 4, True)]:
- self.check_is_valid_linkage_various_size(nrow, ncol, valid)
- def check_is_valid_linkage_various_size(self, nrow, ncol, valid):
- # Tests is_valid_linkage(Z) with linkage matrics of various sizes
- Z = np.asarray([[0, 1, 3.0, 2, 5],
- [3, 2, 4.0, 3, 3]], dtype=np.double)
- Z = Z[:nrow, :ncol]
- assert_(is_valid_linkage(Z) == valid)
- if not valid:
- assert_raises(ValueError, is_valid_linkage, Z, throw=True)
- def test_is_valid_linkage_int_type(self):
- # Tests is_valid_linkage(Z) with integer type.
- Z = np.asarray([[0, 1, 3.0, 2],
- [3, 2, 4.0, 3]], dtype=int)
- assert_(is_valid_linkage(Z) == False)
- assert_raises(TypeError, is_valid_linkage, Z, throw=True)
- def test_is_valid_linkage_empty(self):
- # Tests is_valid_linkage(Z) with empty linkage.
- Z = np.zeros((0, 4), dtype=np.double)
- assert_(is_valid_linkage(Z) == False)
- assert_raises(ValueError, is_valid_linkage, Z, throw=True)
- def test_is_valid_linkage_4_and_up(self):
- # Tests is_valid_linkage(Z) on linkage on observation sets between
- # sizes 4 and 15 (step size 3).
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- assert_(is_valid_linkage(Z) == True)
- def test_is_valid_linkage_4_and_up_neg_index_left(self):
- # Tests is_valid_linkage(Z) on linkage on observation sets between
- # sizes 4 and 15 (step size 3) with negative indices (left).
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- Z[i//2,0] = -2
- assert_(is_valid_linkage(Z) == False)
- assert_raises(ValueError, is_valid_linkage, Z, throw=True)
- def test_is_valid_linkage_4_and_up_neg_index_right(self):
- # Tests is_valid_linkage(Z) on linkage on observation sets between
- # sizes 4 and 15 (step size 3) with negative indices (right).
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- Z[i//2,1] = -2
- assert_(is_valid_linkage(Z) == False)
- assert_raises(ValueError, is_valid_linkage, Z, throw=True)
- def test_is_valid_linkage_4_and_up_neg_dist(self):
- # Tests is_valid_linkage(Z) on linkage on observation sets between
- # sizes 4 and 15 (step size 3) with negative distances.
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- Z[i//2,2] = -0.5
- assert_(is_valid_linkage(Z) == False)
- assert_raises(ValueError, is_valid_linkage, Z, throw=True)
- def test_is_valid_linkage_4_and_up_neg_counts(self):
- # Tests is_valid_linkage(Z) on linkage on observation sets between
- # sizes 4 and 15 (step size 3) with negative counts.
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- Z[i//2,3] = -2
- assert_(is_valid_linkage(Z) == False)
- assert_raises(ValueError, is_valid_linkage, Z, throw=True)
- class TestIsValidInconsistent:
- def test_is_valid_im_int_type(self):
- # Tests is_valid_im(R) with integer type.
- R = np.asarray([[0, 1, 3.0, 2],
- [3, 2, 4.0, 3]], dtype=int)
- assert_(is_valid_im(R) == False)
- assert_raises(TypeError, is_valid_im, R, throw=True)
- def test_is_valid_im_various_size(self):
- for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
- (1, 4, True), (2, 4, True)]:
- self.check_is_valid_im_various_size(nrow, ncol, valid)
- def check_is_valid_im_various_size(self, nrow, ncol, valid):
- # Tests is_valid_im(R) with linkage matrics of various sizes
- R = np.asarray([[0, 1, 3.0, 2, 5],
- [3, 2, 4.0, 3, 3]], dtype=np.double)
- R = R[:nrow, :ncol]
- assert_(is_valid_im(R) == valid)
- if not valid:
- assert_raises(ValueError, is_valid_im, R, throw=True)
- def test_is_valid_im_empty(self):
- # Tests is_valid_im(R) with empty inconsistency matrix.
- R = np.zeros((0, 4), dtype=np.double)
- assert_(is_valid_im(R) == False)
- assert_raises(ValueError, is_valid_im, R, throw=True)
- def test_is_valid_im_4_and_up(self):
- # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
- # (step size 3).
