123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223 |
- """ Test cases for DataFrame.plot """
- from datetime import (
- date,
- datetime,
- )
- import gc
- import itertools
- import re
- import string
- import warnings
- import weakref
- import numpy as np
- import pytest
- import pandas.util._test_decorators as td
- from pandas.core.dtypes.api import is_list_like
- import pandas as pd
- from pandas import (
- DataFrame,
- MultiIndex,
- PeriodIndex,
- Series,
- bdate_range,
- date_range,
- plotting,
- )
- import pandas._testing as tm
- from pandas.tests.plotting.common import (
- TestPlotBase,
- _check_plot_works,
- )
- from pandas.io.formats.printing import pprint_thing
- @td.skip_if_no_mpl
- class TestDataFramePlots(TestPlotBase):
- @pytest.mark.xfail(reason="Api changed in 3.6.0")
- @pytest.mark.slow
- def test_plot(self):
- df = tm.makeTimeDataFrame()
- _check_plot_works(df.plot, grid=False)
- # _check_plot_works adds an ax so use default_axes=True to avoid warning
- axes = _check_plot_works(df.plot, default_axes=True, subplots=True)
- self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
- axes = _check_plot_works(
- df.plot,
- default_axes=True,
- subplots=True,
- layout=(-1, 2),
- )
- self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
- axes = _check_plot_works(
- df.plot,
- default_axes=True,
- subplots=True,
- use_index=False,
- )
- self._check_ticks_props(axes, xrot=0)
- self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
- df = DataFrame({"x": [1, 2], "y": [3, 4]})
- msg = "'Line2D' object has no property 'blarg'"
- with pytest.raises(AttributeError, match=msg):
- df.plot.line(blarg=True)
- df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
- ax = _check_plot_works(df.plot, use_index=True)
- self._check_ticks_props(ax, xrot=0)
- _check_plot_works(df.plot, yticks=[1, 5, 10])
- _check_plot_works(df.plot, xticks=[1, 5, 10])
- _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100))
- _check_plot_works(df.plot, default_axes=True, subplots=True, title="blah")
- # We have to redo it here because _check_plot_works does two plots,
- # once without an ax kwarg and once with an ax kwarg and the new sharex
- # behaviour does not remove the visibility of the latter axis (as ax is
- # present). see: https://github.com/pandas-dev/pandas/issues/9737
- axes = df.plot(subplots=True, title="blah")
- self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
- # axes[0].figure.savefig("test.png")
- for ax in axes[:2]:
- self._check_visible(ax.xaxis) # xaxis must be visible for grid
- self._check_visible(ax.get_xticklabels(), visible=False)
- self._check_visible(ax.get_xticklabels(minor=True), visible=False)
- self._check_visible([ax.xaxis.get_label()], visible=False)
- for ax in [axes[2]]:
- self._check_visible(ax.xaxis)
- self._check_visible(ax.get_xticklabels())
- self._check_visible([ax.xaxis.get_label()])
- self._check_ticks_props(ax, xrot=0)
- _check_plot_works(df.plot, title="blah")
- tuples = zip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
- ax = _check_plot_works(df.plot, use_index=True)
- self._check_ticks_props(ax, xrot=0)
- # unicode
- index = MultiIndex.from_tuples(
- [
- ("\u03b1", 0),
- ("\u03b1", 1),
- ("\u03b2", 2),
- ("\u03b2", 3),
- ("\u03b3", 4),
- ("\u03b3", 5),
- ("\u03b4", 6),
- ("\u03b4", 7),
- ],
- names=["i0", "i1"],
- )
- columns = MultiIndex.from_tuples(
- [("bar", "\u0394"), ("bar", "\u0395")], names=["c0", "c1"]
- )
- df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index)
- _check_plot_works(df.plot, title="\u03A3")
- # GH 6951
- # Test with single column
- df = DataFrame({"x": np.random.rand(10)})
- axes = _check_plot_works(df.plot.bar, subplots=True)
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- axes = _check_plot_works(df.plot.bar, subplots=True, layout=(-1, 1))
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- # When ax is supplied and required number of axes is 1,
- # passed ax should be used:
- fig, ax = self.plt.subplots()
- axes = df.plot.bar(subplots=True, ax=ax)
- assert len(axes) == 1
- result = ax.axes
- assert result is axes[0]
- def test_nullable_int_plot(self):
- # GH 32073
- dates = ["2008", "2009", None, "2011", "2012"]
- df = DataFrame(
- {
- "A": [1, 2, 3, 4, 5],
- "B": [1, 2, 3, 4, 5],
- "C": np.array([7, 5, np.nan, 3, 2], dtype=object),
- "D": pd.to_datetime(dates, format="%Y").view("i8"),
- "E": pd.to_datetime(dates, format="%Y", utc=True).view("i8"),
- }
- )
- _check_plot_works(df.plot, x="A", y="B")
- _check_plot_works(df[["A", "B"]].plot, x="A", y="B")
- _check_plot_works(df[["C", "A"]].plot, x="C", y="A") # nullable value on x-axis
- _check_plot_works(df[["A", "C"]].plot, x="A", y="C")
- _check_plot_works(df[["B", "C"]].plot, x="B", y="C")
- _check_plot_works(df[["A", "D"]].plot, x="A", y="D")
