123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695 |
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- DatetimeIndex,
- Index,
- MultiIndex,
- Series,
- isna,
- notna,
- )
- import pandas._testing as tm
- def test_doc_string():
- df = DataFrame({"B": [0, 1, 2, np.nan, 4]})
- df
- df.expanding(2).sum()
- def test_constructor(frame_or_series):
- # GH 12669
- c = frame_or_series(range(5)).expanding
- # valid
- c(min_periods=1)
- @pytest.mark.parametrize("w", [2.0, "foo", np.array([2])])
- def test_constructor_invalid(frame_or_series, w):
- # not valid
- c = frame_or_series(range(5)).expanding
- msg = "min_periods must be an integer"
- with pytest.raises(ValueError, match=msg):
- c(min_periods=w)
- @pytest.mark.parametrize(
- "expander",
- [
- 1,
- pytest.param(
- "ls",
- marks=pytest.mark.xfail(
- reason="GH#16425 expanding with offset not supported"
- ),
- ),
- ],
- )
- def test_empty_df_expanding(expander):
- # GH 15819 Verifies that datetime and integer expanding windows can be
- # applied to empty DataFrames
- expected = DataFrame()
- result = DataFrame().expanding(expander).sum()
- tm.assert_frame_equal(result, expected)
- # Verifies that datetime and integer expanding windows can be applied
- # to empty DataFrames with datetime index
- expected = DataFrame(index=DatetimeIndex([]))
- result = DataFrame(index=DatetimeIndex([])).expanding(expander).sum()
- tm.assert_frame_equal(result, expected)
- def test_missing_minp_zero():
- # https://github.com/pandas-dev/pandas/pull/18921
- # minp=0
- x = Series([np.nan])
- result = x.expanding(min_periods=0).sum()
- expected = Series([0.0])
- tm.assert_series_equal(result, expected)
- # minp=1
- result = x.expanding(min_periods=1).sum()
- expected = Series([np.nan])
- tm.assert_series_equal(result, expected)
- def test_expanding_axis(axis_frame):
- # see gh-23372.
- df = DataFrame(np.ones((10, 20)))
- axis = df._get_axis_number(axis_frame)
- if axis == 0:
- expected = DataFrame(
- {i: [np.nan] * 2 + [float(j) for j in range(3, 11)] for i in range(20)}
- )
- else:
- # axis == 1
- expected = DataFrame([[np.nan] * 2 + [float(i) for i in range(3, 21)]] * 10)
- result = df.expanding(3, axis=axis_frame).sum()
- tm.assert_frame_equal(result, expected)
- def test_expanding_count_with_min_periods(frame_or_series):
- # GH 26996
- result = frame_or_series(range(5)).expanding(min_periods=3).count()
- expected = frame_or_series([np.nan, np.nan, 3.0, 4.0, 5.0])
- tm.assert_equal(result, expected)
- def test_expanding_count_default_min_periods_with_null_values(frame_or_series):
- # GH 26996
- values = [1, 2, 3, np.nan, 4, 5, 6]
- expected_counts = [1.0, 2.0, 3.0, 3.0, 4.0, 5.0, 6.0]
- result = frame_or_series(values).expanding().count()
- expected = frame_or_series(expected_counts)
- tm.assert_equal(result, expected)
- def test_expanding_count_with_min_periods_exceeding_series_length(frame_or_series):
- # GH 25857
- result = frame_or_series(range(5)).expanding(min_periods=6).count()
- expected = frame_or_series([np.nan, np.nan, np.nan, np.nan, np.nan])
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize(
- "df,expected,min_periods",
- [
- (
- DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
- [
- ({"A": [1], "B": [4]}, [0]),
- ({"A": [1, 2], "B": [4, 5]}, [0, 1]),
- ({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
- ],
- 3,
- ),
- (
- DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
- [
- ({"A": [1], "B": [4]}, [0]),