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- R = inconsistent(Z)
- assert_(is_valid_im(R) == True)
- def test_is_valid_im_4_and_up_neg_index_left(self):
- # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
- # (step size 3) with negative link height means.
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- R = inconsistent(Z)
- R[i//2,0] = -2.0
- assert_(is_valid_im(R) == False)
- assert_raises(ValueError, is_valid_im, R, throw=True)
- def test_is_valid_im_4_and_up_neg_index_right(self):
- # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
- # (step size 3) with negative link height standard deviations.
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- R = inconsistent(Z)
- R[i//2,1] = -2.0
- assert_(is_valid_im(R) == False)
- assert_raises(ValueError, is_valid_im, R, throw=True)
- def test_is_valid_im_4_and_up_neg_dist(self):
- # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
- # (step size 3) with negative link counts.
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- R = inconsistent(Z)
- R[i//2,2] = -0.5
- assert_(is_valid_im(R) == False)
- assert_raises(ValueError, is_valid_im, R, throw=True)
- class TestNumObsLinkage:
- def test_num_obs_linkage_empty(self):
- # Tests num_obs_linkage(Z) with empty linkage.
- Z = np.zeros((0, 4), dtype=np.double)
- assert_raises(ValueError, num_obs_linkage, Z)
- def test_num_obs_linkage_1x4(self):
- # Tests num_obs_linkage(Z) on linkage over 2 observations.
- Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double)
- assert_equal(num_obs_linkage(Z), 2)
- def test_num_obs_linkage_2x4(self):
- # Tests num_obs_linkage(Z) on linkage over 3 observations.
- Z = np.asarray([[0, 1, 3.0, 2],
- [3, 2, 4.0, 3]], dtype=np.double)
- assert_equal(num_obs_linkage(Z), 3)
- def test_num_obs_linkage_4_and_up(self):
- # Tests num_obs_linkage(Z) on linkage on observation sets between sizes
- # 4 and 15 (step size 3).
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- assert_equal(num_obs_linkage(Z), i)
- class TestLeavesList:
- def test_leaves_list_1x4(self):
- # Tests leaves_list(Z) on a 1x4 linkage.
- Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double)
- to_tree(Z)
- assert_equal(leaves_list(Z), [0, 1])
- def test_leaves_list_2x4(self):
- # Tests leaves_list(Z) on a 2x4 linkage.
- Z = np.asarray([[0, 1, 3.0, 2],
- [3, 2, 4.0, 3]], dtype=np.double)
- to_tree(Z)
- assert_equal(leaves_list(Z), [0, 1, 2])
- def test_leaves_list_Q(self):
- for method in ['single', 'complete', 'average', 'weighted', 'centroid',
- 'median', 'ward']:
- self.check_leaves_list_Q(method)
- def check_leaves_list_Q(self, method):
- # Tests leaves_list(Z) on the Q data set
- X = hierarchy_test_data.Q_X
- Z = linkage(X, method)
- node = to_tree(Z)
- assert_equal(node.pre_order(), leaves_list(Z))
- def test_Q_subtree_pre_order(self):
- # Tests that pre_order() works when called on sub-trees.
- X = hierarchy_test_data.Q_X
- Z = linkage(X, 'single')
- node = to_tree(Z)
- assert_equal(node.pre_order(), (node.get_left().pre_order()
- + node.get_right().pre_order()))
- class TestCorrespond:
- def test_correspond_empty(self):
- # Tests correspond(Z, y) with empty linkage and condensed distance matrix.
- y = np.zeros((0,))
- Z = np.zeros((0,4))
- assert_raises(ValueError, correspond, Z, y)
- def test_correspond_2_and_up(self):
- # Tests correspond(Z, y) on linkage and CDMs over observation sets of
- # different sizes.
- for i in range(2, 4):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- assert_(correspond(Z, y))
- for i in range(4, 15, 3):
- y = np.random.rand(i*(i-1)//2)
- Z = linkage(y)
- assert_(correspond(Z, y))
- def test_correspond_4_and_up(self):
- # Tests correspond(Z, y) on linkage and CDMs over observation sets of
- # different sizes. Correspondence should be false.