- _check_plot_works(df[["A", "E"]].plot, x="A", y="E")
- @pytest.mark.slow
- def test_integer_array_plot(self):
- # GH 25587
- arr = pd.array([1, 2, 3, 4], dtype="UInt32")
- s = Series(arr)
- _check_plot_works(s.plot.line)
- _check_plot_works(s.plot.bar)
- _check_plot_works(s.plot.hist)
- _check_plot_works(s.plot.pie)
- df = DataFrame({"x": arr, "y": arr})
- _check_plot_works(df.plot.line)
- _check_plot_works(df.plot.bar)
- _check_plot_works(df.plot.hist)
- _check_plot_works(df.plot.pie, y="y")
- _check_plot_works(df.plot.scatter, x="x", y="y")
- _check_plot_works(df.plot.hexbin, x="x", y="y")
- def test_nonnumeric_exclude(self):
- df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]})
- ax = df.plot()
- assert len(ax.get_lines()) == 1 # B was plotted
- def test_implicit_label(self):
- df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"])
- ax = df.plot(x="a", y="b")
- self._check_text_labels(ax.xaxis.get_label(), "a")
- def test_donot_overwrite_index_name(self):
- # GH 8494
- df = DataFrame(np.random.randn(2, 2), columns=["a", "b"])
- df.index.name = "NAME"
- df.plot(y="b", label="LABEL")
- assert df.index.name == "NAME"
- def test_plot_xy(self):
- # columns.inferred_type == 'string'
- df = tm.makeTimeDataFrame()
- self._check_data(df.plot(x=0, y=1), df.set_index("A")["B"].plot())
- self._check_data(df.plot(x=0), df.set_index("A").plot())
- self._check_data(df.plot(y=0), df.B.plot())
- self._check_data(df.plot(x="A", y="B"), df.set_index("A").B.plot())
- self._check_data(df.plot(x="A"), df.set_index("A").plot())
- self._check_data(df.plot(y="B"), df.B.plot())
- # columns.inferred_type == 'integer'
- df.columns = np.arange(1, len(df.columns) + 1)
- self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot())
- self._check_data(df.plot(x=1), df.set_index(1).plot())
- self._check_data(df.plot(y=1), df[1].plot())
- # figsize and title
- ax = df.plot(x=1, y=2, title="Test", figsize=(16, 8))
- self._check_text_labels(ax.title, "Test")
- self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16.0, 8.0))
- # columns.inferred_type == 'mixed'
- # TODO add MultiIndex test
- @pytest.mark.parametrize(
- "input_log, expected_log", [(True, "log"), ("sym", "symlog")]
- )
- def test_logscales(self, input_log, expected_log):
- df = DataFrame({"a": np.arange(100)}, index=np.arange(100))
- ax = df.plot(logy=input_log)
- self._check_ax_scales(ax, yaxis=expected_log)
- assert ax.get_yscale() == expected_log
- ax = df.plot(logx=input_log)
- self._check_ax_scales(ax, xaxis=expected_log)
- assert ax.get_xscale() == expected_log
- ax = df.plot(loglog=input_log)
- self._check_ax_scales(ax, xaxis=expected_log, yaxis=expected_log)
- assert ax.get_xscale() == expected_log
- assert ax.get_yscale() == expected_log
- @pytest.mark.parametrize("input_param", ["logx", "logy", "loglog"])
- def test_invalid_logscale(self, input_param):
- # GH: 24867
- df = DataFrame({"a": np.arange(100)}, index=np.arange(100))
- msg = "Boolean, None and 'sym' are valid options, 'sm' is given."
- with pytest.raises(ValueError, match=msg):
- df.plot(**{input_param: "sm"})
- def test_xcompat(self):
- df = tm.makeTimeDataFrame()
- ax = df.plot(x_compat=True)
- lines = ax.get_lines()
- assert not isinstance(lines[0].get_xdata(), PeriodIndex)
- self._check_ticks_props(ax, xrot=30)
- tm.close()
- plotting.plot_params["xaxis.compat"] = True
- ax = df.plot()
- lines = ax.get_lines()
- assert not isinstance(lines[0].get_xdata(), PeriodIndex)
- self._check_ticks_props(ax, xrot=30)
- tm.close()
- plotting.plot_params["x_compat"] = False
- ax = df.plot()
- lines = ax.get_lines()
- assert not isinstance(lines[0].get_xdata(), PeriodIndex)
- assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex)
- tm.close()
- # useful if you're plotting a bunch together
- with plotting.plot_params.use("x_compat", True):
- ax = df.plot()
- lines = ax.get_lines()
- assert not isinstance(lines[0].get_xdata(), PeriodIndex)
- self._check_ticks_props(ax, xrot=30)
- tm.close()
- ax = df.plot()
- lines = ax.get_lines()
- assert not isinstance(lines[0].get_xdata(), PeriodIndex)
- assert isinstance(PeriodIndex(lines[0].get_xdata()), PeriodIndex)
- self._check_ticks_props(ax, xrot=0)
- def test_period_compat(self):
- # GH 9012
- # period-array conversions
- df = DataFrame(
- np.random.rand(21, 2),
- index=bdate_range(datetime(2000, 1, 1), datetime(2000, 1, 31)),
- columns=["a", "b"],
- )
- df.plot()
- self.plt.axhline(y=0)
- tm.close()
- def test_unsorted_index(self):
- df = DataFrame(
- {"y": np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64
- )
- ax = df.plot()
- lines = ax.get_lines()[0]
- rs = lines.get_xydata()
- rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name="y")
- tm.assert_series_equal(rs, df.y, check_index_type=False)
