123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- """ Test cases for .boxplot method """
- import itertools
- import string
- import numpy as np
- import pytest
- import pandas.util._test_decorators as td
- from pandas import (
- DataFrame,
- MultiIndex,
- Series,
- date_range,
- plotting,
- timedelta_range,
- )
- import pandas._testing as tm
- from pandas.tests.plotting.common import (
- TestPlotBase,
- _check_plot_works,
- )
- from pandas.io.formats.printing import pprint_thing
- @td.skip_if_no_mpl
- class TestDataFramePlots(TestPlotBase):
- def test_stacked_boxplot_set_axis(self):
- # GH2980
- import matplotlib.pyplot as plt
- n = 80
- df = DataFrame(
- {
- "Clinical": np.random.choice([0, 1, 2, 3], n),
- "Confirmed": np.random.choice([0, 1, 2, 3], n),
- "Discarded": np.random.choice([0, 1, 2, 3], n),
- },
- index=np.arange(0, n),
- )
- ax = df.plot(kind="bar", stacked=True)
- assert [int(x.get_text()) for x in ax.get_xticklabels()] == df.index.to_list()
- ax.set_xticks(np.arange(0, 80, 10))
- plt.draw() # Update changes
- assert [int(x.get_text()) for x in ax.get_xticklabels()] == list(
- np.arange(0, 80, 10)
- )
- @pytest.mark.slow
- def test_boxplot_legacy1(self):
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["one", "two", "three", "four"],
- )
- df["indic"] = ["foo", "bar"] * 3
- df["indic2"] = ["foo", "bar", "foo"] * 2
- _check_plot_works(df.boxplot, return_type="dict")
- _check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
- # _check_plot_works adds an ax so catch warning. see GH #13188
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- _check_plot_works(df.boxplot, column=["one", "two"], by="indic")
- _check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- _check_plot_works(df.boxplot, by="indic")
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- _check_plot_works(df.boxplot, by=["indic", "indic2"])
- _check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
- _check_plot_works(df.boxplot, notch=1, return_type="dict")
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- _check_plot_works(df.boxplot, by="indic", notch=1)
- def test_boxplot_legacy2(self):
- df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
- df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
- df["Y"] = Series(["A"] * 10)
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- _check_plot_works(df.boxplot, by="X")
- # When ax is supplied and required number of axes is 1,
- # passed ax should be used:
- fig, ax = self.plt.subplots()
- axes = df.boxplot("Col1", by="X", ax=ax)
- ax_axes = ax.axes
- assert ax_axes is axes
- fig, ax = self.plt.subplots()
- axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
- ax_axes = ax.axes
- assert ax_axes is axes["A"]
- # Multiple columns with an ax argument should use same figure
- fig, ax = self.plt.subplots()
- with tm.assert_produces_warning(UserWarning):
- axes = df.boxplot(
- column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
- )
- assert axes["Col1"].get_figure() is fig
- # When by is None, check that all relevant lines are present in the
- # dict
- fig, ax = self.plt.subplots()
- d = df.boxplot(ax=ax, return_type="dict")
- lines = list(itertools.chain.from_iterable(d.values()))
- assert len(ax.get_lines()) == len(lines)
- def test_boxplot_return_type_none(self, hist_df):
- # GH 12216; return_type=None & by=None -> axes
- result = hist_df.boxplot()
- assert isinstance(result, self.plt.Axes)
- def test_boxplot_return_type_legacy(self):
- # API change in https://github.com/pandas-dev/pandas/pull/7096
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["one", "two", "three", "four"],
- )
- msg = "return_type must be {'axes', 'dict', 'both'}"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(return_type="NOT_A_TYPE")
- result = df.boxplot()
- self._check_box_return_type(result, "axes")
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type="dict")
- self._check_box_return_type(result, "dict")
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type="axes")
- self._check_box_return_type(result, "axes")
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type="both")
- self._check_box_return_type(result, "both")
- def test_boxplot_axis_limits(self, hist_df):
- def _check_ax_limits(col, ax):
- y_min, y_max = ax.get_ylim()
- assert y_min <= col.min()
- assert y_max >= col.max()
- df = hist_df.copy()
- df["age"] = np.random.randint(1, 20, df.shape[0])
- # One full row
- height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
- _check_ax_limits(df["height"], height_ax)
- _check_ax_limits(df["weight"], weight_ax)
- assert weight_ax._sharey == height_ax
- # Two rows, one partial
