test_arithmetic.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. from datetime import (
  2. date,
  3. timedelta,
  4. timezone,
  5. )
  6. from decimal import Decimal
  7. import operator
  8. import numpy as np
  9. import pytest
  10. from pandas._libs.tslibs import IncompatibleFrequency
  11. from pandas.core.dtypes.common import (
  12. is_datetime64_dtype,
  13. is_datetime64tz_dtype,
  14. )
  15. import pandas as pd
  16. from pandas import (
  17. Categorical,
  18. Index,
  19. Series,
  20. Timedelta,
  21. bdate_range,
  22. date_range,
  23. isna,
  24. )
  25. import pandas._testing as tm
  26. from pandas.core import (
  27. nanops,
  28. ops,
  29. )
  30. from pandas.core.computation import expressions as expr
  31. from pandas.core.computation.check import NUMEXPR_INSTALLED
  32. @pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
  33. def switch_numexpr_min_elements(request):
  34. _MIN_ELEMENTS = expr._MIN_ELEMENTS
  35. expr._MIN_ELEMENTS = request.param
  36. yield request.param
  37. expr._MIN_ELEMENTS = _MIN_ELEMENTS
  38. def _permute(obj):
  39. return obj.take(np.random.permutation(len(obj)))
  40. class TestSeriesFlexArithmetic:
  41. @pytest.mark.parametrize(
  42. "ts",
  43. [
  44. (lambda x: x, lambda x: x * 2, False),
  45. (lambda x: x, lambda x: x[::2], False),
  46. (lambda x: x, lambda x: 5, True),
  47. (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True),
  48. ],
  49. )
  50. @pytest.mark.parametrize(
  51. "opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"]
  52. )
  53. def test_flex_method_equivalence(self, opname, ts):
  54. # check that Series.{opname} behaves like Series.__{opname}__,
  55. tser = tm.makeTimeSeries().rename("ts")
  56. series = ts[0](tser)
  57. other = ts[1](tser)
  58. check_reverse = ts[2]
  59. op = getattr(Series, opname)
  60. alt = getattr(operator, opname)
  61. result = op(series, other)
  62. expected = alt(series, other)
  63. tm.assert_almost_equal(result, expected)
  64. if check_reverse:
  65. rop = getattr(Series, "r" + opname)
  66. result = rop(series, other)
  67. expected = alt(other, series)
  68. tm.assert_almost_equal(result, expected)
  69. def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators):
  70. # GH 13208
  71. class MySeries(Series):
  72. _metadata = ["x"]
  73. @property
  74. def _constructor(self):
  75. return MySeries
  76. opname = all_arithmetic_operators
  77. op = getattr(Series, opname)
  78. m = MySeries([1, 2, 3], name="test")
  79. m.x = 42
  80. result = op(m, 1)
  81. assert result.x == 42
  82. def test_flex_add_scalar_fill_value(self):
  83. # GH12723
  84. ser = Series([0, 1, np.nan, 3, 4, 5])
  85. exp = ser.fillna(0).add(2)
  86. res = ser.add(2, fill_value=0)
  87. tm.assert_series_equal(res, exp)
  88. pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)]
  89. for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]:
  90. fv = 0
  91. lop = getattr(Series, op)
  92. lequiv = getattr(operator, op)
  93. rop = getattr(Series, "r" + op)
  94. # bind op at definition time...
