1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501 |
- from datetime import (
- datetime,
- timedelta,
- )
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Categorical,
- DataFrame,
- DatetimeIndex,
- Index,
- NaT,
- Period,
- PeriodIndex,
- RangeIndex,
- Series,
- Timedelta,
- TimedeltaIndex,
- Timestamp,
- date_range,
- isna,
- timedelta_range,
- to_timedelta,
- )
- import pandas._testing as tm
- from pandas.core import nanops
- def get_objs():
- indexes = [
- tm.makeBoolIndex(10, name="a"),
- tm.makeIntIndex(10, name="a"),
- tm.makeFloatIndex(10, name="a"),
- tm.makeDateIndex(10, name="a"),
- tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern"),
- tm.makePeriodIndex(10, name="a"),
- tm.makeStringIndex(10, name="a"),
- ]
- arr = np.random.randn(10)
- series = [Series(arr, index=idx, name="a") for idx in indexes]
- objs = indexes + series
- return objs
- objs = get_objs()
- class TestReductions:
- @pytest.mark.parametrize("opname", ["max", "min"])
- @pytest.mark.parametrize("obj", objs)
- def test_ops(self, opname, obj):
- result = getattr(obj, opname)()
- if not isinstance(obj, PeriodIndex):
- expected = getattr(obj.values, opname)()
- else:
- expected = Period(ordinal=getattr(obj.asi8, opname)(), freq=obj.freq)
- if getattr(obj, "tz", None) is not None:
- # We need to de-localize before comparing to the numpy-produced result
- expected = expected.astype("M8[ns]").astype("int64")
- assert result._value == expected
- else:
- assert result == expected
- @pytest.mark.parametrize("opname", ["max", "min"])
- @pytest.mark.parametrize(
- "dtype, val",
- [
- ("object", 2.0),
- ("float64", 2.0),
- ("datetime64[ns]", datetime(2011, 11, 1)),
- ("Int64", 2),
- ("boolean", True),
- ],
- )
- def test_nanminmax(self, opname, dtype, val, index_or_series):
- # GH#7261
- klass = index_or_series
- def check_missing(res):
- if dtype == "datetime64[ns]":
- return res is NaT
- elif dtype in ["Int64", "boolean"]:
- return res is pd.NA
- else:
- return isna(res)
- obj = klass([None], dtype=dtype)
- assert check_missing(getattr(obj, opname)())
- assert check_missing(getattr(obj, opname)(skipna=False))
- obj = klass([], dtype=dtype)
- assert check_missing(getattr(obj, opname)())
- assert check_missing(getattr(obj, opname)(skipna=False))
- if dtype == "object":
- # generic test with object only works for empty / all NaN
- return
- obj = klass([None, val], dtype=dtype)
- assert getattr(obj, opname)() == val
- assert check_missing(getattr(obj, opname)(skipna=False))
- obj = klass([None, val, None], dtype=dtype)
- assert getattr(obj, opname)() == val
- assert check_missing(getattr(obj, opname)(skipna=False))
- @pytest.mark.parametrize("opname", ["max", "min"])
- def test_nanargminmax(self, opname, index_or_series):
- # GH#7261
- klass = index_or_series
- arg_op = "arg" + opname if klass is Index else "idx" + opname
- obj = klass([NaT, datetime(2011, 11, 1)])
- assert getattr(obj, arg_op)() == 1
- result = getattr(obj, arg_op)(skipna=False)
- if klass is Series:
- assert np.isnan(result)
- else:
- assert result == -1
- obj = klass([NaT, datetime(2011, 11, 1), NaT])
- # check DatetimeIndex non-monotonic path
- assert getattr(obj, arg_op)() == 1
- result = getattr(obj, arg_op)(skipna=False)
- if klass is Series:
- assert np.isnan(result)
- else:
- assert result == -1
- @pytest.mark.parametrize("opname", ["max", "min"])
- @pytest.mark.parametrize("dtype", ["M8[ns]", "datetime64[ns, UTC]"])
- def test_nanops_empty_object(self, opname, index_or_series, dtype):
- klass = index_or_series
- arg_op = "arg" + opname if klass is Index else "idx" + opname
- obj = klass([], dtype=dtype)
- assert getattr(obj, opname)() is NaT
- assert getattr(obj, opname)(skipna=False) is NaT
- with pytest.raises(ValueError, match="empty sequence"):
- getattr(obj, arg_op)()
- with pytest.raises(ValueError, match="empty sequence"):
- getattr(obj, arg_op)(skipna=False)
- def test_argminmax(self):
- obj = Index(np.arange(5, dtype="int64"))
- assert obj.argmin() == 0
- assert obj.argmax() == 4
- obj = Index([np.nan, 1, np.nan, 2])
- assert obj.argmin() == 1
- assert obj.argmax() == 3
- assert obj.argmin(skipna=False) == -1
- assert obj.argmax(skipna=False) == -1
- obj = Index([np.nan])
- assert obj.argmin() == -1
- assert obj.argmax() == -1
- assert obj.argmin(skipna=False) == -1
- assert obj.argmax(skipna=False) == -1
- obj = Index([NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), NaT])
- assert obj.argmin() == 1
- assert obj.argmax() == 2
- assert obj.argmin(skipna=False) == -1
- assert obj.argmax(skipna=False) == -1
- obj = Index([NaT])
- assert obj.argmin() == -1
- assert obj.argmax() == -1
- assert obj.argmin(skipna=False) == -1
- assert obj.argmax(skipna=False) == -1
- @pytest.mark.parametrize("op, expected_col", [["max", "a"], ["min", "b"]])
- def test_same_tz_min_max_axis_1(self, op, expected_col):
- # GH 10390
- df = DataFrame(
- date_range("2016-01-01 00:00:00", periods=3, tz="UTC"), columns=["a"]
- )
- df["b"] = df.a.subtract(Timedelta(seconds=3600))
- result = getattr(df, op)(axis=1)
- expected = df[expected_col].rename(None)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("func", ["maximum", "minimum"])
- def test_numpy_reduction_with_tz_aware_dtype(self, tz_aware_fixture, func):
- # GH 15552
- tz = tz_aware_fixture
- arg = pd.to_datetime(["2019"]).tz_localize(tz)
- expected = Series(arg)
- result = getattr(np, func)(expected, expected)