- p = df.boxplot(["height", "weight", "age"], by="category")
- height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
- dummy_ax = p[1, 1]
- _check_ax_limits(df["height"], height_ax)
- _check_ax_limits(df["weight"], weight_ax)
- _check_ax_limits(df["age"], age_ax)
- assert weight_ax._sharey == height_ax
- assert age_ax._sharey == height_ax
- assert dummy_ax._sharey is None
- def test_boxplot_empty_column(self):
- df = DataFrame(np.random.randn(20, 4))
- df.loc[:, 0] = np.nan
- _check_plot_works(df.boxplot, return_type="axes")
- def test_figsize(self):
- df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
- result = df.boxplot(return_type="axes", figsize=(12, 8))
- assert result.figure.bbox_inches.width == 12
- assert result.figure.bbox_inches.height == 8
- def test_fontsize(self):
- df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
- self._check_ticks_props(
- df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
- )
- def test_boxplot_numeric_data(self):
- # GH 22799
- df = DataFrame(
- {
- "a": date_range("2012-01-01", periods=100),
- "b": np.random.randn(100),
- "c": np.random.randn(100) + 2,
- "d": date_range("2012-01-01", periods=100).astype(str),
- "e": date_range("2012-01-01", periods=100, tz="UTC"),
- "f": timedelta_range("1 days", periods=100),
- }
- )
- ax = df.plot(kind="box")
- assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
- @pytest.mark.parametrize(
- "colors_kwd, expected",
- [
- (
- {"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
- {"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
- ),
- ({"boxes": "r"}, {"boxes": "r"}),
- ("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
- ],
- )
- def test_color_kwd(self, colors_kwd, expected):
- # GH: 26214
- df = DataFrame(np.random.rand(10, 2))
- result = df.boxplot(color=colors_kwd, return_type="dict")
- for k, v in expected.items():
- assert result[k][0].get_color() == v
- @pytest.mark.parametrize(
- "scheme,expected",
- [
- (
- "dark_background",
- {
- "boxes": "#8dd3c7",
- "whiskers": "#8dd3c7",
- "medians": "#bfbbd9",
- "caps": "#8dd3c7",
- },
- ),
- (
- "default",
- {
- "boxes": "#1f77b4",
- "whiskers": "#1f77b4",
- "medians": "#2ca02c",
- "caps": "#1f77b4",
- },
- ),
- ],
- )
- def test_colors_in_theme(self, scheme, expected):
- # GH: 40769
- df = DataFrame(np.random.rand(10, 2))
- import matplotlib.pyplot as plt
- plt.style.use(scheme)
- result = df.plot.box(return_type="dict")
- for k, v in expected.items():
- assert result[k][0].get_color() == v
- @pytest.mark.parametrize(
- "dict_colors, msg",
- [({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
- )
- def test_color_kwd_errors(self, dict_colors, msg):
- # GH: 26214
- df = DataFrame(np.random.rand(10, 2))
- with pytest.raises(ValueError, match=msg):
- df.boxplot(color=dict_colors, return_type="dict")
- @pytest.mark.parametrize(
- "props, expected",
- [
- ("boxprops", "boxes"),
- ("whiskerprops", "whiskers"),
- ("capprops", "caps"),
- ("medianprops", "medians"),
- ],
- )
- def test_specified_props_kwd(self, props, expected):
- # GH 30346
- df = DataFrame({k: np.random.random(100) for k in "ABC"})
- kwd = {props: {"color": "C1"}}
- result = df.boxplot(return_type="dict", **kwd)
- assert result[expected][0].get_color() == "C1"
- @pytest.mark.parametrize("vert", [True, False])
- def test_plot_xlabel_ylabel(self, vert):
- df = DataFrame(
- {
- "a": np.random.randn(100),
- "b": np.random.randn(100),
- "group": np.random.choice(["group1", "group2"], 100),
- }
- )
- xlabel, ylabel = "x", "y"
- ax = df.plot(kind="box", vert=vert, xlabel=xlabel, ylabel=ylabel)
- assert ax.get_xlabel() == xlabel
- assert ax.get_ylabel() == ylabel
- @pytest.mark.parametrize("vert", [True, False])
- def test_boxplot_xlabel_ylabel(self, vert):
- df = DataFrame(
- {
- "a": np.random.randn(100),
- "b": np.random.randn(100),
- "group": np.random.choice(["group1", "group2"], 100),
- }
- )
- xlabel, ylabel = "x", "y"
- ax = df.boxplot(vert=vert, xlabel=xlabel, ylabel=ylabel)
- assert ax.get_xlabel() == xlabel
- assert ax.get_ylabel() == ylabel
- @pytest.mark.parametrize("vert", [True, False])
- def test_boxplot_group_xlabel_ylabel(self, vert):
- df = DataFrame(
- {
- "a": np.random.randn(100),
- "b": np.random.randn(100),
- "group": np.random.choice(["group1", "group2"], 100),
- }
- )
- xlabel, ylabel = "x", "y"
- ax = df.boxplot(by="group", vert=vert, xlabel=xlabel, ylabel=ylabel)
- for subplot in ax:
- assert subplot.get_xlabel() == xlabel
- assert subplot.get_ylabel() == ylabel
- self.plt.close()
- ax = df.boxplot(by="group", vert=vert)
- for subplot in ax:
- target_label = subplot.get_xlabel() if vert else subplot.get_ylabel()