- ({"A": [1, 2], "B": [4, 5]}, [0, 1]),
- ({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
- ],
- 2,
- ),
- (
- DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}),
- [
- ({"A": [1], "B": [4]}, [0]),
- ({"A": [1, 2], "B": [4, 5]}, [0, 1]),
- ({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]),
- ],
- 1,
- ),
- (DataFrame({"A": [1], "B": [4]}), [], 2),
- (DataFrame(), [({}, [])], 1),
- (
- DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
- [
- ({"A": [1.0], "B": [np.nan]}, [0]),
- ({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
- ({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
- ],
- 3,
- ),
- (
- DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
- [
- ({"A": [1.0], "B": [np.nan]}, [0]),
- ({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
- ({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
- ],
- 2,
- ),
- (
- DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}),
- [
- ({"A": [1.0], "B": [np.nan]}, [0]),
- ({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]),
- ({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]),
- ],
- 1,
- ),
- ],
- )
- def test_iter_expanding_dataframe(df, expected, min_periods):
- # GH 11704
- expected = [DataFrame(values, index=index) for (values, index) in expected]
- for expected, actual in zip(expected, df.expanding(min_periods)):
- tm.assert_frame_equal(actual, expected)
- @pytest.mark.parametrize(
- "ser,expected,min_periods",
- [
- (Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 3),
- (Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 2),
- (Series([1, 2, 3]), [([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], 1),
- (Series([1, 2]), [([1], [0]), ([1, 2], [0, 1])], 2),
- (Series([np.nan, 2]), [([np.nan], [0]), ([np.nan, 2], [0, 1])], 2),
- (Series([], dtype="int64"), [], 2),
- ],
- )
- def test_iter_expanding_series(ser, expected, min_periods):
- # GH 11704
- expected = [Series(values, index=index) for (values, index) in expected]
- for expected, actual in zip(expected, ser.expanding(min_periods)):
- tm.assert_series_equal(actual, expected)
- def test_center_invalid():
- # GH 20647
- df = DataFrame()
- with pytest.raises(TypeError, match=".* got an unexpected keyword"):
- df.expanding(center=True)
- def test_expanding_sem(frame_or_series):
- # GH: 26476
- obj = frame_or_series([0, 1, 2])
- result = obj.expanding().sem()
- if isinstance(result, DataFrame):
- result = Series(result[0].values)
- expected = Series([np.nan] + [0.707107] * 2)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("method", ["skew", "kurt"])
- def test_expanding_skew_kurt_numerical_stability(method):
- # GH: 6929
- s = Series(np.random.rand(10))
- expected = getattr(s.expanding(3), method)()
- s = s + 5000
- result = getattr(s.expanding(3), method)()
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("window", [1, 3, 10, 20])
- @pytest.mark.parametrize("method", ["min", "max", "average"])
- @pytest.mark.parametrize("pct", [True, False])
- @pytest.mark.parametrize("ascending", [True, False])
- @pytest.mark.parametrize("test_data", ["default", "duplicates", "nans"])
- def test_rank(window, method, pct, ascending, test_data):
- length = 20
- if test_data == "default":
- ser = Series(data=np.random.rand(length))
- elif test_data == "duplicates":
- ser = Series(data=np.random.choice(3, length))
- elif test_data == "nans":
- ser = Series(
- data=np.random.choice([1.0, 0.25, 0.75, np.nan, np.inf, -np.inf], length)
- )