  95. requiv = lambda x, y, op=op: getattr(operator, op)(y, x)
  96. pairings.append((lop, lequiv, fv))
  97. pairings.append((rop, requiv, fv))
  98. @pytest.mark.parametrize("op, equiv_op, fv", pairings)
  99. def test_operators_combine(self, op, equiv_op, fv):
  100. def _check_fill(meth, op, a, b, fill_value=0):
  101. exp_index = a.index.union(b.index)
  102. a = a.reindex(exp_index)
  103. b = b.reindex(exp_index)
  104. amask = isna(a)
  105. bmask = isna(b)
  106. exp_values = []
  107. for i in range(len(exp_index)):
  108. with np.errstate(all="ignore"):
  109. if amask[i]:
  110. if bmask[i]:
  111. exp_values.append(np.nan)
  112. continue
  113. exp_values.append(op(fill_value, b[i]))
  114. elif bmask[i]:
  115. if amask[i]:
  116. exp_values.append(np.nan)
  117. continue
  118. exp_values.append(op(a[i], fill_value))
  119. else:
  120. exp_values.append(op(a[i], b[i]))
  121. result = meth(a, b, fill_value=fill_value)
  122. expected = Series(exp_values, exp_index)
  123. tm.assert_series_equal(result, expected)
  124. a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5))
  125. b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6))
  126. result = op(a, b)
  127. exp = equiv_op(a, b)
  128. tm.assert_series_equal(result, exp)
  129. _check_fill(op, equiv_op, a, b, fill_value=fv)
  130. # should accept axis=0 or axis='rows'
  131. op(a, b, axis=0)
  132. class TestSeriesArithmetic:
  133. # Some of these may end up in tests/arithmetic, but are not yet sorted
  134. def test_add_series_with_period_index(self):
  135. rng = pd.period_range("1/1/2000", "1/1/2010", freq="A")
  136. ts = Series(np.random.randn(len(rng)), index=rng)
  137. result = ts + ts[::2]
  138. expected = ts + ts
  139. expected.iloc[1::2] = np.nan
  140. tm.assert_series_equal(result, expected)
  141. result = ts + _permute(ts[::2])
  142. tm.assert_series_equal(result, expected)
  143. msg = "Input has different freq=D from Period\\(freq=A-DEC\\)"
  144. with pytest.raises(IncompatibleFrequency, match=msg):
  145. ts + ts.asfreq("D", how="end")
  146. @pytest.mark.parametrize(
  147. "target_add,input_value,expected_value",
  148. [
  149. ("!", ["hello", "world"], ["hello!", "world!"]),
  150. ("m", ["hello", "world"], ["hellom", "worldm"]),
  151. ],
  152. )
  153. def test_string_addition(self, target_add, input_value, expected_value):
  154. # GH28658 - ensure adding 'm' does not raise an error
  155. a = Series(input_value)
  156. result = a + target_add
  157. expected = Series(expected_value)
  158. tm.assert_series_equal(result, expected)
  159. def test_divmod(self):
  160. # GH#25557
  161. a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"])
  162. b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"])
  163. result = a.divmod(b)
  164. expected = divmod(a, b)
  165. tm.assert_series_equal(result[0], expected[0])
  166. tm.assert_series_equal(result[1], expected[1])
  167. result = a.rdivmod(b)
  168. expected = divmod(b, a)
  169. tm.assert_series_equal(result[0], expected[0])
  170. tm.assert_series_equal(result[1], expected[1])
  171. @pytest.mark.parametrize("index", [None, range(9)])
  172. def test_series_integer_mod(self, index):
  173. # GH#24396
  174. s1 = Series(range(1, 10))
  175. s2 = Series("foo", index=index)
  176. msg = "not all arguments converted during string formatting"
  177. with pytest.raises(TypeError, match=msg):
  178. s2 % s1
  179. def test_add_with_duplicate_index(self):
  180. # GH14227
  181. s1 = Series([1, 2], index=[1, 1])
  182. s2 = Series([10, 10], index=[1, 2])
  183. result = s1 + s2
  184. expected = Series([11, 12, np.nan], index=[1, 1, 2])
  185. tm.assert_series_equal(result, expected)
  186. def test_add_na_handling(self):
  187. ser = Series(
  188. [Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)]
  189. )
  190. result = ser + ser.shift(1)
  191. result2 = ser.shift(1) + ser
  192. assert isna(result[0])
  193. assert isna(result2[0])
  194. def test_add_corner_cases(self, datetime_series):