- for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) +
- list(zip(list(range(3, 5)), list(range(2, 4))))):
- y = np.random.rand(i*(i-1)//2)
- y2 = np.random.rand(j*(j-1)//2)
- Z = linkage(y)
- Z2 = linkage(y2)
- assert_equal(correspond(Z, y2), False)
- assert_equal(correspond(Z2, y), False)
- def test_correspond_4_and_up_2(self):
- # Tests correspond(Z, y) on linkage and CDMs over observation sets of
- # different sizes. Correspondence should be false.
- for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) +
- list(zip(list(range(2, 7)), list(range(16, 21))))):
- y = np.random.rand(i*(i-1)//2)
- y2 = np.random.rand(j*(j-1)//2)
- Z = linkage(y)
- Z2 = linkage(y2)
- assert_equal(correspond(Z, y2), False)
- assert_equal(correspond(Z2, y), False)
- def test_num_obs_linkage_multi_matrix(self):
- # Tests num_obs_linkage with observation matrices of multiple sizes.
- for n in range(2, 10):
- X = np.random.rand(n, 4)
- Y = pdist(X)
- Z = linkage(Y)
- assert_equal(num_obs_linkage(Z), n)
- class TestIsMonotonic:
- def test_is_monotonic_empty(self):
- # Tests is_monotonic(Z) on an empty linkage.
- Z = np.zeros((0, 4))
- assert_raises(ValueError, is_monotonic, Z)
- def test_is_monotonic_1x4(self):
- # Tests is_monotonic(Z) on 1x4 linkage. Expecting True.
- Z = np.asarray([[0, 1, 0.3, 2]], dtype=np.double)
- assert_equal(is_monotonic(Z), True)
- def test_is_monotonic_2x4_T(self):
- # Tests is_monotonic(Z) on 2x4 linkage. Expecting True.
- Z = np.asarray([[0, 1, 0.3, 2],
- [2, 3, 0.4, 3]], dtype=np.double)
- assert_equal(is_monotonic(Z), True)
- def test_is_monotonic_2x4_F(self):
- # Tests is_monotonic(Z) on 2x4 linkage. Expecting False.
- Z = np.asarray([[0, 1, 0.4, 2],
- [2, 3, 0.3, 3]], dtype=np.double)
- assert_equal(is_monotonic(Z), False)
- def test_is_monotonic_3x4_T(self):
- # Tests is_monotonic(Z) on 3x4 linkage. Expecting True.
- Z = np.asarray([[0, 1, 0.3, 2],
- [2, 3, 0.4, 2],
- [4, 5, 0.6, 4]], dtype=np.double)
- assert_equal(is_monotonic(Z), True)
- def test_is_monotonic_3x4_F1(self):
- # Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False.
- Z = np.asarray([[0, 1, 0.3, 2],
- [2, 3, 0.2, 2],
- [4, 5, 0.6, 4]], dtype=np.double)
- assert_equal(is_monotonic(Z), False)
- def test_is_monotonic_3x4_F2(self):
- # Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False.
- Z = np.asarray([[0, 1, 0.8, 2],
- [2, 3, 0.4, 2],
- [4, 5, 0.6, 4]], dtype=np.double)
- assert_equal(is_monotonic(Z), False)
- def test_is_monotonic_3x4_F3(self):
- # Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False
- Z = np.asarray([[0, 1, 0.3, 2],
- [2, 3, 0.4, 2],
- [4, 5, 0.2, 4]], dtype=np.double)
- assert_equal(is_monotonic(Z), False)
- def test_is_monotonic_tdist_linkage1(self):
- # Tests is_monotonic(Z) on clustering generated by single linkage on
- # tdist data set. Expecting True.
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- assert_equal(is_monotonic(Z), True)
- def test_is_monotonic_tdist_linkage2(self):
- # Tests is_monotonic(Z) on clustering generated by single linkage on
- # tdist data set. Perturbing. Expecting False.
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- Z[2,2] = 0.0
- assert_equal(is_monotonic(Z), False)
- def test_is_monotonic_Q_linkage(self):
- # Tests is_monotonic(Z) on clustering generated by single linkage on
- # Q data set. Expecting True.