- tm.assert_series_equal(result, expected)
- def test_nan_int_timedelta_sum(self):
- # GH 27185
- df = DataFrame(
- {
- "A": Series([1, 2, NaT], dtype="timedelta64[ns]"),
- "B": Series([1, 2, np.nan], dtype="Int64"),
- }
- )
- expected = Series({"A": Timedelta(3), "B": 3})
- result = df.sum()
- tm.assert_series_equal(result, expected)
- class TestIndexReductions:
- # Note: the name TestIndexReductions indicates these tests
- # were moved from a Index-specific test file, _not_ that these tests are
- # intended long-term to be Index-specific
- @pytest.mark.parametrize(
- "start,stop,step",
- [
- (0, 400, 3),
- (500, 0, -6),
- (-(10**6), 10**6, 4),
- (10**6, -(10**6), -4),
- (0, 10, 20),
- ],
- )
- def test_max_min_range(self, start, stop, step):
- # GH#17607
- idx = RangeIndex(start, stop, step)
- expected = idx._values.max()
- result = idx.max()
- assert result == expected
- # skipna should be irrelevant since RangeIndex should never have NAs
- result2 = idx.max(skipna=False)
- assert result2 == expected
- expected = idx._values.min()
- result = idx.min()
- assert result == expected
- # skipna should be irrelevant since RangeIndex should never have NAs
- result2 = idx.min(skipna=False)
- assert result2 == expected
- # empty
- idx = RangeIndex(start, stop, -step)
- assert isna(idx.max())
- assert isna(idx.min())
- def test_minmax_timedelta64(self):
- # monotonic
- idx1 = TimedeltaIndex(["1 days", "2 days", "3 days"])
- assert idx1.is_monotonic_increasing
- # non-monotonic
- idx2 = TimedeltaIndex(["1 days", np.nan, "3 days", "NaT"])
- assert not idx2.is_monotonic_increasing
- for idx in [idx1, idx2]:
- assert idx.min() == Timedelta("1 days")
- assert idx.max() == Timedelta("3 days")
- assert idx.argmin() == 0
- assert idx.argmax() == 2
- @pytest.mark.parametrize("op", ["min", "max"])
- def test_minmax_timedelta_empty_or_na(self, op):
- # Return NaT
- obj = TimedeltaIndex([])
- assert getattr(obj, op)() is NaT
- obj = TimedeltaIndex([NaT])
- assert getattr(obj, op)() is NaT
- obj = TimedeltaIndex([NaT, NaT, NaT])
- assert getattr(obj, op)() is NaT
- def test_numpy_minmax_timedelta64(self):
- td = timedelta_range("16815 days", "16820 days", freq="D")
- assert np.min(td) == Timedelta("16815 days")
- assert np.max(td) == Timedelta("16820 days")
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.min(td, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.max(td, out=0)
- assert np.argmin(td) == 0
- assert np.argmax(td) == 5
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.argmin(td, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.argmax(td, out=0)
- def test_timedelta_ops(self):
- # GH#4984
- # make sure ops return Timedelta
- s = Series(
- [Timestamp("20130101") + timedelta(seconds=i * i) for i in range(10)]
- )
- td = s.diff()
- result = td.mean()
- expected = to_timedelta(timedelta(seconds=9))
- assert result == expected
- result = td.to_frame().mean()
- assert result[0] == expected
- result = td.quantile(0.1)
- expected = Timedelta(np.timedelta64(2600, "ms"))
- assert result == expected
- result = td.median()
- expected = to_timedelta("00:00:09")
- assert result == expected
- result = td.to_frame().median()
- assert result[0] == expected
- # GH#6462
- # consistency in returned values for sum
- result = td.sum()
- expected = to_timedelta("00:01:21")
- assert result == expected
- result = td.to_frame().sum()
- assert result[0] == expected
- # std
- result = td.std()
- expected = to_timedelta(Series(td.dropna().values).std())
- assert result == expected
- result = td.to_frame().std()
- assert result[0] == expected
- # GH#10040
- # make sure NaT is properly handled by median()
- s = Series([Timestamp("2015-02-03"), Timestamp("2015-02-07")])
- assert s.diff().median() == timedelta(days=4)
- s = Series(
- [Timestamp("2015-02-03"), Timestamp("2015-02-07"), Timestamp("2015-02-15")]
- )
- assert s.diff().median() == timedelta(days=6)
- @pytest.mark.parametrize("opname", ["skew", "kurt", "sem", "prod", "var"])
- def test_invalid_td64_reductions(self, opname):
- s = Series(
- [Timestamp("20130101") + timedelta(seconds=i * i) for i in range(10)]
- )
- td = s.diff()
- msg = "|".join(
- [
- f"reduction operation '{opname}' not allowed for this dtype",
- rf"cannot perform {opname} with type timedelta64\[ns\]",
- f"does not support reduction '{opname}'",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- getattr(td, opname)()
- with pytest.raises(TypeError, match=msg):
- getattr(td.to_frame(), opname)(numeric_only=False)
- def test_minmax_tz(self, tz_naive_fixture):
- tz = tz_naive_fixture
- # monotonic
- idx1 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz=tz)
- assert idx1.is_monotonic_increasing
- # non-monotonic
- idx2 = DatetimeIndex(
- ["2011-01-01", NaT, "2011-01-03", "2011-01-02", NaT], tz=tz
- )
- assert not idx2.is_monotonic_increasing
- for idx in [idx1, idx2]:
- assert idx.min() == Timestamp("2011-01-01", tz=tz)
- assert idx.max() == Timestamp("2011-01-03", tz=tz)
- assert idx.argmin() == 0
- assert idx.argmax() == 2
- @pytest.mark.parametrize("op", ["min", "max"])
- def test_minmax_nat_datetime64(self, op):
- # Return NaT
- obj = DatetimeIndex([])
- assert isna(getattr(obj, op)())
- obj = DatetimeIndex([NaT])
- assert isna(getattr(obj, op)())
- obj = DatetimeIndex([NaT, NaT, NaT])
- assert isna(getattr(obj, op)())
- def test_numpy_minmax_integer(self):
- # GH#26125