- tm.close()
- df.index = pd.Index(np.arange(99, -1, -1), dtype=np.float64)
- ax = df.plot()
- lines = ax.get_lines()[0]
- rs = lines.get_xydata()
- rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64, name="y")
- tm.assert_series_equal(rs, df.y)
- def test_unsorted_index_lims(self):
- df = DataFrame({"y": [0.0, 1.0, 2.0, 3.0]}, index=[1.0, 0.0, 3.0, 2.0])
- ax = df.plot()
- xmin, xmax = ax.get_xlim()
- lines = ax.get_lines()
- assert xmin <= np.nanmin(lines[0].get_data()[0])
- assert xmax >= np.nanmax(lines[0].get_data()[0])
- df = DataFrame(
- {"y": [0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0]},
- index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0],
- )
- ax = df.plot()
- xmin, xmax = ax.get_xlim()
- lines = ax.get_lines()
- assert xmin <= np.nanmin(lines[0].get_data()[0])
- assert xmax >= np.nanmax(lines[0].get_data()[0])
- df = DataFrame({"y": [0.0, 1.0, 2.0, 3.0], "z": [91.0, 90.0, 93.0, 92.0]})
- ax = df.plot(x="z", y="y")
- xmin, xmax = ax.get_xlim()
- lines = ax.get_lines()
- assert xmin <= np.nanmin(lines[0].get_data()[0])
- assert xmax >= np.nanmax(lines[0].get_data()[0])
- def test_negative_log(self):
- df = -DataFrame(
- np.random.rand(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["x", "y", "z", "four"],
- )
- msg = "Log-y scales are not supported in area plot"
- with pytest.raises(ValueError, match=msg):
- df.plot.area(logy=True)
- with pytest.raises(ValueError, match=msg):
- df.plot.area(loglog=True)
- def _compare_stacked_y_cood(self, normal_lines, stacked_lines):
- base = np.zeros(len(normal_lines[0].get_data()[1]))
- for nl, sl in zip(normal_lines, stacked_lines):
- base += nl.get_data()[1] # get y coordinates
- sy = sl.get_data()[1]
- tm.assert_numpy_array_equal(base, sy)
- @pytest.mark.parametrize("kind", ["line", "area"])
- def test_line_area_stacked(self, kind):
- np_random = np.random.RandomState(42)
- df = DataFrame(np_random.rand(6, 4), columns=["w", "x", "y", "z"])
- neg_df = -df
- # each column has either positive or negative value
- sep_df = DataFrame(
- {
- "w": np_random.rand(6),
- "x": np_random.rand(6),
- "y": -np_random.rand(6),
- "z": -np_random.rand(6),
- }
- )
- # each column has positive-negative mixed value
- mixed_df = DataFrame(
- np_random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["w", "x", "y", "z"],
- )
- ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
- ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
- self._compare_stacked_y_cood(ax1.lines, ax2.lines)
- ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
- ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
- self._compare_stacked_y_cood(ax1.lines, ax2.lines)
- ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
- ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
- self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
- self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])
- _check_plot_works(mixed_df.plot, stacked=False)
- msg = (
- "When stacked is True, each column must be either all positive or "
- "all negative. Column 'w' contains both positive and negative "
- "values"
- )
- with pytest.raises(ValueError, match=msg):
- mixed_df.plot(stacked=True)
- # Use an index with strictly positive values, preventing
- # matplotlib from warning about ignoring xlim
- df2 = df.set_index(df.index + 1)
- _check_plot_works(df2.plot, kind=kind, logx=True, stacked=True)
- def test_line_area_nan_df(self):
- values1 = [1, 2, np.nan, 3]
- values2 = [3, np.nan, 2, 1]
- df = DataFrame({"a": values1, "b": values2})
- tdf = DataFrame({"a": values1, "b": values2}, index=tm.makeDateIndex(k=4))
- for d in [df, tdf]:
- ax = _check_plot_works(d.plot)
- masked1 = ax.lines[0].get_ydata()
- masked2 = ax.lines[1].get_ydata()
- # remove nan for comparison purpose
- exp = np.array([1, 2, 3], dtype=np.float64)
- tm.assert_numpy_array_equal(np.delete(masked1.data, 2), exp)
- exp = np.array([3, 2, 1], dtype=np.float64)
- tm.assert_numpy_array_equal(np.delete(masked2.data, 1), exp)
- tm.assert_numpy_array_equal(
- masked1.mask, np.array([False, False, True, False])
- )
- tm.assert_numpy_array_equal(
- masked2.mask, np.array([False, True, False, False])
- )
- expected1 = np.array([1, 2, 0, 3], dtype=np.float64)
- expected2 = np.array([3, 0, 2, 1], dtype=np.float64)
- ax = _check_plot_works(d.plot, stacked=True)
- tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1)
- tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2)
- ax = _check_plot_works(d.plot.area)
- tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1)
- tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2)
- ax = _check_plot_works(d.plot.area, stacked=False)
- tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1)
- tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected2)