- expected = ser.expanding(window).apply(
- lambda x: x.rank(method=method, pct=pct, ascending=ascending).iloc[-1]
- )
- result = ser.expanding(window).rank(method=method, pct=pct, ascending=ascending)
- tm.assert_series_equal(result, expected)
- def test_expanding_corr(series):
- A = series.dropna()
- B = (A + np.random.randn(len(A)))[:-5]
- result = A.expanding().corr(B)
- rolling_result = A.rolling(window=len(A), min_periods=1).corr(B)
- tm.assert_almost_equal(rolling_result, result)
- def test_expanding_count(series):
- result = series.expanding(min_periods=0).count()
- tm.assert_almost_equal(
- result, series.rolling(window=len(series), min_periods=0).count()
- )
- def test_expanding_quantile(series):
- result = series.expanding().quantile(0.5)
- rolling_result = series.rolling(window=len(series), min_periods=1).quantile(0.5)
- tm.assert_almost_equal(result, rolling_result)
- def test_expanding_cov(series):
- A = series
- B = (A + np.random.randn(len(A)))[:-5]
- result = A.expanding().cov(B)
- rolling_result = A.rolling(window=len(A), min_periods=1).cov(B)
- tm.assert_almost_equal(rolling_result, result)
- def test_expanding_cov_pairwise(frame):
- result = frame.expanding().cov()
- rolling_result = frame.rolling(window=len(frame), min_periods=1).cov()
- tm.assert_frame_equal(result, rolling_result)
- def test_expanding_corr_pairwise(frame):
- result = frame.expanding().corr()
- rolling_result = frame.rolling(window=len(frame), min_periods=1).corr()
- tm.assert_frame_equal(result, rolling_result)
- @pytest.mark.parametrize(
- "func,static_comp",
- [
- ("sum", np.sum),
- ("mean", lambda x: np.mean(x, axis=0)),
- ("max", lambda x: np.max(x, axis=0)),
- ("min", lambda x: np.min(x, axis=0)),
- ],
- ids=["sum", "mean", "max", "min"],
- )
- def test_expanding_func(func, static_comp, frame_or_series):
- data = frame_or_series(np.array(list(range(10)) + [np.nan] * 10))
- result = getattr(data.expanding(min_periods=1, axis=0), func)()
- assert isinstance(result, frame_or_series)
- expected = static_comp(data[:11])
- if frame_or_series is Series:
- tm.assert_almost_equal(result[10], expected)
- else:
- tm.assert_series_equal(result.iloc[10], expected, check_names=False)
- @pytest.mark.parametrize(
- "func,static_comp",
- [("sum", np.sum), ("mean", np.mean), ("max", np.max), ("min", np.min)],
- ids=["sum", "mean", "max", "min"],
- )
- def test_expanding_min_periods(func, static_comp):
- ser = Series(np.random.randn(50))
- result = getattr(ser.expanding(min_periods=30, axis=0), func)()
- assert result[:29].isna().all()
- tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
- # min_periods is working correctly
- result = getattr(ser.expanding(min_periods=15, axis=0), func)()
- assert isna(result.iloc[13])
- assert notna(result.iloc[14])
- ser2 = Series(np.random.randn(20))
- result = getattr(ser2.expanding(min_periods=5, axis=0), func)()
- assert isna(result[3])
- assert notna(result[4])
- # min_periods=0
- result0 = getattr(ser.expanding(min_periods=0, axis=0), func)()
- result1 = getattr(ser.expanding(min_periods=1, axis=0), func)()
- tm.assert_almost_equal(result0, result1)
- result = getattr(ser.expanding(min_periods=1, axis=0), func)()
- tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
- def test_expanding_apply(engine_and_raw, frame_or_series):
- engine, raw = engine_and_raw
- data = frame_or_series(np.array(list(range(10)) + [np.nan] * 10))
