123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- import numpy as np
- import pytest
- import pandas as pd
- import pandas._testing as tm
- @pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"])
- def test_compare_axis(align_axis):
- # GH#30429
- s1 = pd.Series(["a", "b", "c"])
- s2 = pd.Series(["x", "b", "z"])
- result = s1.compare(s2, align_axis=align_axis)
- if align_axis in (1, "columns"):
- indices = pd.Index([0, 2])
- columns = pd.Index(["self", "other"])
- expected = pd.DataFrame(
- [["a", "x"], ["c", "z"]], index=indices, columns=columns
- )
- tm.assert_frame_equal(result, expected)
- else:
- indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]])
- expected = pd.Series(["a", "x", "c", "z"], index=indices)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "keep_shape, keep_equal",
- [
- (True, False),
- (False, True),
- (True, True),
- # False, False case is already covered in test_compare_axis
- ],
- )
- def test_compare_various_formats(keep_shape, keep_equal):
- s1 = pd.Series(["a", "b", "c"])
- s2 = pd.Series(["x", "b", "z"])
- result = s1.compare(s2, keep_shape=keep_shape, keep_equal=keep_equal)
- if keep_shape:
- indices = pd.Index([0, 1, 2])
- columns = pd.Index(["self", "other"])
- if keep_equal:
- expected = pd.DataFrame(
- [["a", "x"], ["b", "b"], ["c", "z"]], index=indices, columns=columns
- )
- else:
- expected = pd.DataFrame(
- [["a", "x"], [np.nan, np.nan], ["c", "z"]],
- index=indices,
- columns=columns,
- )
- else:
- indices = pd.Index([0, 2])
- columns = pd.Index(["self", "other"])
- expected = pd.DataFrame(
- [["a", "x"], ["c", "z"]], index=indices, columns=columns
- )
- tm.assert_frame_equal(result, expected)
- def test_compare_with_equal_nulls():
- # We want to make sure two NaNs are considered the same
- # and dropped where applicable
- s1 = pd.Series(["a", "b", np.nan])
- s2 = pd.Series(["x", "b", np.nan])
- result = s1.compare(s2)
- expected = pd.DataFrame([["a", "x"]], columns=["self", "other"])
- tm.assert_frame_equal(result, expected)
- def test_compare_with_non_equal_nulls():
- # We want to make sure the relevant NaNs do not get dropped
- s1 = pd.Series(["a", "b", "c"])
- s2 = pd.Series(["x", "b", np.nan])
- result = s1.compare(s2, align_axis=0)
- indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]])
- expected = pd.Series(["a", "x", "c", np.nan], index=indices)
- tm.assert_series_equal(result, expected)
- def test_compare_multi_index():
- index = pd.MultiIndex.from_arrays([[0, 0, 1], [0, 1, 2]])
- s1 = pd.Series(["a", "b", "c"], index=index)
- s2 = pd.Series(["x", "b", "z"], index=index)
- result = s1.compare(s2, align_axis=0)
- indices = pd.MultiIndex.from_arrays(
- [[0, 0, 1, 1], [0, 0, 2, 2], ["self", "other", "self", "other"]]
- )
- expected = pd.Series(["a", "x", "c", "z"], index=indices)
- tm.assert_series_equal(result, expected)
- def test_compare_unaligned_objects():
- # test Series with different indices
- msg = "Can only compare identically-labeled Series objects"
- with pytest.raises(ValueError, match=msg):
- ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
- ser2 = pd.Series([1, 2, 3], index=["a", "b", "d"])
- ser1.compare(ser2)
- # test Series with different lengths
- msg = "Can only compare identically-labeled Series objects"
- with pytest.raises(ValueError, match=msg):
- ser1 = pd.Series([1, 2, 3])
- ser2 = pd.Series([1, 2, 3, 4])
- ser1.compare(ser2)
- def test_compare_datetime64_and_string():
- # Issue https://github.com/pandas-dev/pandas/issues/45506
- # Catch OverflowError when comparing datetime64 and string
- data = [
- {"a": "2015-07-01", "b": "08335394550"},
- {"a": "2015-07-02", "b": "+49 (0) 0345 300033"},
- {"a": "2015-07-03", "b": "+49(0)2598 04457"},
- {"a": "2015-07-04", "b": "0741470003"},
- {"a": "2015-07-05", "b": "04181 83668"},
- ]
- dtypes = {"a": "datetime64[ns]", "b": "string"}
- df = pd.DataFrame(data=data).astype(dtypes)
- result_eq1 = df["a"].eq(df["b"])
- result_eq2 = df["a"] == df["b"]
- result_neq = df["a"] != df["b"]
- expected_eq = pd.Series([False] * 5) # For .eq and ==
- expected_neq = pd.Series([True] * 5) # For !=
- tm.assert_series_equal(result_eq1, expected_eq)
- tm.assert_series_equal(result_eq2, expected_eq)
- tm.assert_series_equal(result_neq, expected_neq)
|