  195. empty = Series([], index=Index([]), dtype=np.float64)
  196. result = datetime_series + empty
  197. assert np.isnan(result).all()
  198. result = empty + empty.copy()
  199. assert len(result) == 0
  200. def test_add_float_plus_int(self, datetime_series):
  201. # float + int
  202. int_ts = datetime_series.astype(int)[:-5]
  203. added = datetime_series + int_ts
  204. expected = Series(
  205. datetime_series.values[:-5] + int_ts.values,
  206. index=datetime_series.index[:-5],
  207. name="ts",
  208. )
  209. tm.assert_series_equal(added[:-5], expected)
  210. def test_mul_empty_int_corner_case(self):
  211. s1 = Series([], [], dtype=np.int32)
  212. s2 = Series({"x": 0.0})
  213. tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"]))
  214. def test_sub_datetimelike_align(self):
  215. # GH#7500
  216. # datetimelike ops need to align
  217. dt = Series(date_range("2012-1-1", periods=3, freq="D"))
  218. dt.iloc[2] = np.nan
  219. dt2 = dt[::-1]
  220. expected = Series([timedelta(0), timedelta(0), pd.NaT])
  221. # name is reset
  222. result = dt2 - dt
  223. tm.assert_series_equal(result, expected)
  224. expected = Series(expected, name=0)
  225. result = (dt2.to_frame() - dt.to_frame())[0]
  226. tm.assert_series_equal(result, expected)
  227. def test_alignment_doesnt_change_tz(self):
  228. # GH#33671
  229. dti = date_range("2016-01-01", periods=10, tz="CET")
  230. dti_utc = dti.tz_convert("UTC")
  231. ser = Series(10, index=dti)
  232. ser_utc = Series(10, index=dti_utc)
  233. # we don't care about the result, just that original indexes are unchanged
  234. ser * ser_utc
  235. assert ser.index is dti
  236. assert ser_utc.index is dti_utc
  237. def test_alignment_categorical(self):
  238. # GH13365
  239. cat = Categorical(["3z53", "3z53", "LoJG", "LoJG", "LoJG", "N503"])
  240. ser1 = Series(2, index=cat)
  241. ser2 = Series(2, index=cat[:-1])
  242. result = ser1 * ser2
  243. exp_index = ["3z53"] * 4 + ["LoJG"] * 9 + ["N503"]
  244. exp_index = pd.CategoricalIndex(exp_index, categories=cat.categories)
  245. exp_values = [4.0] * 13 + [np.nan]
  246. expected = Series(exp_values, exp_index)
  247. tm.assert_series_equal(result, expected)
  248. def test_arithmetic_with_duplicate_index(self):
  249. # GH#8363
  250. # integer ops with a non-unique index
  251. index = [2, 2, 3, 3, 4]
  252. ser = Series(np.arange(1, 6, dtype="int64"), index=index)
  253. other = Series(np.arange(5, dtype="int64"), index=index)
  254. result = ser - other
  255. expected = Series(1, index=[2, 2, 3, 3, 4])
  256. tm.assert_series_equal(result, expected)
  257. # GH#8363
  258. # datetime ops with a non-unique index
  259. ser = Series(date_range("20130101 09:00:00", periods=5), index=index)
  260. other = Series(date_range("20130101", periods=5), index=index)
  261. result = ser - other
  262. expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4])
  263. tm.assert_series_equal(result, expected)
  264. def test_masked_and_non_masked_propagate_na(self):
  265. # GH#45810
  266. ser1 = Series([0, np.nan], dtype="float")
  267. ser2 = Series([0, 1], dtype="Int64")
  268. result = ser1 * ser2
  269. expected = Series([0, pd.NA], dtype="Float64")
  270. tm.assert_series_equal(result, expected)
  271. def test_mask_div_propagate_na_for_non_na_dtype(self):
  272. # GH#42630
  273. ser1 = Series([15, pd.NA, 5, 4], dtype="Int64")
  274. ser2 = Series([15, 5, np.nan, 4])
  275. result = ser1 / ser2
  276. expected = Series([1.0, pd.NA, pd.NA, 1.0], dtype="Float64")
  277. tm.assert_series_equal(result, expected)
  278. result = ser2 / ser1
  279. tm.assert_series_equal(result, expected)
  280. @pytest.mark.parametrize("val, dtype", [(3, "Int64"), (3.5, "Float64")])
  281. def test_add_list_to_masked_array(self, val, dtype):
  282. # GH#22962
  283. ser = Series([1, None, 3], dtype="Int64")
  284. result = ser + [1, None, val]
  285. expected = Series([2, None, 3 + val], dtype=dtype)
  286. tm.assert_series_equal(result, expected)