- result = data.expanding(min_periods=1).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- assert isinstance(result, frame_or_series)
- if frame_or_series is Series:
- tm.assert_almost_equal(result[9], np.mean(data[:11], axis=0))
- else:
- tm.assert_series_equal(
- result.iloc[9], np.mean(data[:11], axis=0), check_names=False
- )
- def test_expanding_min_periods_apply(engine_and_raw):
- engine, raw = engine_and_raw
- ser = Series(np.random.randn(50))
- result = ser.expanding(min_periods=30).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- assert result[:29].isna().all()
- tm.assert_almost_equal(result.iloc[-1], np.mean(ser[:50]))
- # min_periods is working correctly
- result = ser.expanding(min_periods=15).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- assert isna(result.iloc[13])
- assert notna(result.iloc[14])
- ser2 = Series(np.random.randn(20))
- result = ser2.expanding(min_periods=5).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- assert isna(result[3])
- assert notna(result[4])
- # min_periods=0
- result0 = ser.expanding(min_periods=0).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- result1 = ser.expanding(min_periods=1).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- tm.assert_almost_equal(result0, result1)
- result = ser.expanding(min_periods=1).apply(
- lambda x: x.mean(), raw=raw, engine=engine
- )
- tm.assert_almost_equal(result.iloc[-1], np.mean(ser[:50]))
- @pytest.mark.parametrize(
- "f",
- [
- lambda x: (x.expanding(min_periods=5).cov(x, pairwise=True)),
- lambda x: (x.expanding(min_periods=5).corr(x, pairwise=True)),
- ],
- )
- def test_moment_functions_zero_length_pairwise(f):
- df1 = DataFrame()
- df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar"))
- df2["a"] = df2["a"].astype("float64")
- df1_expected = DataFrame(index=MultiIndex.from_product([df1.index, df1.columns]))
- df2_expected = DataFrame(
- index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]),
- columns=Index(["a"], name="foo"),
- dtype="float64",
- )
- df1_result = f(df1)
- tm.assert_frame_equal(df1_result, df1_expected)
- df2_result = f(df2)
- tm.assert_frame_equal(df2_result, df2_expected)
- @pytest.mark.parametrize(
- "f",
- [
- lambda x: x.expanding().count(),
- lambda x: x.expanding(min_periods=5).cov(x, pairwise=False),
- lambda x: x.expanding(min_periods=5).corr(x, pairwise=False),
- lambda x: x.expanding(min_periods=5).max(),
- lambda x: x.expanding(min_periods=5).min(),
- lambda x: x.expanding(min_periods=5).sum(),
- lambda x: x.expanding(min_periods=5).mean(),
- lambda x: x.expanding(min_periods=5).std(),
- lambda x: x.expanding(min_periods=5).var(),
- lambda x: x.expanding(min_periods=5).skew(),
- lambda x: x.expanding(min_periods=5).kurt(),
- lambda x: x.expanding(min_periods=5).quantile(0.5),
- lambda x: x.expanding(min_periods=5).median(),
- lambda x: x.expanding(min_periods=5).apply(sum, raw=False),
- lambda x: x.expanding(min_periods=5).apply(sum, raw=True),
- ],
- )
- def test_moment_functions_zero_length(f):
- # GH 8056
- s = Series(dtype=np.float64)
- s_expected = s
- df1 = DataFrame()
- df1_expected = df1
- df2 = DataFrame(columns=["a"])
- df2["a"] = df2["a"].astype("float64")
- df2_expected = df2
- s_result = f(s)
- tm.assert_series_equal(s_result, s_expected)
- df1_result = f(df1)
- tm.assert_frame_equal(df1_result, df1_expected)
- df2_result = f(df2)
- tm.assert_frame_equal(df2_result, df2_expected)
- def test_expanding_apply_empty_series(engine_and_raw):
- engine, raw = engine_and_raw