- idx = Index([1, 2, 3])
- expected = idx.values.max()
- result = np.max(idx)
- assert result == expected
- expected = idx.values.min()
- result = np.min(idx)
- assert result == expected
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.min(idx, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.max(idx, out=0)
- expected = idx.values.argmax()
- result = np.argmax(idx)
- assert result == expected
- expected = idx.values.argmin()
- result = np.argmin(idx)
- assert result == expected
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.argmin(idx, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.argmax(idx, out=0)
- def test_numpy_minmax_range(self):
- # GH#26125
- idx = RangeIndex(0, 10, 3)
- result = np.max(idx)
- assert result == 9
- result = np.min(idx)
- assert result == 0
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.min(idx, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.max(idx, out=0)
- # No need to test again argmax/argmin compat since the implementation
- # is the same as basic integer index
- def test_numpy_minmax_datetime64(self):
- dr = date_range(start="2016-01-15", end="2016-01-20")
- assert np.min(dr) == Timestamp("2016-01-15 00:00:00")
- assert np.max(dr) == Timestamp("2016-01-20 00:00:00")
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.min(dr, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.max(dr, out=0)
- assert np.argmin(dr) == 0
- assert np.argmax(dr) == 5
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.argmin(dr, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.argmax(dr, out=0)
- def test_minmax_period(self):
- # monotonic
- idx1 = PeriodIndex([NaT, "2011-01-01", "2011-01-02", "2011-01-03"], freq="D")
- assert not idx1.is_monotonic_increasing
- assert idx1[1:].is_monotonic_increasing
- # non-monotonic
- idx2 = PeriodIndex(
- ["2011-01-01", NaT, "2011-01-03", "2011-01-02", NaT], freq="D"
- )
- assert not idx2.is_monotonic_increasing
- for idx in [idx1, idx2]:
- assert idx.min() == Period("2011-01-01", freq="D")
- assert idx.max() == Period("2011-01-03", freq="D")
- assert idx1.argmin() == 1
- assert idx2.argmin() == 0
- assert idx1.argmax() == 3
- assert idx2.argmax() == 2
- @pytest.mark.parametrize("op", ["min", "max"])
- @pytest.mark.parametrize("data", [[], [NaT], [NaT, NaT, NaT]])
- def test_minmax_period_empty_nat(self, op, data):
- # Return NaT
- obj = PeriodIndex(data, freq="M")
- result = getattr(obj, op)()
- assert result is NaT
- def test_numpy_minmax_period(self):
- pr = pd.period_range(start="2016-01-15", end="2016-01-20")
- assert np.min(pr) == Period("2016-01-15", freq="D")
- assert np.max(pr) == Period("2016-01-20", freq="D")
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.min(pr, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.max(pr, out=0)
- assert np.argmin(pr) == 0
- assert np.argmax(pr) == 5
- errmsg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=errmsg):
- np.argmin(pr, out=0)
- with pytest.raises(ValueError, match=errmsg):
- np.argmax(pr, out=0)
- def test_min_max_categorical(self):
- ci = pd.CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
- msg = (
- r"Categorical is not ordered for operation min\n"
- r"you can use .as_ordered\(\) to change the Categorical to an ordered one\n"
- )
- with pytest.raises(TypeError, match=msg):
- ci.min()
- msg = (
- r"Categorical is not ordered for operation max\n"
- r"you can use .as_ordered\(\) to change the Categorical to an ordered one\n"
- )
- with pytest.raises(TypeError, match=msg):
- ci.max()
- ci = pd.CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=True)
- assert ci.min() == "c"
- assert ci.max() == "b"
- class TestSeriesReductions:
- # Note: the name TestSeriesReductions indicates these tests
- # were moved from a series-specific test file, _not_ that these tests are
- # intended long-term to be series-specific
- def test_sum_inf(self):
- s = Series(np.random.randn(10))
- s2 = s.copy()
- s[5:8] = np.inf
- s2[5:8] = np.nan
- assert np.isinf(s.sum())
- arr = np.random.randn(100, 100).astype("f4")
- arr[:, 2] = np.inf
- with pd.option_context("mode.use_inf_as_na", True):
- tm.assert_almost_equal(s.sum(), s2.sum())
- res = nanops.nansum(arr, axis=1)
- assert np.isinf(res).all()
- @pytest.mark.parametrize(
- "dtype", ["float64", "Float32", "Int64", "boolean", "object"]
- )
- @pytest.mark.parametrize("use_bottleneck", [True, False])
- @pytest.mark.parametrize("method, unit", [("sum", 0.0), ("prod", 1.0)])
- def test_empty(self, method, unit, use_bottleneck, dtype):
- with pd.option_context("use_bottleneck", use_bottleneck):
- # GH#9422 / GH#18921
- # Entirely empty
- s = Series([], dtype=dtype)
- # NA by default
- result = getattr(s, method)()
- assert result == unit
- # Explicit
- result = getattr(s, method)(min_count=0)
- assert result == unit
- result = getattr(s, method)(min_count=1)
- assert isna(result)
- # Skipna, default
- result = getattr(s, method)(skipna=True)
- result == unit
- # Skipna, explicit
- result = getattr(s, method)(skipna=True, min_count=0)
- assert result == unit
- result = getattr(s, method)(skipna=True, min_count=1)
- assert isna(result)
- result = getattr(s, method)(skipna=False, min_count=0)
- assert result == unit
- result = getattr(s, method)(skipna=False, min_count=1)
- assert isna(result)
- # All-NA
- s = Series([np.nan], dtype=dtype)
- # NA by default
- result = getattr(s, method)()
- assert result == unit
- # Explicit