  287. result = [1, None, val] + ser
  288. tm.assert_series_equal(result, expected)
  289. def test_add_list_to_masked_array_boolean(self, request):
  290. # GH#22962
  291. warning = (
  292. UserWarning
  293. if request.node.callspec.id == "numexpr" and NUMEXPR_INSTALLED
  294. else None
  295. )
  296. ser = Series([True, None, False], dtype="boolean")
  297. with tm.assert_produces_warning(warning):
  298. result = ser + [True, None, True]
  299. expected = Series([True, None, True], dtype="boolean")
  300. tm.assert_series_equal(result, expected)
  301. with tm.assert_produces_warning(warning):
  302. result = [True, None, True] + ser
  303. tm.assert_series_equal(result, expected)
  304. # ------------------------------------------------------------------
  305. # Comparisons
  306. class TestSeriesFlexComparison:
  307. @pytest.mark.parametrize("axis", [0, None, "index"])
  308. def test_comparison_flex_basic(self, axis, comparison_op):
  309. left = Series(np.random.randn(10))
  310. right = Series(np.random.randn(10))
  311. result = getattr(left, comparison_op.__name__)(right, axis=axis)
  312. expected = comparison_op(left, right)
  313. tm.assert_series_equal(result, expected)
  314. def test_comparison_bad_axis(self, comparison_op):
  315. left = Series(np.random.randn(10))
  316. right = Series(np.random.randn(10))
  317. msg = "No axis named 1 for object type"
  318. with pytest.raises(ValueError, match=msg):
  319. getattr(left, comparison_op.__name__)(right, axis=1)
  320. @pytest.mark.parametrize(
  321. "values, op",
  322. [
  323. ([False, False, True, False], "eq"),
  324. ([True, True, False, True], "ne"),
  325. ([False, False, True, False], "le"),
  326. ([False, False, False, False], "lt"),
  327. ([False, True, True, False], "ge"),
  328. ([False, True, False, False], "gt"),
  329. ],
  330. )
  331. def test_comparison_flex_alignment(self, values, op):
  332. left = Series([1, 3, 2], index=list("abc"))
  333. right = Series([2, 2, 2], index=list("bcd"))
  334. result = getattr(left, op)(right)
  335. expected = Series(values, index=list("abcd"))
  336. tm.assert_series_equal(result, expected)
  337. @pytest.mark.parametrize(
  338. "values, op, fill_value",
  339. [
  340. ([False, False, True, True], "eq", 2),
  341. ([True, True, False, False], "ne", 2),
  342. ([False, False, True, True], "le", 0),
  343. ([False, False, False, True], "lt", 0),
  344. ([True, True, True, False], "ge", 0),
  345. ([True, True, False, False], "gt", 0),
  346. ],
  347. )
  348. def test_comparison_flex_alignment_fill(self, values, op, fill_value):
  349. left = Series([1, 3, 2], index=list("abc"))
  350. right = Series([2, 2, 2], index=list("bcd"))
  351. result = getattr(left, op)(right, fill_value=fill_value)
  352. expected = Series(values, index=list("abcd"))
  353. tm.assert_series_equal(result, expected)
  354. class TestSeriesComparison:
  355. def test_comparison_different_length(self):
  356. a = Series(["a", "b", "c"])
  357. b = Series(["b", "a"])
  358. msg = "only compare identically-labeled Series"
  359. with pytest.raises(ValueError, match=msg):
  360. a < b
  361. a = Series([1, 2])
  362. b = Series([2, 3, 4])
  363. with pytest.raises(ValueError, match=msg):
  364. a == b
  365. @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
  366. def test_ser_flex_cmp_return_dtypes(self, opname):
  367. # GH#15115
  368. ser = Series([1, 3, 2], index=range(3))
  369. const = 2
  370. result = getattr(ser, opname)(const).dtypes
  371. expected = np.dtype("bool")
  372. assert result == expected
  373. @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
  374. def test_ser_flex_cmp_return_dtypes_empty(self, opname):
  375. # GH#15115 empty Series case
  376. ser = Series([1, 3, 2], index=range(3))
  377. empty = ser.iloc[:0]
  378. const = 2
  379. result = getattr(empty, opname)(const).dtypes
  380. expected = np.dtype("bool")
  381. assert result == expected
  382. @pytest.mark.parametrize(
  383. "names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")]