- def test_line_lim(self):
- df = DataFrame(np.random.rand(6, 3), columns=["x", "y", "z"])
- ax = df.plot()
- xmin, xmax = ax.get_xlim()
- lines = ax.get_lines()
- assert xmin <= lines[0].get_data()[0][0]
- assert xmax >= lines[0].get_data()[0][-1]
- ax = df.plot(secondary_y=True)
- xmin, xmax = ax.get_xlim()
- lines = ax.get_lines()
- assert xmin <= lines[0].get_data()[0][0]
- assert xmax >= lines[0].get_data()[0][-1]
- axes = df.plot(secondary_y=True, subplots=True)
- self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
- for ax in axes:
- assert hasattr(ax, "left_ax")
- assert not hasattr(ax, "right_ax")
- xmin, xmax = ax.get_xlim()
- lines = ax.get_lines()
- assert xmin <= lines[0].get_data()[0][0]
- assert xmax >= lines[0].get_data()[0][-1]
- @pytest.mark.xfail(
- strict=False,
- reason="2020-12-01 this has been failing periodically on the "
- "ymin==0 assertion for a week or so.",
- )
- @pytest.mark.parametrize("stacked", [True, False])
- def test_area_lim(self, stacked):
- df = DataFrame(np.random.rand(6, 4), columns=["x", "y", "z", "four"])
- neg_df = -df
- ax = _check_plot_works(df.plot.area, stacked=stacked)
- xmin, xmax = ax.get_xlim()
- ymin, ymax = ax.get_ylim()
- lines = ax.get_lines()
- assert xmin <= lines[0].get_data()[0][0]
- assert xmax >= lines[0].get_data()[0][-1]
- assert ymin == 0
- ax = _check_plot_works(neg_df.plot.area, stacked=stacked)
- ymin, ymax = ax.get_ylim()
- assert ymax == 0
- def test_area_sharey_dont_overwrite(self):
- # GH37942
- df = DataFrame(np.random.rand(4, 2), columns=["x", "y"])
- fig, (ax1, ax2) = self.plt.subplots(1, 2, sharey=True)
- df.plot(ax=ax1, kind="area")
- df.plot(ax=ax2, kind="area")
- assert self.get_y_axis(ax1).joined(ax1, ax2)
- assert self.get_y_axis(ax2).joined(ax1, ax2)
- def test_bar_linewidth(self):
- df = DataFrame(np.random.randn(5, 5))
- # regular
- ax = df.plot.bar(linewidth=2)
- for r in ax.patches:
- assert r.get_linewidth() == 2
- # stacked
- ax = df.plot.bar(stacked=True, linewidth=2)
- for r in ax.patches:
- assert r.get_linewidth() == 2
- # subplots
- axes = df.plot.bar(linewidth=2, subplots=True)
- self._check_axes_shape(axes, axes_num=5, layout=(5, 1))
- for ax in axes:
- for r in ax.patches:
- assert r.get_linewidth() == 2
- def test_bar_barwidth(self):
- df = DataFrame(np.random.randn(5, 5))
- width = 0.9
- # regular
- ax = df.plot.bar(width=width)
- for r in ax.patches:
- assert r.get_width() == width / len(df.columns)
- # stacked
- ax = df.plot.bar(stacked=True, width=width)
- for r in ax.patches:
- assert r.get_width() == width
- # horizontal regular
- ax = df.plot.barh(width=width)
- for r in ax.patches:
- assert r.get_height() == width / len(df.columns)
- # horizontal stacked
- ax = df.plot.barh(stacked=True, width=width)
- for r in ax.patches:
- assert r.get_height() == width
- # subplots
- axes = df.plot.bar(width=width, subplots=True)
- for ax in axes:
- for r in ax.patches:
- assert r.get_width() == width
- # horizontal subplots
- axes = df.plot.barh(width=width, subplots=True)
- for ax in axes:
- for r in ax.patches:
- assert r.get_height() == width
- def test_bar_bottom_left(self):
- df = DataFrame(np.random.rand(5, 5))
- ax = df.plot.bar(stacked=False, bottom=1)
- result = [p.get_y() for p in ax.patches]
- assert result == [1] * 25
- ax = df.plot.bar(stacked=True, bottom=[-1, -2, -3, -4, -5])
- result = [p.get_y() for p in ax.patches[:5]]
- assert result == [-1, -2, -3, -4, -5]
- ax = df.plot.barh(stacked=False, left=np.array([1, 1, 1, 1, 1]))
- result = [p.get_x() for p in ax.patches]
- assert result == [1] * 25
- ax = df.plot.barh(stacked=True, left=[1, 2, 3, 4, 5])
- result = [p.get_x() for p in ax.patches[:5]]
- assert result == [1, 2, 3, 4, 5]
- axes = df.plot.bar(subplots=True, bottom=-1)
- for ax in axes:
- result = [p.get_y() for p in ax.patches]
- assert result == [-1] * 5
- axes = df.plot.barh(subplots=True, left=np.array([1, 1, 1, 1, 1]))
- for ax in axes:
- result = [p.get_x() for p in ax.patches]
- assert result == [1] * 5
- def test_bar_nan(self):
- df = DataFrame({"A": [10, np.nan, 20], "B": [5, 10, 20], "C": [1, 2, 3]})
- ax = df.plot.bar()
- expected = [10, 0, 20, 5, 10, 20, 1, 2, 3]
- result = [p.get_height() for p in ax.patches]
- assert result == expected
- ax = df.plot.bar(stacked=True)
- result = [p.get_height() for p in ax.patches]
- assert result == expected
- result = [p.get_y() for p in ax.patches]
- expected = [0.0, 0.0, 0.0, 10.0, 0.0, 20.0, 15.0, 10.0, 40.0]
- assert result == expected
- def test_bar_categorical(self):
- # GH 13019
- df1 = DataFrame(
- np.random.randn(6, 5),
- index=pd.Index(list("ABCDEF")),
- columns=pd.Index(list("abcde")),
- )
- # categorical index must behave the same
- df2 = DataFrame(
- np.random.randn(6, 5),
- index=pd.CategoricalIndex(list("ABCDEF")),