- result = getattr(s, method)(min_count=0)
- assert result == unit
- result = getattr(s, method)(min_count=1)
- assert isna(result)
- # Skipna, default
- result = getattr(s, method)(skipna=True)
- result == unit
- # skipna, explicit
- result = getattr(s, method)(skipna=True, min_count=0)
- assert result == unit
- result = getattr(s, method)(skipna=True, min_count=1)
- assert isna(result)
- # Mix of valid, empty
- s = Series([np.nan, 1], dtype=dtype)
- # Default
- result = getattr(s, method)()
- assert result == 1.0
- # Explicit
- result = getattr(s, method)(min_count=0)
- assert result == 1.0
- result = getattr(s, method)(min_count=1)
- assert result == 1.0
- # Skipna
- result = getattr(s, method)(skipna=True)
- assert result == 1.0
- result = getattr(s, method)(skipna=True, min_count=0)
- assert result == 1.0
- # GH#844 (changed in GH#9422)
- df = DataFrame(np.empty((10, 0)), dtype=dtype)
- assert (getattr(df, method)(1) == unit).all()
- s = Series([1], dtype=dtype)
- result = getattr(s, method)(min_count=2)
- assert isna(result)
- result = getattr(s, method)(skipna=False, min_count=2)
- assert isna(result)
- s = Series([np.nan], dtype=dtype)
- result = getattr(s, method)(min_count=2)
- assert isna(result)
- s = Series([np.nan, 1], dtype=dtype)
- result = getattr(s, method)(min_count=2)
- assert isna(result)
- @pytest.mark.parametrize("method", ["mean", "var"])
- @pytest.mark.parametrize("dtype", ["Float64", "Int64", "boolean"])
- def test_ops_consistency_on_empty_nullable(self, method, dtype):
- # GH#34814
- # consistency for nullable dtypes on empty or ALL-NA mean
- # empty series
- eser = Series([], dtype=dtype)
- result = getattr(eser, method)()
- assert result is pd.NA
- # ALL-NA series
- nser = Series([np.nan], dtype=dtype)
- result = getattr(nser, method)()
- assert result is pd.NA
- @pytest.mark.parametrize("method", ["mean", "median", "std", "var"])
- def test_ops_consistency_on_empty(self, method):
- # GH#7869
- # consistency on empty
- # float
- result = getattr(Series(dtype=float), method)()
- assert isna(result)
- # timedelta64[ns]
- tdser = Series([], dtype="m8[ns]")
- if method == "var":
- msg = "|".join(
- [
- "operation 'var' not allowed",
- r"cannot perform var with type timedelta64\[ns\]",
- "does not support reduction 'var'",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- getattr(tdser, method)()
- else:
- result = getattr(tdser, method)()
- assert result is NaT
- def test_nansum_buglet(self):
- ser = Series([1.0, np.nan], index=[0, 1])
- result = np.nansum(ser)
- tm.assert_almost_equal(result, 1)
- @pytest.mark.parametrize("use_bottleneck", [True, False])
- @pytest.mark.parametrize("dtype", ["int32", "int64"])
- def test_sum_overflow_int(self, use_bottleneck, dtype):
- with pd.option_context("use_bottleneck", use_bottleneck):
- # GH#6915
- # overflowing on the smaller int dtypes
- v = np.arange(5000000, dtype=dtype)
- s = Series(v)
- result = s.sum(skipna=False)
- assert int(result) == v.sum(dtype="int64")
- result = s.min(skipna=False)
- assert int(result) == 0
- result = s.max(skipna=False)
- assert int(result) == v[-1]
- @pytest.mark.parametrize("use_bottleneck", [True, False])
- @pytest.mark.parametrize("dtype", ["float32", "float64"])
- def test_sum_overflow_float(self, use_bottleneck, dtype):
- with pd.option_context("use_bottleneck", use_bottleneck):
- v = np.arange(5000000, dtype=dtype)
- s = Series(v)
- result = s.sum(skipna=False)
- assert result == v.sum(dtype=dtype)
- result = s.min(skipna=False)
- assert np.allclose(float(result), 0.0)
- result = s.max(skipna=False)
- assert np.allclose(float(result), v[-1])
- def test_mean_masked_overflow(self):
- # GH#48378
- val = 100_000_000_000_000_000
- n_elements = 100
- na = np.array([val] * n_elements)
- ser = Series([val] * n_elements, dtype="Int64")
- result_numpy = np.mean(na)
- result_masked = ser.mean()
- assert result_masked - result_numpy == 0
- assert result_masked == 1e17
- @pytest.mark.parametrize("ddof, exp", [(1, 2.5), (0, 2.0)])
- def test_var_masked_array(self, ddof, exp):
- # GH#48379
- ser = Series([1, 2, 3, 4, 5], dtype="Int64")
- ser_numpy_dtype = Series([1, 2, 3, 4, 5], dtype="int64")
- result = ser.var(ddof=ddof)
- result_numpy_dtype = ser_numpy_dtype.var(ddof=ddof)
- assert result == result_numpy_dtype
- assert result == exp
- @pytest.mark.parametrize("dtype", ("m8[ns]", "m8[ns]", "M8[ns]", "M8[ns, UTC]"))
- @pytest.mark.parametrize("skipna", [True, False])
- def test_empty_timeseries_reductions_return_nat(self, dtype, skipna):
- # covers GH#11245
- assert Series([], dtype=dtype).min(skipna=skipna) is NaT
- assert Series([], dtype=dtype).max(skipna=skipna) is NaT
- def test_numpy_argmin(self):
- # See GH#16830
- data = np.arange(1, 11)
- s = Series(data, index=data)
- result = np.argmin(s)
- expected = np.argmin(data)
- assert result == expected
- result = s.argmin()
- assert result == expected
- msg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.argmin(s, out=data)
- def test_numpy_argmax(self):
- # See GH#16830
- data = np.arange(1, 11)
- s = Series(data, index=data)
- result = np.argmax(s)
- expected = np.argmax(data)
- assert result == expected
- result = s.argmax()
- assert result == expected
- msg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.argmax(s, out=data)
- def test_idxmin(self):
- # test idxmin
- # _check_stat_op approach can not be used here because of isna check.