- X = hierarchy_test_data.Q_X
- Z = linkage(X, 'single')
- assert_equal(is_monotonic(Z), True)
- class TestMaxDists:
- def test_maxdists_empty_linkage(self):
- # Tests maxdists(Z) on empty linkage. Expecting exception.
- Z = np.zeros((0, 4), dtype=np.double)
- assert_raises(ValueError, maxdists, Z)
- def test_maxdists_one_cluster_linkage(self):
- # Tests maxdists(Z) on linkage with one cluster.
- Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double)
- MD = maxdists(Z)
- expectedMD = calculate_maximum_distances(Z)
- assert_allclose(MD, expectedMD, atol=1e-15)
- def test_maxdists_Q_linkage(self):
- for method in ['single', 'complete', 'ward', 'centroid', 'median']:
- self.check_maxdists_Q_linkage(method)
- def check_maxdists_Q_linkage(self, method):
- # Tests maxdists(Z) on the Q data set
- X = hierarchy_test_data.Q_X
- Z = linkage(X, method)
- MD = maxdists(Z)
- expectedMD = calculate_maximum_distances(Z)
- assert_allclose(MD, expectedMD, atol=1e-15)
- class TestMaxInconsts:
- def test_maxinconsts_empty_linkage(self):
- # Tests maxinconsts(Z, R) on empty linkage. Expecting exception.
- Z = np.zeros((0, 4), dtype=np.double)
- R = np.zeros((0, 4), dtype=np.double)
- assert_raises(ValueError, maxinconsts, Z, R)
- def test_maxinconsts_difrow_linkage(self):
- # Tests maxinconsts(Z, R) on linkage and inconsistency matrices with
- # different numbers of clusters. Expecting exception.
- Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double)
- R = np.random.rand(2, 4)
- assert_raises(ValueError, maxinconsts, Z, R)
- def test_maxinconsts_one_cluster_linkage(self):
- # Tests maxinconsts(Z, R) on linkage with one cluster.
- Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double)
- R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double)
- MD = maxinconsts(Z, R)
- expectedMD = calculate_maximum_inconsistencies(Z, R)
- assert_allclose(MD, expectedMD, atol=1e-15)
- def test_maxinconsts_Q_linkage(self):
- for method in ['single', 'complete', 'ward', 'centroid', 'median']:
- self.check_maxinconsts_Q_linkage(method)
- def check_maxinconsts_Q_linkage(self, method):
- # Tests maxinconsts(Z, R) on the Q data set
- X = hierarchy_test_data.Q_X
- Z = linkage(X, method)
- R = inconsistent(Z)
- MD = maxinconsts(Z, R)
- expectedMD = calculate_maximum_inconsistencies(Z, R)
- assert_allclose(MD, expectedMD, atol=1e-15)
- class TestMaxRStat:
- def test_maxRstat_invalid_index(self):
- for i in [3.3, -1, 4]:
- self.check_maxRstat_invalid_index(i)
- def check_maxRstat_invalid_index(self, i):
- # Tests maxRstat(Z, R, i). Expecting exception.
- Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double)
- R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double)
- if isinstance(i, int):
- assert_raises(ValueError, maxRstat, Z, R, i)
- else:
- assert_raises(TypeError, maxRstat, Z, R, i)
- def test_maxRstat_empty_linkage(self):
- for i in range(4):
- self.check_maxRstat_empty_linkage(i)
- def check_maxRstat_empty_linkage(self, i):
- # Tests maxRstat(Z, R, i) on empty linkage. Expecting exception.
- Z = np.zeros((0, 4), dtype=np.double)
- R = np.zeros((0, 4), dtype=np.double)
- assert_raises(ValueError, maxRstat, Z, R, i)
- def test_maxRstat_difrow_linkage(self):
- for i in range(4):
- self.check_maxRstat_difrow_linkage(i)
- def check_maxRstat_difrow_linkage(self, i):
- # Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with
- # different numbers of clusters. Expecting exception.
- Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double)
- R = np.random.rand(2, 4)
- assert_raises(ValueError, maxRstat, Z, R, i)
- def test_maxRstat_one_cluster_linkage(self):
- for i in range(4):
- self.check_maxRstat_one_cluster_linkage(i)
- def check_maxRstat_one_cluster_linkage(self, i):
- # Tests maxRstat(Z, R, i) on linkage with one cluster.
- Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double)
- R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double)
- MD = maxRstat(Z, R, 1)
- expectedMD = calculate_maximum_inconsistencies(Z, R, 1)
- assert_allclose(MD, expectedMD, atol=1e-15)
- def test_maxRstat_Q_linkage(self):
- for method in ['single', 'complete', 'ward', 'centroid', 'median']:
- for i in range(4):
- self.check_maxRstat_Q_linkage(method, i)
- def check_maxRstat_Q_linkage(self, method, i):
- # Tests maxRstat(Z, R, i) on the Q data set
- X = hierarchy_test_data.Q_X
- Z = linkage(X, method)
- R = inconsistent(Z)
- MD = maxRstat(Z, R, 1)
- expectedMD = calculate_maximum_inconsistencies(Z, R, 1)
- assert_allclose(MD, expectedMD, atol=1e-15)
- class TestDendrogram:
- def test_dendrogram_single_linkage_tdist(self):
- # Tests dendrogram calculation on single linkage of the tdist data set.
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- R = dendrogram(Z, no_plot=True)
- leaves = R["leaves"]
- assert_equal(leaves, [2, 5, 1, 0, 3, 4])
- def test_valid_orientation(self):
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- assert_raises(ValueError, dendrogram, Z, orientation="foo")
- def test_labels_as_array_or_list(self):
- # test for gh-12418
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- labels = np.array([1, 3, 2, 6, 4, 5])
- result1 = dendrogram(Z, labels=labels, no_plot=True)
- result2 = dendrogram(Z, labels=labels.tolist(), no_plot=True)
- assert result1 == result2
- @pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
- def test_valid_label_size(self):
- link = np.array([
- [0, 1, 1.0, 4],
- [2, 3, 1.0, 5],
- [4, 5, 2.0, 6],
- ])
- plt.figure()
- with pytest.raises(ValueError) as exc_info:
- dendrogram(link, labels=list(range(100)))
- assert "Dimensions of Z and labels must be consistent."\
- in str(exc_info.value)
- with pytest.raises(
- ValueError,
- match="Dimensions of Z and labels must be consistent."):
- dendrogram(link, labels=[])
- plt.close()
- @pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
- def test_dendrogram_plot(self):
- for orientation in ['top', 'bottom', 'left', 'right']:
- self.check_dendrogram_plot(orientation)
- def check_dendrogram_plot(self, orientation):
- # Tests dendrogram plotting.
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- expected = {'color_list': ['C1', 'C0', 'C0', 'C0', 'C0'],
- 'dcoord': [[0.0, 138.0, 138.0, 0.0],
- [0.0, 219.0, 219.0, 0.0],
- [0.0, 255.0, 255.0, 219.0],
- [0.0, 268.0, 268.0, 255.0],
- [138.0, 295.0, 295.0, 268.0]],
- 'icoord': [[5.0, 5.0, 15.0, 15.0],
- [45.0, 45.0, 55.0, 55.0],
- [35.0, 35.0, 50.0, 50.0],
- [25.0, 25.0, 42.5, 42.5],
- [10.0, 10.0, 33.75, 33.75]],
- 'ivl': ['2', '5', '1', '0', '3', '4'],
- 'leaves': [2, 5, 1, 0, 3, 4],
- 'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0', 'C0'],
- }
- fig = plt.figure()
- ax = fig.add_subplot(221)
- # test that dendrogram accepts ax keyword
- R1 = dendrogram(Z, ax=ax, orientation=orientation)
- assert_equal(R1, expected)
- # test that dendrogram accepts and handle the leaf_font_size and
- # leaf_rotation keywords
- dendrogram(Z, ax=ax, orientation=orientation,
- leaf_font_size=20, leaf_rotation=90)
- testlabel = (
- ax.get_xticklabels()[0]
- if orientation in ['top', 'bottom']
- else ax.get_yticklabels()[0]
- )
- assert_equal(testlabel.get_rotation(), 90)