  384. )
  385. def test_ser_cmp_result_names(self, names, comparison_op):
  386. # datetime64 dtype
  387. op = comparison_op
  388. dti = date_range("1949-06-07 03:00:00", freq="H", periods=5, name=names[0])
  389. ser = Series(dti).rename(names[1])
  390. result = op(ser, dti)
  391. assert result.name == names[2]
  392. # datetime64tz dtype
  393. dti = dti.tz_localize("US/Central")
  394. dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize
  395. ser = Series(dti).rename(names[1])
  396. result = op(ser, dti)
  397. assert result.name == names[2]
  398. # timedelta64 dtype
  399. tdi = dti - dti.shift(1)
  400. ser = Series(tdi).rename(names[1])
  401. result = op(ser, tdi)
  402. assert result.name == names[2]
  403. # interval dtype
  404. if op in [operator.eq, operator.ne]:
  405. # interval dtype comparisons not yet implemented
  406. ii = pd.interval_range(start=0, periods=5, name=names[0])
  407. ser = Series(ii).rename(names[1])
  408. result = op(ser, ii)
  409. assert result.name == names[2]
  410. # categorical
  411. if op in [operator.eq, operator.ne]:
  412. # categorical dtype comparisons raise for inequalities
  413. cidx = tdi.astype("category")
  414. ser = Series(cidx).rename(names[1])
  415. result = op(ser, cidx)
  416. assert result.name == names[2]
  417. def test_comparisons(self):
  418. left = np.random.randn(10)
  419. right = np.random.randn(10)
  420. left[:3] = np.nan
  421. result = nanops.nangt(left, right)
  422. with np.errstate(invalid="ignore"):
  423. expected = (left > right).astype("O")
  424. expected[:3] = np.nan
  425. tm.assert_almost_equal(result, expected)
  426. s = Series(["a", "b", "c"])
  427. s2 = Series([False, True, False])
  428. # it works!
  429. exp = Series([False, False, False])
  430. tm.assert_series_equal(s == s2, exp)
  431. tm.assert_series_equal(s2 == s, exp)
  432. # -----------------------------------------------------------------
  433. # Categorical Dtype Comparisons
  434. def test_categorical_comparisons(self):
  435. # GH#8938
  436. # allow equality comparisons
  437. a = Series(list("abc"), dtype="category")
  438. b = Series(list("abc"), dtype="object")
  439. c = Series(["a", "b", "cc"], dtype="object")
  440. d = Series(list("acb"), dtype="object")
  441. e = Categorical(list("abc"))
  442. f = Categorical(list("acb"))
  443. # vs scalar
  444. assert not (a == "a").all()
  445. assert ((a != "a") == ~(a == "a")).all()
  446. assert not ("a" == a).all()
  447. assert (a == "a")[0]
  448. assert ("a" == a)[0]
  449. assert not ("a" != a)[0]
  450. # vs list-like
  451. assert (a == a).all()
  452. assert not (a != a).all()
  453. assert (a == list(a)).all()
  454. assert (a == b).all()
  455. assert (b == a).all()
  456. assert ((~(a == b)) == (a != b)).all()
  457. assert ((~(b == a)) == (b != a)).all()
  458. assert not (a == c).all()
  459. assert not (c == a).all()
  460. assert not (a == d).all()
  461. assert not (d == a).all()
  462. # vs a cat-like
  463. assert (a == e).all()
  464. assert (e == a).all()
  465. assert not (a == f).all()
  466. assert not (f == a).all()
  467. assert (~(a == e) == (a != e)).all()
  468. assert (~(e == a) == (e != a)).all()
  469. assert (~(a == f) == (a != f)).all()
  470. assert (~(f == a) == (f != a)).all()
  471. # non-equality is not comparable
  472. msg = "can only compare equality or not"
  473. with pytest.raises(TypeError, match=msg):
  474. a < b
  475. with pytest.raises(TypeError, match=msg):
  476. b < a
  477. with pytest.raises(TypeError, match=msg):
  478. a > b
  479. with pytest.raises(TypeError, match=msg):
  480. b > a
  481. def test_unequal_categorical_comparison_raises_type_error(self):
  482. # unequal comparison should raise for unordered cats
  483. cat = Series(Categorical(list("abc")))
  484. msg = "can only compare equality or not"
  485. with pytest.raises(TypeError, match=msg):
  486. cat > "b"
  487. cat = Series(Categorical(list("abc"), ordered=False))
  488. with pytest.raises(TypeError, match=msg):