- string_series = tm.makeStringSeries().rename("series")
- # add some NaNs
- string_series[5:15] = np.NaN
- # skipna or no
- assert string_series[string_series.idxmin()] == string_series.min()
- assert isna(string_series.idxmin(skipna=False))
- # no NaNs
- nona = string_series.dropna()
- assert nona[nona.idxmin()] == nona.min()
- assert nona.index.values.tolist().index(nona.idxmin()) == nona.values.argmin()
- # all NaNs
- allna = string_series * np.nan
- assert isna(allna.idxmin())
- # datetime64[ns]
- s = Series(date_range("20130102", periods=6))
- result = s.idxmin()
- assert result == 0
- s[0] = np.nan
- result = s.idxmin()
- assert result == 1
- def test_idxmax(self):
- # test idxmax
- # _check_stat_op approach can not be used here because of isna check.
- string_series = tm.makeStringSeries().rename("series")
- # add some NaNs
- string_series[5:15] = np.NaN
- # skipna or no
- assert string_series[string_series.idxmax()] == string_series.max()
- assert isna(string_series.idxmax(skipna=False))
- # no NaNs
- nona = string_series.dropna()
- assert nona[nona.idxmax()] == nona.max()
- assert nona.index.values.tolist().index(nona.idxmax()) == nona.values.argmax()
- # all NaNs
- allna = string_series * np.nan
- assert isna(allna.idxmax())
- s = Series(date_range("20130102", periods=6))
- result = s.idxmax()
- assert result == 5
- s[5] = np.nan
- result = s.idxmax()
- assert result == 4
- # Index with float64 dtype
- # GH#5914
- s = Series([1, 2, 3], [1.1, 2.1, 3.1])
- result = s.idxmax()
- assert result == 3.1
- result = s.idxmin()
- assert result == 1.1
- s = Series(s.index, s.index)
- result = s.idxmax()
- assert result == 3.1
- result = s.idxmin()
- assert result == 1.1
- def test_all_any(self):
- ts = tm.makeTimeSeries()
- bool_series = ts > 0
- assert not bool_series.all()
- assert bool_series.any()
- # Alternative types, with implicit 'object' dtype.
- s = Series(["abc", True])
- assert s.any()
- def test_numpy_all_any(self, index_or_series):
- # GH#40180
- idx = index_or_series([0, 1, 2])
- assert not np.all(idx)
- assert np.any(idx)
- idx = Index([1, 2, 3])
- assert np.all(idx)
- def test_all_any_skipna(self):
- # Check skipna, with implicit 'object' dtype.
- s1 = Series([np.nan, True])
- s2 = Series([np.nan, False])
- assert s1.all(skipna=False) # nan && True => True
- assert s1.all(skipna=True)
- assert s2.any(skipna=False)
- assert not s2.any(skipna=True)
- def test_all_any_bool_only(self):
- s = Series([False, False, True, True, False, True], index=[0, 0, 1, 1, 2, 2])
- # GH#47500 - test bool_only works
- assert s.any(bool_only=True)
- assert not s.all(bool_only=True)
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- @pytest.mark.parametrize("skipna", [True, False])
- def test_any_all_object_dtype(self, bool_agg_func, skipna):
- # GH#12863
- ser = Series(["a", "b", "c", "d", "e"], dtype=object)
- result = getattr(ser, bool_agg_func)(skipna=skipna)
- expected = True
- assert result == expected
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- @pytest.mark.parametrize(
- "data", [[False, None], [None, False], [False, np.nan], [np.nan, False]]
- )
- def test_any_all_object_dtype_missing(self, data, bool_agg_func):
- # GH#27709
- ser = Series(data)
- result = getattr(ser, bool_agg_func)(skipna=False)
- # None is treated is False, but np.nan is treated as True
- expected = bool_agg_func == "any" and None not in data
- assert result == expected
- @pytest.mark.parametrize("dtype", ["boolean", "Int64", "UInt64", "Float64"])
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- @pytest.mark.parametrize("skipna", [True, False])
- @pytest.mark.parametrize(
- # expected_data indexed as [[skipna=False/any, skipna=False/all],
- # [skipna=True/any, skipna=True/all]]
- "data,expected_data",
- [
- ([0, 0, 0], [[False, False], [False, False]]),
- ([1, 1, 1], [[True, True], [True, True]]),
- ([pd.NA, pd.NA, pd.NA], [[pd.NA, pd.NA], [False, True]]),
- ([0, pd.NA, 0], [[pd.NA, False], [False, False]]),
- ([1, pd.NA, 1], [[True, pd.NA], [True, True]]),
- ([1, pd.NA, 0], [[True, False], [True, False]]),
- ],
- )
- def test_any_all_nullable_kleene_logic(
- self, bool_agg_func, skipna, data, dtype, expected_data
- ):
- # GH-37506, GH-41967
- ser = Series(data, dtype=dtype)
- expected = expected_data[skipna][bool_agg_func == "all"]
- result = getattr(ser, bool_agg_func)(skipna=skipna)
- assert (result is pd.NA and expected is pd.NA) or result == expected
- def test_any_axis1_bool_only(self):
- # GH#32432
- df = DataFrame({"A": [True, False], "B": [1, 2]})
- result = df.any(axis=1, bool_only=True)
- expected = Series([True, False])
- tm.assert_series_equal(result, expected)
- def test_any_all_datetimelike(self):
- # GH#38723 these may not be the desired long-term behavior (GH#34479)
- # but in the interim should be internally consistent
- dta = date_range("1995-01-02", periods=3)._data
- ser = Series(dta)
- df = DataFrame(ser)
- msg = "'(any|all)' with datetime64 dtypes is deprecated"
- with tm.assert_produces_warning(FutureWarning, match=msg):
- # GH#34479
- assert dta.all()
- assert dta.any()
- assert ser.all()
- assert ser.any()