- assert_equal(testlabel.get_size(), 20)
- dendrogram(Z, ax=ax, orientation=orientation,
- leaf_rotation=90)
- testlabel = (
- ax.get_xticklabels()[0]
- if orientation in ['top', 'bottom']
- else ax.get_yticklabels()[0]
- )
- assert_equal(testlabel.get_rotation(), 90)
- dendrogram(Z, ax=ax, orientation=orientation,
- leaf_font_size=20)
- testlabel = (
- ax.get_xticklabels()[0]
- if orientation in ['top', 'bottom']
- else ax.get_yticklabels()[0]
- )
- assert_equal(testlabel.get_size(), 20)
- plt.close()
- # test plotting to gca (will import pylab)
- R2 = dendrogram(Z, orientation=orientation)
- plt.close()
- assert_equal(R2, expected)
- @pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
- def test_dendrogram_truncate_mode(self):
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- R = dendrogram(Z, 2, 'lastp', show_contracted=True)
- plt.close()
- assert_equal(R, {'color_list': ['C0'],
- 'dcoord': [[0.0, 295.0, 295.0, 0.0]],
- 'icoord': [[5.0, 5.0, 15.0, 15.0]],
- 'ivl': ['(2)', '(4)'],
- 'leaves': [6, 9],
- 'leaves_color_list': ['C0', 'C0'],
- })
- R = dendrogram(Z, 2, 'mtica', show_contracted=True)
- plt.close()
- assert_equal(R, {'color_list': ['C1', 'C0', 'C0', 'C0'],
- 'dcoord': [[0.0, 138.0, 138.0, 0.0],
- [0.0, 255.0, 255.0, 0.0],
- [0.0, 268.0, 268.0, 255.0],
- [138.0, 295.0, 295.0, 268.0]],
- 'icoord': [[5.0, 5.0, 15.0, 15.0],
- [35.0, 35.0, 45.0, 45.0],
- [25.0, 25.0, 40.0, 40.0],
- [10.0, 10.0, 32.5, 32.5]],
- 'ivl': ['2', '5', '1', '0', '(2)'],
- 'leaves': [2, 5, 1, 0, 7],
- 'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0'],
- })
- def test_dendrogram_colors(self):
- # Tests dendrogram plots with alternate colors
- Z = linkage(hierarchy_test_data.ytdist, 'single')
- set_link_color_palette(['c', 'm', 'y', 'k'])
- R = dendrogram(Z, no_plot=True,
- above_threshold_color='g', color_threshold=250)
- set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k'])
- color_list = R['color_list']
- assert_equal(color_list, ['c', 'm', 'g', 'g', 'g'])
- # reset color palette (global list)
- set_link_color_palette(None)
- def test_dendrogram_leaf_colors_zero_dist(self):
- # tests that the colors of leafs are correct for tree
- # with two identical points
- x = np.array([[1, 0, 0],
- [0, 0, 1],
- [0, 2, 0],
- [0, 0, 1],
- [0, 1, 0],
- [0, 1, 0]])
- z = linkage(x, "single")
- d = dendrogram(z, no_plot=True)
- exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
- colors = d["leaves_color_list"]
- assert_equal(colors, exp_colors)
- def test_dendrogram_leaf_colors(self):
- # tests that the colors are correct for a tree
- # with two near points ((0, 0, 1.1) and (0, 0, 1))
- x = np.array([[1, 0, 0],
- [0, 0, 1.1],
- [0, 2, 0],
- [0, 0, 1],
- [0, 1, 0],
- [0, 1, 0]])
- z = linkage(x, "single")
- d = dendrogram(z, no_plot=True)
- exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
- colors = d["leaves_color_list"]
- assert_equal(colors, exp_colors)
- def calculate_maximum_distances(Z):
- # Used for testing correctness of maxdists.
- n = Z.shape[0] + 1
- B = np.zeros((n-1,))
- q = np.zeros((3,))
- for i in range(0, n - 1):
- q[:] = 0.0
- left = Z[i, 0]
- right = Z[i, 1]
- if left >= n:
- q[0] = B[int(left) - n]
- if right >= n:
- q[1] = B[int(right) - n]
- q[2] = Z[i, 2]
- B[i] = q.max()
- return B
- def calculate_maximum_inconsistencies(Z, R, k=3):
- # Used for testing correctness of maxinconsts.