- assert target_label == pprint_thing(["group"])
- self.plt.close()
- @td.skip_if_no_mpl
- class TestDataFrameGroupByPlots(TestPlotBase):
- def test_boxplot_legacy1(self, hist_df):
- grouped = hist_df.groupby(by="gender")
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- axes = _check_plot_works(grouped.boxplot, return_type="axes")
- self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
- axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_boxplot_legacy2(self):
- tuples = zip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
- grouped = df.groupby(level=1)
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- axes = _check_plot_works(grouped.boxplot, return_type="axes")
- self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
- axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- def test_boxplot_legacy3(self):
- tuples = zip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
- grouped = df.unstack(level=1).groupby(level=0, axis=1)
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- axes = _check_plot_works(grouped.boxplot, return_type="axes")
- self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
- axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- def test_grouped_plot_fignums(self):
- n = 10
- weight = Series(np.random.normal(166, 20, size=n))
- height = Series(np.random.normal(60, 10, size=n))
- gender = np.random.RandomState(42).choice(["male", "female"], size=n)
- df = DataFrame({"height": height, "weight": weight, "gender": gender})
- gb = df.groupby("gender")
- res = gb.plot()
- assert len(self.plt.get_fignums()) == 2
- assert len(res) == 2
- tm.close()
- res = gb.boxplot(return_type="axes")
- assert len(self.plt.get_fignums()) == 1
- assert len(res) == 2
- tm.close()
- # now works with GH 5610 as gender is excluded
- res = df.groupby("gender").hist()
- tm.close()
- @pytest.mark.slow
- def test_grouped_box_return_type(self, hist_df):
- df = hist_df
- # old style: return_type=None
- result = df.boxplot(by="gender")
- assert isinstance(result, np.ndarray)
- self._check_box_return_type(
- result, None, expected_keys=["height", "weight", "category"]
- )
- # now for groupby
- result = df.groupby("gender").boxplot(return_type="dict")
- self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
- columns2 = "X B C D A G Y N Q O".split()
- df2 = DataFrame(np.random.randn(50, 10), columns=columns2)
- categories2 = "A B C D E F G H I J".split()
- df2["category"] = categories2 * 5
- for t in ["dict", "axes", "both"]:
- returned = df.groupby("classroom").boxplot(return_type=t)
- self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
- returned = df.boxplot(by="classroom", return_type=t)
- self._check_box_return_type(
- returned, t, expected_keys=["height", "weight", "category"]
- )
- returned = df2.groupby("category").boxplot(return_type=t)
- self._check_box_return_type(returned, t, expected_keys=categories2)
- returned = df2.boxplot(by="category", return_type=t)
- self._check_box_return_type(returned, t, expected_keys=columns2)
- @pytest.mark.slow
- def test_grouped_box_layout(self, hist_df):
- df = hist_df
- msg = "Layout of 1x1 must be larger than required size 2"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
- msg = "The 'layout' keyword is not supported when 'by' is None"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(
- column=["height", "weight", "category"],
- layout=(2, 1),
- return_type="dict",
- )
- msg = "At least one dimension of layout must be positive"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
- # _check_plot_works adds an ax so catch warning. see GH #13188
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- box = _check_plot_works(
- df.groupby("gender").boxplot, column="height", return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- box = _check_plot_works(
- df.groupby("category").boxplot, column="height", return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
- # GH 6769
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- box = _check_plot_works(
- df.groupby("classroom").boxplot, column="height", return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- # GH 5897
- axes = df.boxplot(
- column=["height", "weight", "category"], by="gender", return_type="axes"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- for ax in [axes["height"]]:
- self._check_visible(ax.get_xticklabels(), visible=False)
- self._check_visible([ax.xaxis.get_label()], visible=False)
- for ax in [axes["weight"], axes["category"]]:
- self._check_visible(ax.get_xticklabels())
- self._check_visible([ax.xaxis.get_label()])
- box = df.groupby("classroom").boxplot(