- columns=pd.CategoricalIndex(list("abcde")),
- )
- for df in [df1, df2]:
- ax = df.plot.bar()
- ticks = ax.xaxis.get_ticklocs()
- tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5]))
- assert ax.get_xlim() == (-0.5, 5.5)
- # check left-edge of bars
- assert ax.patches[0].get_x() == -0.25
- assert ax.patches[-1].get_x() == 5.15
- ax = df.plot.bar(stacked=True)
- tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4, 5]))
- assert ax.get_xlim() == (-0.5, 5.5)
- assert ax.patches[0].get_x() == -0.25
- assert ax.patches[-1].get_x() == 4.75
- def test_plot_scatter(self):
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["x", "y", "z", "four"],
- )
- _check_plot_works(df.plot.scatter, x="x", y="y")
- _check_plot_works(df.plot.scatter, x=1, y=2)
- msg = re.escape("scatter() missing 1 required positional argument: 'y'")
- with pytest.raises(TypeError, match=msg):
- df.plot.scatter(x="x")
- msg = re.escape("scatter() missing 1 required positional argument: 'x'")
- with pytest.raises(TypeError, match=msg):
- df.plot.scatter(y="y")
- # GH 6951
- axes = df.plot(x="x", y="y", kind="scatter", subplots=True)
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- def test_raise_error_on_datetime_time_data(self):
- # GH 8113, datetime.time type is not supported by matplotlib in scatter
- df = DataFrame(np.random.randn(10), columns=["a"])
- df["dtime"] = date_range(start="2014-01-01", freq="h", periods=10).time
- msg = "must be a string or a (real )?number, not 'datetime.time'"
- with pytest.raises(TypeError, match=msg):
- df.plot(kind="scatter", x="dtime", y="a")
- def test_scatterplot_datetime_data(self):
- # GH 30391
- dates = date_range(start=date(2019, 1, 1), periods=12, freq="W")
- vals = np.random.normal(0, 1, len(dates))
- df = DataFrame({"dates": dates, "vals": vals})
- _check_plot_works(df.plot.scatter, x="dates", y="vals")
- _check_plot_works(df.plot.scatter, x=0, y=1)
- def test_scatterplot_object_data(self):
- # GH 18755
- df = DataFrame({"a": ["A", "B", "C"], "b": [2, 3, 4]})
- _check_plot_works(df.plot.scatter, x="a", y="b")
- _check_plot_works(df.plot.scatter, x=0, y=1)
- df = DataFrame({"a": ["A", "B", "C"], "b": ["a", "b", "c"]})
- _check_plot_works(df.plot.scatter, x="a", y="b")
- _check_plot_works(df.plot.scatter, x=0, y=1)
- @pytest.mark.parametrize("ordered", [True, False])
- @pytest.mark.parametrize(
- "categories",
- (["setosa", "versicolor", "virginica"], ["versicolor", "virginica", "setosa"]),
- )
- def test_scatterplot_color_by_categorical(self, ordered, categories):
- df = DataFrame(
- [[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]],
- columns=["length", "width"],
- )
- df["species"] = pd.Categorical(
- ["setosa", "setosa", "virginica", "virginica", "versicolor"],
- ordered=ordered,
- categories=categories,
- )
- ax = df.plot.scatter(x=0, y=1, c="species")
- (colorbar_collection,) = ax.collections
- colorbar = colorbar_collection.colorbar
- expected_ticks = np.array([0.5, 1.5, 2.5])
- result_ticks = colorbar.get_ticks()
- tm.assert_numpy_array_equal(result_ticks, expected_ticks)
- expected_boundaries = np.array([0.0, 1.0, 2.0, 3.0])
- result_boundaries = colorbar._boundaries
- tm.assert_numpy_array_equal(result_boundaries, expected_boundaries)
- expected_yticklabels = categories
- result_yticklabels = [i.get_text() for i in colorbar.ax.get_ymajorticklabels()]
- assert all(i == j for i, j in zip(result_yticklabels, expected_yticklabels))
- @pytest.mark.parametrize("x, y", [("x", "y"), ("y", "x"), ("y", "y")])
- def test_plot_scatter_with_categorical_data(self, x, y):
- # after fixing GH 18755, should be able to plot categorical data
- df = DataFrame({"x": [1, 2, 3, 4], "y": pd.Categorical(["a", "b", "a", "c"])})
- _check_plot_works(df.plot.scatter, x=x, y=y)
- def test_plot_scatter_with_c(self):
- df = DataFrame(
- np.random.randint(low=0, high=100, size=(6, 4)),
- index=list(string.ascii_letters[:6]),
- columns=["x", "y", "z", "four"],
- )
- axes = [df.plot.scatter(x="x", y="y", c="z"), df.plot.scatter(x=0, y=1, c=2)]
- for ax in axes:
- # default to Greys
- assert ax.collections[0].cmap.name == "Greys"
- assert ax.collections[0].colorbar.ax.get_ylabel() == "z"
- cm = "cubehelix"
- ax = df.plot.scatter(x="x", y="y", c="z", colormap=cm)
- assert ax.collections[0].cmap.name == cm
- # verify turning off colorbar works
- ax = df.plot.scatter(x="x", y="y", c="z", colorbar=False)
- assert ax.collections[0].colorbar is None
- # verify that we can still plot a solid color
- ax = df.plot.scatter(x=0, y=1, c="red")
- assert ax.collections[0].colorbar is None
- self._check_colors(ax.collections, facecolors=["r"])
- # Ensure that we can pass an np.array straight through to matplotlib,
- # this functionality was accidentally removed previously.