- n = Z.shape[0] + 1
- B = np.zeros((n-1,))
- q = np.zeros((3,))
- for i in range(0, n - 1):
- q[:] = 0.0
- left = Z[i, 0]
- right = Z[i, 1]
- if left >= n:
- q[0] = B[int(left) - n]
- if right >= n:
- q[1] = B[int(right) - n]
- q[2] = R[i, k]
- B[i] = q.max()
- return B
- def within_tol(a, b, tol):
- return np.abs(a - b).max() < tol
- def test_unsupported_uncondensed_distance_matrix_linkage_warning():
- assert_warns(ClusterWarning, linkage, [[0, 1], [1, 0]])
- def test_euclidean_linkage_value_error():
- for method in scipy.cluster.hierarchy._EUCLIDEAN_METHODS:
- assert_raises(ValueError, linkage, [[1, 1], [1, 1]],
- method=method, metric='cityblock')
- def test_2x2_linkage():
- Z1 = linkage([1], method='single', metric='euclidean')
- Z2 = linkage([[0, 1], [0, 0]], method='single', metric='euclidean')
- assert_allclose(Z1, Z2)
- def test_node_compare():
- np.random.seed(23)
- nobs = 50
- X = np.random.randn(nobs, 4)
- Z = scipy.cluster.hierarchy.ward(X)
- tree = to_tree(Z)
- assert_(tree > tree.get_left())
- assert_(tree.get_right() > tree.get_left())
- assert_(tree.get_right() == tree.get_right())
- assert_(tree.get_right() != tree.get_left())
- def test_cut_tree():
- np.random.seed(23)
- nobs = 50
- X = np.random.randn(nobs, 4)
- Z = scipy.cluster.hierarchy.ward(X)
- cutree = cut_tree(Z)
- assert_equal(cutree[:, 0], np.arange(nobs))
- assert_equal(cutree[:, -1], np.zeros(nobs))
- assert_equal(cutree.max(0), np.arange(nobs - 1, -1, -1))
- assert_equal(cutree[:, [-5]], cut_tree(Z, n_clusters=5))
- assert_equal(cutree[:, [-5, -10]], cut_tree(Z, n_clusters=[5, 10]))
- assert_equal(cutree[:, [-10, -5]], cut_tree(Z, n_clusters=[10, 5]))
- nodes = _order_cluster_tree(Z)
- heights = np.array([node.dist for node in nodes])
- assert_equal(cutree[:, np.searchsorted(heights, [5])],
- cut_tree(Z, height=5))
- assert_equal(cutree[:, np.searchsorted(heights, [5, 10])],
- cut_tree(Z, height=[5, 10]))
- assert_equal(cutree[:, np.searchsorted(heights, [10, 5])],
- cut_tree(Z, height=[10, 5]))
- def test_optimal_leaf_ordering():
- # test with the distance vector y
- Z = optimal_leaf_ordering(linkage(hierarchy_test_data.ytdist),
- hierarchy_test_data.ytdist)
- expectedZ = hierarchy_test_data.linkage_ytdist_single_olo
- assert_allclose(Z, expectedZ, atol=1e-10)
- # test with the observation matrix X
- Z = optimal_leaf_ordering(linkage(hierarchy_test_data.X, 'ward'),
- hierarchy_test_data.X)
- expectedZ = hierarchy_test_data.linkage_X_ward_olo
- assert_allclose(Z, expectedZ, atol=1e-06)
- def test_Heap():
- values = np.array([2, -1, 0, -1.5, 3])
- heap = Heap(values)
- pair = heap.get_min()
- assert_equal(pair['key'], 3)
- assert_equal(pair['value'], -1.5)
- heap.remove_min()
- pair = heap.get_min()
- assert_equal(pair['key'], 1)
- assert_equal(pair['value'], -1)
- heap.change_value(1, 2.5)
- pair = heap.get_min()
- assert_equal(pair['key'], 2)
- assert_equal(pair['value'], 0)
- heap.remove_min()
- heap.remove_min()
- heap.change_value(1, 10)
- pair = heap.get_min()
- assert_equal(pair['key'], 4)
- assert_equal(pair['value'], 3)
- heap.remove_min()
- pair = heap.get_min()
- assert_equal(pair['key'], 1)
- assert_equal(pair['value'], 10)
|