- assert df.any().all()
- assert df.all().all()
- dta = dta.tz_localize("UTC")
- ser = Series(dta)
- df = DataFrame(ser)
- with tm.assert_produces_warning(FutureWarning, match=msg):
- # GH#34479
- assert dta.all()
- assert dta.any()
- assert ser.all()
- assert ser.any()
- assert df.any().all()
- assert df.all().all()
- tda = dta - dta[0]
- ser = Series(tda)
- df = DataFrame(ser)
- assert tda.any()
- assert not tda.all()
- assert ser.any()
- assert not ser.all()
- assert df.any().all()
- assert not df.all().any()
- def test_timedelta64_analytics(self):
- # index min/max
- dti = date_range("2012-1-1", periods=3, freq="D")
- td = Series(dti) - Timestamp("20120101")
- result = td.idxmin()
- assert result == 0
- result = td.idxmax()
- assert result == 2
- # GH#2982
- # with NaT
- td[0] = np.nan
- result = td.idxmin()
- assert result == 1
- result = td.idxmax()
- assert result == 2
- # abs
- s1 = Series(date_range("20120101", periods=3))
- s2 = Series(date_range("20120102", periods=3))
- expected = Series(s2 - s1)
- result = np.abs(s1 - s2)
- tm.assert_series_equal(result, expected)
- result = (s1 - s2).abs()
- tm.assert_series_equal(result, expected)
- # max/min
- result = td.max()
- expected = Timedelta("2 days")
- assert result == expected
- result = td.min()
- expected = Timedelta("1 days")
- assert result == expected
- @pytest.mark.parametrize(
- "test_input,error_type",
- [
- (Series([], dtype="float64"), ValueError),
- # For strings, or any Series with dtype 'O'
- (Series(["foo", "bar", "baz"]), TypeError),
- (Series([(1,), (2,)]), TypeError),
- # For mixed data types
- (Series(["foo", "foo", "bar", "bar", None, np.nan, "baz"]), TypeError),
- ],
- )
- def test_assert_idxminmax_raises(self, test_input, error_type):
- """
- Cases where ``Series.argmax`` and related should raise an exception
- """
- msg = (
- "reduction operation 'argmin' not allowed for this dtype|"
- "attempt to get argmin of an empty sequence"
- )
- with pytest.raises(error_type, match=msg):
- test_input.idxmin()
- with pytest.raises(error_type, match=msg):
- test_input.idxmin(skipna=False)
- msg = (
- "reduction operation 'argmax' not allowed for this dtype|"
- "attempt to get argmax of an empty sequence"
- )
- with pytest.raises(error_type, match=msg):
- test_input.idxmax()
- with pytest.raises(error_type, match=msg):
- test_input.idxmax(skipna=False)
- def test_idxminmax_with_inf(self):
- # For numeric data with NA and Inf (GH #13595)
- s = Series([0, -np.inf, np.inf, np.nan])
- assert s.idxmin() == 1
- assert np.isnan(s.idxmin(skipna=False))
- assert s.idxmax() == 2
- assert np.isnan(s.idxmax(skipna=False))
- # Using old-style behavior that treats floating point nan, -inf, and
- # +inf as missing
- with pd.option_context("mode.use_inf_as_na", True):
- assert s.idxmin() == 0
- assert np.isnan(s.idxmin(skipna=False))
- assert s.idxmax() == 0
- np.isnan(s.idxmax(skipna=False))
- class TestDatetime64SeriesReductions:
- # Note: the name TestDatetime64SeriesReductions indicates these tests
- # were moved from a series-specific test file, _not_ that these tests are
- # intended long-term to be series-specific
- @pytest.mark.parametrize(
- "nat_ser",
- [
- Series([NaT, NaT]),
- Series([NaT, Timedelta("nat")]),
- Series([Timedelta("nat"), Timedelta("nat")]),
- ],
- )
- def test_minmax_nat_series(self, nat_ser):
- # GH#23282
- assert nat_ser.min() is NaT
- assert nat_ser.max() is NaT
- assert nat_ser.min(skipna=False) is NaT
- assert nat_ser.max(skipna=False) is NaT
- @pytest.mark.parametrize(
- "nat_df",
- [
- DataFrame([NaT, NaT]),
- DataFrame([NaT, Timedelta("nat")]),
- DataFrame([Timedelta("nat"), Timedelta("nat")]),
- ],
- )
- def test_minmax_nat_dataframe(self, nat_df):
- # GH#23282
- assert nat_df.min()[0] is NaT
- assert nat_df.max()[0] is NaT
- assert nat_df.min(skipna=False)[0] is NaT
- assert nat_df.max(skipna=False)[0] is NaT
- def test_min_max(self):
- rng = date_range("1/1/2000", "12/31/2000")
- rng2 = rng.take(np.random.permutation(len(rng)))
- the_min = rng2.min()
- the_max = rng2.max()
- assert isinstance(the_min, Timestamp)
- assert isinstance(the_max, Timestamp)
- assert the_min == rng[0]
- assert the_max == rng[-1]
- assert rng.min() == rng[0]
- assert rng.max() == rng[-1]
- def test_min_max_series(self):
- rng = date_range("1/1/2000", periods=10, freq="4h")
- lvls = ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"]
- df = DataFrame({"TS": rng, "V": np.random.randn(len(rng)), "L": lvls})
- result = df.TS.max()
- exp = Timestamp(df.TS.iat[-1])
- assert isinstance(result, Timestamp)
- assert result == exp
- result = df.TS.min()
- exp = Timestamp(df.TS.iat[0])
- assert isinstance(result, Timestamp)
- assert result == exp
- class TestCategoricalSeriesReductions:
- # Note: the name TestCategoricalSeriesReductions indicates these tests
- # were moved from a series-specific test file, _not_ that these tests are
- # intended long-term to be series-specific
- @pytest.mark.parametrize("function", ["min", "max"])
- def test_min_max_unordered_raises(self, function):
- # unordered cats have no min/max
- cat = Series(Categorical(["a", "b", "c", "d"], ordered=False))