  489. cat > "b"
  490. # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057
  491. # and following comparisons with scalars not in categories should raise
  492. # for unequal comps, but not for equal/not equal
  493. cat = Series(Categorical(list("abc"), ordered=True))
  494. msg = "Invalid comparison between dtype=category and str"
  495. with pytest.raises(TypeError, match=msg):
  496. cat < "d"
  497. with pytest.raises(TypeError, match=msg):
  498. cat > "d"
  499. with pytest.raises(TypeError, match=msg):
  500. "d" < cat
  501. with pytest.raises(TypeError, match=msg):
  502. "d" > cat
  503. tm.assert_series_equal(cat == "d", Series([False, False, False]))
  504. tm.assert_series_equal(cat != "d", Series([True, True, True]))
  505. # -----------------------------------------------------------------
  506. def test_comparison_tuples(self):
  507. # GH#11339
  508. # comparisons vs tuple
  509. s = Series([(1, 1), (1, 2)])
  510. result = s == (1, 2)
  511. expected = Series([False, True])
  512. tm.assert_series_equal(result, expected)
  513. result = s != (1, 2)
  514. expected = Series([True, False])
  515. tm.assert_series_equal(result, expected)
  516. result = s == (0, 0)
  517. expected = Series([False, False])
  518. tm.assert_series_equal(result, expected)
  519. result = s != (0, 0)
  520. expected = Series([True, True])
  521. tm.assert_series_equal(result, expected)
  522. s = Series([(1, 1), (1, 1)])
  523. result = s == (1, 1)
  524. expected = Series([True, True])
  525. tm.assert_series_equal(result, expected)
  526. result = s != (1, 1)
  527. expected = Series([False, False])
  528. tm.assert_series_equal(result, expected)
  529. def test_comparison_frozenset(self):
  530. ser = Series([frozenset([1]), frozenset([1, 2])])
  531. result = ser == frozenset([1])
  532. expected = Series([True, False])
  533. tm.assert_series_equal(result, expected)
  534. def test_comparison_operators_with_nas(self, comparison_op):
  535. ser = Series(bdate_range("1/1/2000", periods=10), dtype=object)
  536. ser[::2] = np.nan
  537. # test that comparisons work
  538. val = ser[5]
  539. result = comparison_op(ser, val)
  540. expected = comparison_op(ser.dropna(), val).reindex(ser.index)
  541. if comparison_op is operator.ne:
  542. expected = expected.fillna(True).astype(bool)
  543. else:
  544. expected = expected.fillna(False).astype(bool)
  545. tm.assert_series_equal(result, expected)
  546. def test_ne(self):
  547. ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float)
  548. expected = [True, True, False, True, True]
  549. assert tm.equalContents(ts.index != 5, expected)
  550. assert tm.equalContents(~(ts.index == 5), expected)
  551. @pytest.mark.parametrize(
  552. "left, right",
  553. [
  554. (
  555. Series([1, 2, 3], index=list("ABC"), name="x"),
  556. Series([2, 2, 2], index=list("ABD"), name="x"),
  557. ),
  558. (
  559. Series([1, 2, 3], index=list("ABC"), name="x"),
  560. Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
  561. ),
  562. ],
  563. )
  564. def test_comp_ops_df_compat(self, left, right, frame_or_series):
  565. # GH 1134
  566. # GH 50083 to clarify that index and columns must be identically labeled
  567. if frame_or_series is not Series:
  568. msg = (
  569. rf"Can only compare identically-labeled \(both index and columns\) "
  570. f"{frame_or_series.__name__} objects"
  571. )
  572. left = left.to_frame()
  573. right = right.to_frame()
  574. else:
  575. msg = (
  576. f"Can only compare identically-labeled {frame_or_series.__name__} "
  577. f"objects"
  578. )
  579. with pytest.raises(ValueError, match=msg):
  580. left == right
  581. with pytest.raises(ValueError, match=msg):
  582. right == left
  583. with pytest.raises(ValueError, match=msg):
  584. left != right
  585. with pytest.raises(ValueError, match=msg):
  586. right != left
  587. with pytest.raises(ValueError, match=msg):
  588. left < right
  589. with pytest.raises(ValueError, match=msg):