- ser = Series([], dtype=np.float64)
- tm.assert_series_equal(
- ser, ser.expanding().apply(lambda x: x.mean(), raw=raw, engine=engine)
- )
- def test_expanding_apply_min_periods_0(engine_and_raw):
- # GH 8080
- engine, raw = engine_and_raw
- s = Series([None, None, None])
- result = s.expanding(min_periods=0).apply(lambda x: len(x), raw=raw, engine=engine)
- expected = Series([1.0, 2.0, 3.0])
- tm.assert_series_equal(result, expected)
- def test_expanding_cov_diff_index():
- # GH 7512
- s1 = Series([1, 2, 3], index=[0, 1, 2])
- s2 = Series([1, 3], index=[0, 2])
- result = s1.expanding().cov(s2)
- expected = Series([None, None, 2.0])
- tm.assert_series_equal(result, expected)
- s2a = Series([1, None, 3], index=[0, 1, 2])
- result = s1.expanding().cov(s2a)
- tm.assert_series_equal(result, expected)
- s1 = Series([7, 8, 10], index=[0, 1, 3])
- s2 = Series([7, 9, 10], index=[0, 2, 3])
- result = s1.expanding().cov(s2)
- expected = Series([None, None, None, 4.5])
- tm.assert_series_equal(result, expected)
- def test_expanding_corr_diff_index():
- # GH 7512
- s1 = Series([1, 2, 3], index=[0, 1, 2])
- s2 = Series([1, 3], index=[0, 2])
- result = s1.expanding().corr(s2)
- expected = Series([None, None, 1.0])
- tm.assert_series_equal(result, expected)
- s2a = Series([1, None, 3], index=[0, 1, 2])
- result = s1.expanding().corr(s2a)
- tm.assert_series_equal(result, expected)
- s1 = Series([7, 8, 10], index=[0, 1, 3])
- s2 = Series([7, 9, 10], index=[0, 2, 3])
- result = s1.expanding().corr(s2)
- expected = Series([None, None, None, 1.0])
- tm.assert_series_equal(result, expected)
- def test_expanding_cov_pairwise_diff_length():
- # GH 7512
- df1 = DataFrame([[1, 5], [3, 2], [3, 9]], columns=Index(["A", "B"], name="foo"))
- df1a = DataFrame(
- [[1, 5], [3, 9]], index=[0, 2], columns=Index(["A", "B"], name="foo")
- )
- df2 = DataFrame(
- [[5, 6], [None, None], [2, 1]], columns=Index(["X", "Y"], name="foo")
- )
- df2a = DataFrame(
- [[5, 6], [2, 1]], index=[0, 2], columns=Index(["X", "Y"], name="foo")
- )
- # TODO: xref gh-15826
- # .loc is not preserving the names
- result1 = df1.expanding().cov(df2, pairwise=True).loc[2]
- result2 = df1.expanding().cov(df2a, pairwise=True).loc[2]
- result3 = df1a.expanding().cov(df2, pairwise=True).loc[2]
- result4 = df1a.expanding().cov(df2a, pairwise=True).loc[2]
- expected = DataFrame(
- [[-3.0, -6.0], [-5.0, -10.0]],
- columns=Index(["A", "B"], name="foo"),
- index=Index(["X", "Y"], name="foo"),
- )
- tm.assert_frame_equal(result1, expected)
- tm.assert_frame_equal(result2, expected)
- tm.assert_frame_equal(result3, expected)
- tm.assert_frame_equal(result4, expected)
- def test_expanding_corr_pairwise_diff_length():
- # GH 7512
- df1 = DataFrame(
- [[1, 2], [3, 2], [3, 4]], columns=["A", "B"], index=Index(range(3), name="bar")
- )
- df1a = DataFrame(
- [[1, 2], [3, 4]], index=Index([0, 2], name="bar"), columns=["A", "B"]
- )
- df2 = DataFrame(
- [[5, 6], [None, None], [2, 1]],
- columns=["X", "Y"],
- index=Index(range(3), name="bar"),
- )
- df2a = DataFrame(
- [[5, 6], [2, 1]], index=Index([0, 2], name="bar"), columns=["X", "Y"]
- )
- result1 = df1.expanding().corr(df2, pairwise=True).loc[2]
- result2 = df1.expanding().corr(df2a, pairwise=True).loc[2]
- result3 = df1a.expanding().corr(df2, pairwise=True).loc[2]
- result4 = df1a.expanding().corr(df2a, pairwise=True).loc[2]
- expected = DataFrame(
- [[-1.0, -1.0], [-1.0, -1.0]], columns=["A", "B"], index=Index(["X", "Y"])