- msg = f"Categorical is not ordered for operation {function}"
- with pytest.raises(TypeError, match=msg):
- getattr(cat, function)()
- @pytest.mark.parametrize(
- "values, categories",
- [
- (list("abc"), list("abc")),
- (list("abc"), list("cba")),
- (list("abc") + [np.nan], list("cba")),
- ([1, 2, 3], [3, 2, 1]),
- ([1, 2, 3, np.nan], [3, 2, 1]),
- ],
- )
- @pytest.mark.parametrize("function", ["min", "max"])
- def test_min_max_ordered(self, values, categories, function):
- # GH 25303
- cat = Series(Categorical(values, categories=categories, ordered=True))
- result = getattr(cat, function)(skipna=True)
- expected = categories[0] if function == "min" else categories[2]
- assert result == expected
- @pytest.mark.parametrize("function", ["min", "max"])
- @pytest.mark.parametrize("skipna", [True, False])
- def test_min_max_ordered_with_nan_only(self, function, skipna):
- # https://github.com/pandas-dev/pandas/issues/33450
- cat = Series(Categorical([np.nan], categories=[1, 2], ordered=True))
- result = getattr(cat, function)(skipna=skipna)
- assert result is np.nan
- @pytest.mark.parametrize("function", ["min", "max"])
- @pytest.mark.parametrize("skipna", [True, False])
- def test_min_max_skipna(self, function, skipna):
- cat = Series(
- Categorical(["a", "b", np.nan, "a"], categories=["b", "a"], ordered=True)
- )
- result = getattr(cat, function)(skipna=skipna)
- if skipna is True:
- expected = "b" if function == "min" else "a"
- assert result == expected
- else:
- assert result is np.nan
- class TestSeriesMode:
- # Note: the name TestSeriesMode indicates these tests
- # were moved from a series-specific test file, _not_ that these tests are
- # intended long-term to be series-specific
- @pytest.mark.parametrize(
- "dropna, expected",
- [(True, Series([], dtype=np.float64)), (False, Series([], dtype=np.float64))],
- )
- def test_mode_empty(self, dropna, expected):
- s = Series([], dtype=np.float64)
- result = s.mode(dropna)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "dropna, data, expected",
- [
- (True, [1, 1, 1, 2], [1]),
- (True, [1, 1, 1, 2, 3, 3, 3], [1, 3]),
- (False, [1, 1, 1, 2], [1]),
- (False, [1, 1, 1, 2, 3, 3, 3], [1, 3]),
- ],
- )
- @pytest.mark.parametrize(
- "dt", list(np.typecodes["AllInteger"] + np.typecodes["Float"])
- )
- def test_mode_numerical(self, dropna, data, expected, dt):
- s = Series(data, dtype=dt)
- result = s.mode(dropna)
- expected = Series(expected, dtype=dt)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("dropna, expected", [(True, [1.0]), (False, [1, np.nan])])
- def test_mode_numerical_nan(self, dropna, expected):
- s = Series([1, 1, 2, np.nan, np.nan])
- result = s.mode(dropna)
- expected = Series(expected)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "dropna, expected1, expected2, expected3",
- [(True, ["b"], ["bar"], ["nan"]), (False, ["b"], [np.nan], ["nan"])],
- )
- def test_mode_str_obj(self, dropna, expected1, expected2, expected3):
- # Test string and object types.
- data = ["a"] * 2 + ["b"] * 3
- s = Series(data, dtype="c")
- result = s.mode(dropna)
- expected1 = Series(expected1, dtype="c")
- tm.assert_series_equal(result, expected1)
- data = ["foo", "bar", "bar", np.nan, np.nan, np.nan]
- s = Series(data, dtype=object)
- result = s.mode(dropna)
- expected2 = Series(expected2, dtype=object)
- tm.assert_series_equal(result, expected2)
- data = ["foo", "bar", "bar", np.nan, np.nan, np.nan]
- s = Series(data, dtype=object).astype(str)
- result = s.mode(dropna)
- expected3 = Series(expected3, dtype=str)
- tm.assert_series_equal(result, expected3)
- @pytest.mark.parametrize(
- "dropna, expected1, expected2",
- [(True, ["foo"], ["foo"]), (False, ["foo"], [np.nan])],
- )
- def test_mode_mixeddtype(self, dropna, expected1, expected2):
- s = Series([1, "foo", "foo"])
- result = s.mode(dropna)
- expected = Series(expected1)
- tm.assert_series_equal(result, expected)
- s = Series([1, "foo", "foo", np.nan, np.nan, np.nan])
- result = s.mode(dropna)
- expected = Series(expected2, dtype=object)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "dropna, expected1, expected2",
- [
- (
- True,
- ["1900-05-03", "2011-01-03", "2013-01-02"],
- ["2011-01-03", "2013-01-02"],
- ),
- (False, [np.nan], [np.nan, "2011-01-03", "2013-01-02"]),
- ],
- )
- def test_mode_datetime(self, dropna, expected1, expected2):
- s = Series(
- ["2011-01-03", "2013-01-02", "1900-05-03", "nan", "nan"], dtype="M8[ns]"
- )
- result = s.mode(dropna)
- expected1 = Series(expected1, dtype="M8[ns]")
- tm.assert_series_equal(result, expected1)
- s = Series(
- [
- "2011-01-03",
- "2013-01-02",
- "1900-05-03",
- "2011-01-03",
- "2013-01-02",
- "nan",
- "nan",
- ],
- dtype="M8[ns]",
- )
- result = s.mode(dropna)
- expected2 = Series(expected2, dtype="M8[ns]")
- tm.assert_series_equal(result, expected2)
- @pytest.mark.parametrize(
- "dropna, expected1, expected2",
- [
- (True, ["-1 days", "0 days", "1 days"], ["2 min", "1 day"]),
- (False, [np.nan], [np.nan, "2 min", "1 day"]),
- ],
- )
- def test_mode_timedelta(self, dropna, expected1, expected2):
- # gh-5986: Test timedelta types.