  590. right < left
  591. def test_compare_series_interval_keyword(self):
  592. # GH#25338
  593. ser = Series(["IntervalA", "IntervalB", "IntervalC"])
  594. result = ser == "IntervalA"
  595. expected = Series([True, False, False])
  596. tm.assert_series_equal(result, expected)
  597. # ------------------------------------------------------------------
  598. # Unsorted
  599. # These arithmetic tests were previously in other files, eventually
  600. # should be parametrized and put into tests.arithmetic
  601. class TestTimeSeriesArithmetic:
  602. def test_series_add_tz_mismatch_converts_to_utc(self):
  603. rng = date_range("1/1/2011", periods=100, freq="H", tz="utc")
  604. perm = np.random.permutation(100)[:90]
  605. ser1 = Series(
  606. np.random.randn(90), index=rng.take(perm).tz_convert("US/Eastern")
  607. )
  608. perm = np.random.permutation(100)[:90]
  609. ser2 = Series(
  610. np.random.randn(90), index=rng.take(perm).tz_convert("Europe/Berlin")
  611. )
  612. result = ser1 + ser2
  613. uts1 = ser1.tz_convert("utc")
  614. uts2 = ser2.tz_convert("utc")
  615. expected = uts1 + uts2
  616. assert result.index.tz is timezone.utc
  617. tm.assert_series_equal(result, expected)
  618. def test_series_add_aware_naive_raises(self):
  619. rng = date_range("1/1/2011", periods=10, freq="H")
  620. ser = Series(np.random.randn(len(rng)), index=rng)
  621. ser_utc = ser.tz_localize("utc")
  622. msg = "Cannot join tz-naive with tz-aware DatetimeIndex"
  623. with pytest.raises(Exception, match=msg):
  624. ser + ser_utc
  625. with pytest.raises(Exception, match=msg):
  626. ser_utc + ser
  627. def test_datetime_understood(self):
  628. # Ensures it doesn't fail to create the right series
  629. # reported in issue#16726
  630. series = Series(date_range("2012-01-01", periods=3))
  631. offset = pd.offsets.DateOffset(days=6)
  632. result = series - offset
  633. expected = Series(pd.to_datetime(["2011-12-26", "2011-12-27", "2011-12-28"]))
  634. tm.assert_series_equal(result, expected)
  635. def test_align_date_objects_with_datetimeindex(self):
  636. rng = date_range("1/1/2000", periods=20)
  637. ts = Series(np.random.randn(20), index=rng)
  638. ts_slice = ts[5:]
  639. ts2 = ts_slice.copy()
  640. ts2.index = [x.date() for x in ts2.index]
  641. result = ts + ts2
  642. result2 = ts2 + ts
  643. expected = ts + ts[5:]
  644. expected.index = expected.index._with_freq(None)
  645. tm.assert_series_equal(result, expected)
  646. tm.assert_series_equal(result2, expected)
  647. class TestNamePreservation:
  648. @pytest.mark.parametrize("box", [list, tuple, np.array, Index, Series, pd.array])
  649. @pytest.mark.parametrize("flex", [True, False])
  650. def test_series_ops_name_retention(self, flex, box, names, all_binary_operators):
  651. # GH#33930 consistent name renteiton
  652. op = all_binary_operators
  653. left = Series(range(10), name=names[0])
  654. right = Series(range(10), name=names[1])
  655. name = op.__name__.strip("_")
  656. is_logical = name in ["and", "rand", "xor", "rxor", "or", "ror"]
  657. right = box(right)
  658. if flex:
  659. if is_logical:
  660. # Series doesn't have these as flex methods
  661. return
  662. result = getattr(left, name)(right)
  663. else:
  664. # GH#37374 logical ops behaving as set ops deprecated
  665. result = op(left, right)
  666. assert isinstance(result, Series)
  667. if box in [Index, Series]:
  668. assert result.name is names[2] or result.name == names[2]
  669. else:
  670. assert result.name is names[0] or result.name == names[0]
  671. def test_binop_maybe_preserve_name(self, datetime_series):
  672. # names match, preserve
  673. result = datetime_series * datetime_series
  674. assert result.name == datetime_series.name
  675. result = datetime_series.mul(datetime_series)
  676. assert result.name == datetime_series.name
  677. result = datetime_series * datetime_series[:-2]
  678. assert result.name == datetime_series.name
  679. # names don't match, don't preserve