- column=["height", "weight", "category"], return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- box = _check_plot_works(
- df.groupby("category").boxplot,
- column="height",
- layout=(3, 2),
- return_type="dict",
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
- with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
- box = _check_plot_works(
- df.groupby("category").boxplot,
- column="height",
- layout=(3, -1),
- return_type="dict",
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
- box = df.boxplot(
- column=["height", "weight", "category"], by="gender", layout=(4, 1)
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
- box = df.boxplot(
- column=["height", "weight", "category"], by="gender", layout=(-1, 1)
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
- box = df.groupby("classroom").boxplot(
- column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
- box = df.groupby("classroom").boxplot( # noqa
- column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
- @pytest.mark.slow
- def test_grouped_box_multiple_axes(self, hist_df):
- # GH 6970, GH 7069
- df = hist_df
- # check warning to ignore sharex / sharey
- # this check should be done in the first function which
- # passes multiple axes to plot, hist or boxplot
- # location should be changed if other test is added
- # which has earlier alphabetical order
- with tm.assert_produces_warning(UserWarning):
- fig, axes = self.plt.subplots(2, 2)
- df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
- fig, axes = self.plt.subplots(2, 3)
- with tm.assert_produces_warning(UserWarning):
- returned = df.boxplot(
- column=["height", "weight", "category"],
- by="gender",
- return_type="axes",
- ax=axes[0],
- )
- returned = np.array(list(returned.values))
- self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
- tm.assert_numpy_array_equal(returned, axes[0])
- assert returned[0].figure is fig
- # draw on second row
- with tm.assert_produces_warning(UserWarning):
- returned = df.groupby("classroom").boxplot(
- column=["height", "weight", "category"], return_type="axes", ax=axes[1]
- )
- returned = np.array(list(returned.values))
- self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
- tm.assert_numpy_array_equal(returned, axes[1])
- assert returned[0].figure is fig
- msg = "The number of passed axes must be 3, the same as the output plot"
- with pytest.raises(ValueError, match=msg):
- fig, axes = self.plt.subplots(2, 3)
- # pass different number of axes from required
- with tm.assert_produces_warning(UserWarning):
- axes = df.groupby("classroom").boxplot(ax=axes)
- def test_fontsize(self):
- df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
- self._check_ticks_props(
- df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
- )
- @pytest.mark.parametrize(
- "col, expected_xticklabel",
- [
- ("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
- (["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
- ("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
- (
- ["v", "v1"],
- [
- "(a, v)",
- "(a, v1)",
- "(b, v)",
- "(b, v1)",
- "(c, v)",
- "(c, v1)",
- "(d, v)",
- "(d, v1)",
- "(e, v)",
- "(e, v1)",
- ],
- ),
- (
- None,
- [
- "(a, v)",
- "(a, v1)",
- "(b, v)",
- "(b, v1)",
- "(c, v)",
- "(c, v1)",
- "(d, v)",
- "(d, v1)",
- "(e, v)",
- "(e, v1)",
- ],
- ),
- ],
- )
- def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
- # GH 16748
- df = DataFrame(
- {
- "cat": np.random.choice(list("abcde"), 100),
- "v": np.random.rand(100),
- "v1": np.random.rand(100),
- }
- )
- grouped = df.groupby("cat")
- axes = _check_plot_works(
- grouped.boxplot, subplots=False, column=col, return_type="axes"
- )
- result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
- assert expected_xticklabel == result_xticklabel
- def test_groupby_boxplot_object(self, hist_df):
- # GH 43480
- df = hist_df.astype("object")
- grouped = df.groupby("gender")
- msg = "boxplot method requires numerical columns, nothing to plot"
- with pytest.raises(ValueError, match=msg):
- _check_plot_works(grouped.boxplot, subplots=False)
- def test_boxplot_multiindex_column(self):
- # GH 16748
- arrays = [
- ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
- ["one", "two", "one", "two", "one", "two", "one", "two"],
- ]
- tuples = list(zip(*arrays))
- index = MultiIndex.from_tuples(tuples, names=["first", "second"])
- df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
- col = [("bar", "one"), ("bar", "two")]
- axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
- expected_xticklabel = ["(bar, one)", "(bar, two)"]
- result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
- assert expected_xticklabel == result_xticklabel
|