- )
- tm.assert_frame_equal(result1, expected)
- tm.assert_frame_equal(result2, expected)
- tm.assert_frame_equal(result3, expected)
- tm.assert_frame_equal(result4, expected)
- def test_expanding_apply_args_kwargs(engine_and_raw):
- def mean_w_arg(x, const):
- return np.mean(x) + const
- engine, raw = engine_and_raw
- df = DataFrame(np.random.rand(20, 3))
- expected = df.expanding().apply(np.mean, engine=engine, raw=raw) + 20.0
- result = df.expanding().apply(mean_w_arg, engine=engine, raw=raw, args=(20,))
- tm.assert_frame_equal(result, expected)
- result = df.expanding().apply(mean_w_arg, raw=raw, kwargs={"const": 20})
- tm.assert_frame_equal(result, expected)
- def test_numeric_only_frame(arithmetic_win_operators, numeric_only):
- # GH#46560
- kernel = arithmetic_win_operators
- df = DataFrame({"a": [1], "b": 2, "c": 3})
- df["c"] = df["c"].astype(object)
- expanding = df.expanding()
- op = getattr(expanding, kernel, None)
- if op is not None:
- result = op(numeric_only=numeric_only)
- columns = ["a", "b"] if numeric_only else ["a", "b", "c"]
- expected = df[columns].agg([kernel]).reset_index(drop=True).astype(float)
- assert list(expected.columns) == columns
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("kernel", ["corr", "cov"])
- @pytest.mark.parametrize("use_arg", [True, False])
- def test_numeric_only_corr_cov_frame(kernel, numeric_only, use_arg):
- # GH#46560
- df = DataFrame({"a": [1, 2, 3], "b": 2, "c": 3})
- df["c"] = df["c"].astype(object)
- arg = (df,) if use_arg else ()
- expanding = df.expanding()
- op = getattr(expanding, kernel)
- result = op(*arg, numeric_only=numeric_only)
- # Compare result to op using float dtypes, dropping c when numeric_only is True
- columns = ["a", "b"] if numeric_only else ["a", "b", "c"]
- df2 = df[columns].astype(float)
- arg2 = (df2,) if use_arg else ()
- expanding2 = df2.expanding()
- op2 = getattr(expanding2, kernel)
- expected = op2(*arg2, numeric_only=numeric_only)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("dtype", [int, object])
- def test_numeric_only_series(arithmetic_win_operators, numeric_only, dtype):
- # GH#46560
- kernel = arithmetic_win_operators
- ser = Series([1], dtype=dtype)
- expanding = ser.expanding()
- op = getattr(expanding, kernel)
- if numeric_only and dtype is object:
- msg = f"Expanding.{kernel} does not implement numeric_only"
- with pytest.raises(NotImplementedError, match=msg):
- op(numeric_only=numeric_only)
- else:
- result = op(numeric_only=numeric_only)
- expected = ser.agg([kernel]).reset_index(drop=True).astype(float)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("kernel", ["corr", "cov"])
- @pytest.mark.parametrize("use_arg", [True, False])
- @pytest.mark.parametrize("dtype", [int, object])
- def test_numeric_only_corr_cov_series(kernel, use_arg, numeric_only, dtype):
- # GH#46560
- ser = Series([1, 2, 3], dtype=dtype)
- arg = (ser,) if use_arg else ()
- expanding = ser.expanding()
- op = getattr(expanding, kernel)
- if numeric_only and dtype is object:
- msg = f"Expanding.{kernel} does not implement numeric_only"
- with pytest.raises(NotImplementedError, match=msg):
- op(*arg, numeric_only=numeric_only)
- else:
- result = op(*arg, numeric_only=numeric_only)
- ser2 = ser.astype(float)
- arg2 = (ser2,) if use_arg else ()
- expanding2 = ser2.expanding()
- op2 = getattr(expanding2, kernel)
- expected = op2(*arg2, numeric_only=numeric_only)
- tm.assert_series_equal(result, expected)
|