- # See https://github.com/pandas-dev/pandas/issues/8852 for bug report
- #
- # Exercise colormap path and non-colormap path as they are independent
- #
- df = DataFrame({"A": [1, 2], "B": [3, 4]})
- red_rgba = [1.0, 0.0, 0.0, 1.0]
- green_rgba = [0.0, 1.0, 0.0, 1.0]
- rgba_array = np.array([red_rgba, green_rgba])
- ax = df.plot.scatter(x="A", y="B", c=rgba_array)
- # expect the face colors of the points in the non-colormap path to be
- # identical to the values we supplied, normally we'd be on shaky ground
- # comparing floats for equality but here we expect them to be
- # identical.
- tm.assert_numpy_array_equal(ax.collections[0].get_facecolor(), rgba_array)
- # we don't test the colors of the faces in this next plot because they
- # are dependent on the spring colormap, which may change its colors
- # later.
- float_array = np.array([0.0, 1.0])
- df.plot.scatter(x="A", y="B", c=float_array, cmap="spring")
- def test_plot_scatter_with_s(self):
- # this refers to GH 32904
- df = DataFrame(np.random.random((10, 3)) * 100, columns=["a", "b", "c"])
- ax = df.plot.scatter(x="a", y="b", s="c")
- tm.assert_numpy_array_equal(df["c"].values, right=ax.collections[0].get_sizes())
- def test_plot_scatter_with_norm(self):
- # added while fixing GH 45809
- import matplotlib as mpl
- df = DataFrame(np.random.random((10, 3)) * 100, columns=["a", "b", "c"])
- norm = mpl.colors.LogNorm()
- ax = df.plot.scatter(x="a", y="b", c="c", norm=norm)
- assert ax.collections[0].norm is norm
- def test_plot_scatter_without_norm(self):
- # added while fixing GH 45809
- import matplotlib as mpl
- df = DataFrame(np.random.random((10, 3)) * 100, columns=["a", "b", "c"])
- ax = df.plot.scatter(x="a", y="b", c="c")
- plot_norm = ax.collections[0].norm
- color_min_max = (df.c.min(), df.c.max())
- default_norm = mpl.colors.Normalize(*color_min_max)
- for value in df.c:
- assert plot_norm(value) == default_norm(value)
- @pytest.mark.slow
- def test_plot_bar(self):
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["one", "two", "three", "four"],
- )
- _check_plot_works(df.plot.bar)
- _check_plot_works(df.plot.bar, legend=False)
- _check_plot_works(df.plot.bar, default_axes=True, subplots=True)
- _check_plot_works(df.plot.bar, stacked=True)
- df = DataFrame(
- np.random.randn(10, 15),
- index=list(string.ascii_letters[:10]),
- columns=range(15),
- )
- _check_plot_works(df.plot.bar)
- df = DataFrame({"a": [0, 1], "b": [1, 0]})
- ax = _check_plot_works(df.plot.bar)
- self._check_ticks_props(ax, xrot=90)
- ax = df.plot.bar(rot=35, fontsize=10)
- self._check_ticks_props(ax, xrot=35, xlabelsize=10, ylabelsize=10)
- ax = _check_plot_works(df.plot.barh)
- self._check_ticks_props(ax, yrot=0)
- ax = df.plot.barh(rot=55, fontsize=11)
- self._check_ticks_props(ax, yrot=55, ylabelsize=11, xlabelsize=11)
- def test_boxplot(self, hist_df):
- df = hist_df
- series = df["height"]
- numeric_cols = df._get_numeric_data().columns
- labels = [pprint_thing(c) for c in numeric_cols]
- ax = _check_plot_works(df.plot.box)
- self._check_text_labels(ax.get_xticklabels(), labels)
- tm.assert_numpy_array_equal(
- ax.xaxis.get_ticklocs(), np.arange(1, len(numeric_cols) + 1)
- )
- assert len(ax.lines) == 7 * len(numeric_cols)
- tm.close()
- axes = series.plot.box(rot=40)
- self._check_ticks_props(axes, xrot=40, yrot=0)
- tm.close()
- ax = _check_plot_works(series.plot.box)
- positions = np.array([1, 6, 7])
- ax = df.plot.box(positions=positions)
- numeric_cols = df._get_numeric_data().columns
- labels = [pprint_thing(c) for c in numeric_cols]
- self._check_text_labels(ax.get_xticklabels(), labels)
- tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), positions)
- assert len(ax.lines) == 7 * len(numeric_cols)
- def test_boxplot_vertical(self, hist_df):
- df = hist_df
- numeric_cols = df._get_numeric_data().columns
- labels = [pprint_thing(c) for c in numeric_cols]
- # if horizontal, yticklabels are rotated
- ax = df.plot.box(rot=50, fontsize=8, vert=False)
- self._check_ticks_props(ax, xrot=0, yrot=50, ylabelsize=8)
- self._check_text_labels(ax.get_yticklabels(), labels)
- assert len(ax.lines) == 7 * len(numeric_cols)
- axes = _check_plot_works(
- df.plot.box,
- default_axes=True,
- subplots=True,
- vert=False,
- logx=True,
- )
- self._check_axes_shape(axes, axes_num=3, layout=(1, 3))
- self._check_ax_scales(axes, xaxis="log")
- for ax, label in zip(axes, labels):