  680. cp = datetime_series.copy()
  681. cp.name = "something else"
  682. result = datetime_series + cp
  683. assert result.name is None
  684. result = datetime_series.add(cp)
  685. assert result.name is None
  686. ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"]
  687. ops = ops + ["r" + op for op in ops]
  688. for op in ops:
  689. # names match, preserve
  690. ser = datetime_series.copy()
  691. result = getattr(ser, op)(ser)
  692. assert result.name == datetime_series.name
  693. # names don't match, don't preserve
  694. cp = datetime_series.copy()
  695. cp.name = "changed"
  696. result = getattr(ser, op)(cp)
  697. assert result.name is None
  698. def test_scalarop_preserve_name(self, datetime_series):
  699. result = datetime_series * 2
  700. assert result.name == datetime_series.name
  701. class TestInplaceOperations:
  702. @pytest.mark.parametrize(
  703. "dtype1, dtype2, dtype_expected, dtype_mul",
  704. (
  705. ("Int64", "Int64", "Int64", "Int64"),
  706. ("float", "float", "float", "float"),
  707. ("Int64", "float", "Float64", "Float64"),
  708. ("Int64", "Float64", "Float64", "Float64"),
  709. ),
  710. )
  711. def test_series_inplace_ops(self, dtype1, dtype2, dtype_expected, dtype_mul):
  712. # GH 37910
  713. ser1 = Series([1], dtype=dtype1)
  714. ser2 = Series([2], dtype=dtype2)
  715. ser1 += ser2
  716. expected = Series([3], dtype=dtype_expected)
  717. tm.assert_series_equal(ser1, expected)
  718. ser1 -= ser2
  719. expected = Series([1], dtype=dtype_expected)
  720. tm.assert_series_equal(ser1, expected)
  721. ser1 *= ser2
  722. expected = Series([2], dtype=dtype_mul)
  723. tm.assert_series_equal(ser1, expected)
  724. def test_none_comparison(request, series_with_simple_index):
  725. series = series_with_simple_index
  726. if len(series) < 1:
  727. request.node.add_marker(
  728. pytest.mark.xfail(reason="Test doesn't make sense on empty data")
  729. )
  730. # bug brought up by #1079
  731. # changed from TypeError in 0.17.0
  732. series.iloc[0] = np.nan
  733. # noinspection PyComparisonWithNone
  734. result = series == None # noqa:E711
  735. assert not result.iat[0]
  736. assert not result.iat[1]
  737. # noinspection PyComparisonWithNone
  738. result = series != None # noqa:E711
  739. assert result.iat[0]
  740. assert result.iat[1]
  741. result = None == series # noqa:E711
  742. assert not result.iat[0]
  743. assert not result.iat[1]
  744. result = None != series # noqa:E711
  745. assert result.iat[0]
  746. assert result.iat[1]
  747. if is_datetime64_dtype(series.dtype) or is_datetime64tz_dtype(series.dtype):
  748. # Following DatetimeIndex (and Timestamp) convention,
  749. # inequality comparisons with Series[datetime64] raise
  750. msg = "Invalid comparison"
  751. with pytest.raises(TypeError, match=msg):
  752. None > series
  753. with pytest.raises(TypeError, match=msg):
  754. series > None
  755. else:
  756. result = None > series
  757. assert not result.iat[0]
  758. assert not result.iat[1]
  759. result = series < None
  760. assert not result.iat[0]
  761. assert not result.iat[1]
  762. def test_series_varied_multiindex_alignment():
  763. # GH 20414
  764. s1 = Series(
  765. range(8),
  766. index=pd.MultiIndex.from_product(
  767. [list("ab"), list("xy"), [1, 2]], names=["ab", "xy", "num"]
  768. ),
  769. )
  770. s2 = Series(
  771. [1000 * i for i in range(1, 5)],
  772. index=pd.MultiIndex.from_product([list("xy"), [1, 2]], names=["xy", "num"]),
  773. )
  774. result = s1.loc[pd.IndexSlice[["a"], :, :]] + s2
  775. expected = Series(
  776. [1000, 2001, 3002, 4003],
  777. index=pd.MultiIndex.from_tuples(
  778. [("x", 1, "a"), ("x", 2, "a"), ("y", 1, "a"), ("y", 2, "a")],
  779. names=["xy", "num", "ab"],
  780. ),
  781. )
  782. tm.assert_series_equal(result, expected)
  783. def test_rmod_consistent_large_series():
  784. # GH 29602
  785. result = Series([2] * 10001).rmod(-1)
  786. expected = Series([1] * 10001)
  787. tm.assert_series_equal(result, expected)