- s = Series(
- ["1 days", "-1 days", "0 days", "nan", "nan"], dtype="timedelta64[ns]"
- )
- result = s.mode(dropna)
- expected1 = Series(expected1, dtype="timedelta64[ns]")
- tm.assert_series_equal(result, expected1)
- s = Series(
- [
- "1 day",
- "1 day",
- "-1 day",
- "-1 day 2 min",
- "2 min",
- "2 min",
- "nan",
- "nan",
- ],
- dtype="timedelta64[ns]",
- )
- result = s.mode(dropna)
- expected2 = Series(expected2, dtype="timedelta64[ns]")
- tm.assert_series_equal(result, expected2)
- @pytest.mark.parametrize(
- "dropna, expected1, expected2, expected3",
- [
- (
- True,
- Categorical([1, 2], categories=[1, 2]),
- Categorical(["a"], categories=[1, "a"]),
- Categorical([3, 1], categories=[3, 2, 1], ordered=True),
- ),
- (
- False,
- Categorical([np.nan], categories=[1, 2]),
- Categorical([np.nan, "a"], categories=[1, "a"]),
- Categorical([np.nan, 3, 1], categories=[3, 2, 1], ordered=True),
- ),
- ],
- )
- def test_mode_category(self, dropna, expected1, expected2, expected3):
- s = Series(Categorical([1, 2, np.nan, np.nan]))
- result = s.mode(dropna)
- expected1 = Series(expected1, dtype="category")
- tm.assert_series_equal(result, expected1)
- s = Series(Categorical([1, "a", "a", np.nan, np.nan]))
- result = s.mode(dropna)
- expected2 = Series(expected2, dtype="category")
- tm.assert_series_equal(result, expected2)
- s = Series(
- Categorical(
- [1, 1, 2, 3, 3, np.nan, np.nan], categories=[3, 2, 1], ordered=True
- )
- )
- result = s.mode(dropna)
- expected3 = Series(expected3, dtype="category")
- tm.assert_series_equal(result, expected3)
- @pytest.mark.parametrize(
- "dropna, expected1, expected2",
- [(True, [2**63], [1, 2**63]), (False, [2**63], [1, 2**63])],
- )
- def test_mode_intoverflow(self, dropna, expected1, expected2):
- # Test for uint64 overflow.
- s = Series([1, 2**63, 2**63], dtype=np.uint64)
- result = s.mode(dropna)
- expected1 = Series(expected1, dtype=np.uint64)
- tm.assert_series_equal(result, expected1)
- s = Series([1, 2**63], dtype=np.uint64)
- result = s.mode(dropna)
- expected2 = Series(expected2, dtype=np.uint64)
- tm.assert_series_equal(result, expected2)
- def test_mode_sortwarning(self):
- # Check for the warning that is raised when the mode
- # results cannot be sorted
- expected = Series(["foo", np.nan])
- s = Series([1, "foo", "foo", np.nan, np.nan])
- with tm.assert_produces_warning(UserWarning):
- result = s.mode(dropna=False)
- result = result.sort_values().reset_index(drop=True)
- tm.assert_series_equal(result, expected)
- def test_mode_boolean_with_na(self):
- # GH#42107
- ser = Series([True, False, True, pd.NA], dtype="boolean")
- result = ser.mode()
- expected = Series({0: True}, dtype="boolean")
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "array,expected,dtype",
- [
- (
- [0, 1j, 1, 1, 1 + 1j, 1 + 2j],
- Series([1], dtype=np.complex128),
- np.complex128,
- ),
- (
- [0, 1j, 1, 1, 1 + 1j, 1 + 2j],
- Series([1], dtype=np.complex64),
- np.complex64,
- ),
- (
- [1 + 1j, 2j, 1 + 1j],
- Series([1 + 1j], dtype=np.complex128),
- np.complex128,
- ),
- ],
- )
- def test_single_mode_value_complex(self, array, expected, dtype):
- result = Series(array, dtype=dtype).mode()
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "array,expected,dtype",
- [
- (
- # no modes
- [0, 1j, 1, 1 + 1j, 1 + 2j],
- Series([0j, 1j, 1 + 0j, 1 + 1j, 1 + 2j], dtype=np.complex128),
- np.complex128,
- ),
- (
- [1 + 1j, 2j, 1 + 1j, 2j, 3],
- Series([2j, 1 + 1j], dtype=np.complex64),
- np.complex64,
- ),
- ],
- )
- def test_multimode_complex(self, array, expected, dtype):
- # GH 17927
- # mode tries to sort multimodal series.
- # Complex numbers are sorted by their magnitude
- result = Series(array, dtype=dtype).mode()
- tm.assert_series_equal(result, expected)
|