- self._check_text_labels(ax.get_yticklabels(), [label])
- assert len(ax.lines) == 7
- positions = np.array([3, 2, 8])
- ax = df.plot.box(positions=positions, vert=False)
- self._check_text_labels(ax.get_yticklabels(), labels)
- tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), positions)
- assert len(ax.lines) == 7 * len(numeric_cols)
- def test_boxplot_return_type(self):
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["one", "two", "three", "four"],
- )
- msg = "return_type must be {None, 'axes', 'dict', 'both'}"
- with pytest.raises(ValueError, match=msg):
- df.plot.box(return_type="not_a_type")
- result = df.plot.box(return_type="dict")
- self._check_box_return_type(result, "dict")
- result = df.plot.box(return_type="axes")
- self._check_box_return_type(result, "axes")
- result = df.plot.box() # default axes
- self._check_box_return_type(result, "axes")
- result = df.plot.box(return_type="both")
- self._check_box_return_type(result, "both")
- @td.skip_if_no_scipy
- def test_kde_df(self):
- df = DataFrame(np.random.randn(100, 4))
- ax = _check_plot_works(df.plot, kind="kde")
- expected = [pprint_thing(c) for c in df.columns]
- self._check_legend_labels(ax, labels=expected)
- self._check_ticks_props(ax, xrot=0)
- ax = df.plot(kind="kde", rot=20, fontsize=5)
- self._check_ticks_props(ax, xrot=20, xlabelsize=5, ylabelsize=5)
- axes = _check_plot_works(
- df.plot,
- default_axes=True,
- kind="kde",
- subplots=True,
- )
- self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
- axes = df.plot(kind="kde", logy=True, subplots=True)
- self._check_ax_scales(axes, yaxis="log")
- @td.skip_if_no_scipy
- def test_kde_missing_vals(self):
- df = DataFrame(np.random.uniform(size=(100, 4)))
- df.loc[0, 0] = np.nan
- _check_plot_works(df.plot, kind="kde")
- def test_hist_df(self):
- from matplotlib.patches import Rectangle
- df = DataFrame(np.random.randn(100, 4))
- series = df[0]
- ax = _check_plot_works(df.plot.hist)
- expected = [pprint_thing(c) for c in df.columns]
- self._check_legend_labels(ax, labels=expected)
- axes = _check_plot_works(
- df.plot.hist,
- default_axes=True,
- subplots=True,
- logy=True,
- )
- self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
- self._check_ax_scales(axes, yaxis="log")
- axes = series.plot.hist(rot=40)
- self._check_ticks_props(axes, xrot=40, yrot=0)
- tm.close()
- ax = series.plot.hist(cumulative=True, bins=4, density=True)
- # height of last bin (index 5) must be 1.0
- rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
- tm.assert_almost_equal(rects[-1].get_height(), 1.0)
- tm.close()
- ax = series.plot.hist(cumulative=True, bins=4)
- rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
- tm.assert_almost_equal(rects[-2].get_height(), 100.0)
- tm.close()
- # if horizontal, yticklabels are rotated
- axes = df.plot.hist(rot=50, fontsize=8, orientation="horizontal")
- self._check_ticks_props(axes, xrot=0, yrot=50, ylabelsize=8)
- @pytest.mark.parametrize(
- "weights", [0.1 * np.ones(shape=(100,)), 0.1 * np.ones(shape=(100, 2))]
- )
- def test_hist_weights(self, weights):
- # GH 33173
- np.random.seed(0)
- df = DataFrame(dict(zip(["A", "B"], np.random.randn(2, 100))))
- ax1 = _check_plot_works(df.plot, kind="hist", weights=weights)
- ax2 = _check_plot_works(df.plot, kind="hist")
- patch_height_with_weights = [patch.get_height() for patch in ax1.patches]
- # original heights with no weights, and we manually multiply with example
- # weights, so after multiplication, they should be almost same
- expected_patch_height = [0.1 * patch.get_height() for patch in ax2.patches]
- tm.assert_almost_equal(patch_height_with_weights, expected_patch_height)
- def _check_box_coord(
- self,
- patches,
- expected_y=None,
- expected_h=None,
- expected_x=None,
- expected_w=None,
- ):
- result_y = np.array([p.get_y() for p in patches])
- result_height = np.array([p.get_height() for p in patches])
- result_x = np.array([p.get_x() for p in patches])
- result_width = np.array([p.get_width() for p in patches])
- # dtype is depending on above values, no need to check
- if expected_y is not None:
- tm.assert_numpy_array_equal(result_y, expected_y, check_dtype=False)
- if expected_h is not None:
- tm.assert_numpy_array_equal(result_height, expected_h, check_dtype=False)
- if expected_x is not None:
- tm.assert_numpy_array_equal(result_x, expected_x, check_dtype=False)
- if expected_w is not None:
- tm.assert_numpy_array_equal(result_width, expected_w, check_dtype=False)
- def test_hist_df_coord(self):
- normal_df = DataFrame(
- {
- "A": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([10, 9, 8, 7, 6])),
- "B": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([8, 8, 8, 8, 8])),
- "C": np.repeat(np.array([1, 2, 3, 4, 5]), np.array([6, 7, 8, 9, 10])),
- },
- columns=["A", "B", "C"],
- )
- nan_df = DataFrame(
- {
- "A": np.repeat(
- np.array([np.nan, 1, 2, 3, 4, 5]), np.array([3, 10, 9, 8, 7, 6])
- ),
- "B": np.repeat(
- np.array([1, np.nan, 2, 3, 4, 5]), np.array([8, 3, 8, 8, 8, 8])
- ),
- "C": np.repeat(
- np.array([1, 2, 3, np.nan, 4, 5]), np.array([6, 7, 8, 3, 9, 10])
- ),
- },
- columns=["A", "B", "C"],
- )
- for df in [normal_df, nan_df]:
- ax = df.plot.hist(bins=5)
- self._check_box_coord(
- ax.patches[:5],
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([10, 9, 8, 7, 6]),
- )
- self._check_box_coord(
- ax.patches[5:10],
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([8, 8, 8, 8, 8]),
- )
- self._check_box_coord(
- ax.patches[10:],
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([6, 7, 8, 9, 10]),
- )
- ax = df.plot.hist(bins=5, stacked=True)
- self._check_box_coord(
- ax.patches[:5],
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([10, 9, 8, 7, 6]),
- )
- self._check_box_coord(
- ax.patches[5:10],
- expected_y=np.array([10, 9, 8, 7, 6]),
- expected_h=np.array([8, 8, 8, 8, 8]),
- )
- self._check_box_coord(
- ax.patches[10:],
- expected_y=np.array([18, 17, 16, 15, 14]),
- expected_h=np.array([6, 7, 8, 9, 10]),
- )
- axes = df.plot.hist(bins=5, stacked=True, subplots=True)
- self._check_box_coord(
- axes[0].patches,
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([10, 9, 8, 7, 6]),
- )
- self._check_box_coord(
- axes[1].patches,
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([8, 8, 8, 8, 8]),
- )
- self._check_box_coord(
- axes[2].patches,
- expected_y=np.array([0, 0, 0, 0, 0]),
- expected_h=np.array([6, 7, 8, 9, 10]),
- )
- # horizontal
- ax = df.plot.hist(bins=5, orientation="horizontal")
- self._check_box_coord(
- ax.patches[:5],
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([10, 9, 8, 7, 6]),
- )
- self._check_box_coord(
- ax.patches[5:10],
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([8, 8, 8, 8, 8]),
- )
- self._check_box_coord(
- ax.patches[10:],
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([6, 7, 8, 9, 10]),
- )
- ax = df.plot.hist(bins=5, stacked=True, orientation="horizontal")
- self._check_box_coord(
- ax.patches[:5],
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([10, 9, 8, 7, 6]),
- )
- self._check_box_coord(
- ax.patches[5:10],
- expected_x=np.array([10, 9, 8, 7, 6]),
- expected_w=np.array([8, 8, 8, 8, 8]),
- )
- self._check_box_coord(
- ax.patches[10:],
- expected_x=np.array([18, 17, 16, 15, 14]),
- expected_w=np.array([6, 7, 8, 9, 10]),
- )
- axes = df.plot.hist(
- bins=5, stacked=True, subplots=True, orientation="horizontal"
- )
- self._check_box_coord(
- axes[0].patches,
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([10, 9, 8, 7, 6]),
- )
- self._check_box_coord(
- axes[1].patches,
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([8, 8, 8, 8, 8]),
- )
- self._check_box_coord(
- axes[2].patches,
- expected_x=np.array([0, 0, 0, 0, 0]),
- expected_w=np.array([6, 7, 8, 9, 10]),
- )
- def test_plot_int_columns(self):
- df = DataFrame(np.random.randn(100, 4)).cumsum()
- _check_plot_works(df.plot, legend=True)
- def test_style_by_column(self):
- import matplotlib.pyplot as plt
- fig = plt.gcf()
- df = DataFrame(np.random.randn(100, 3))
- for markers in [
- {0: "^", 1: "+", 2: "o"},
- {0: "^", 1: "+"},
- ["^", "+", "o"],
- ["^", "+"],
- ]:
- fig.clf()
- fig.add_subplot(111)
- ax = df.plot(style=markers)
- for idx, line in enumerate(ax.get_lines()[: len(markers)]):
- assert line.get_marker() == markers[idx]
- def test_line_label_none(self):
- s = Series([1, 2])
- ax = s.plot()
- assert ax.get_legend() is None
- ax = s.plot(legend=True)
- assert ax.get_legend().get_texts()[0].get_text() == ""
- @pytest.mark.parametrize(
- "props, expected",
- [
- ("boxprops", "boxes"),
- ("whiskerprops", "whiskers"),
- ("capprops", "caps"),
- ("medianprops", "medians"),
- ],
- )
- def test_specified_props_kwd_plot_box(self, props, expected):
- # GH 30346
- df = DataFrame({k: np.random.random(100) for k in "ABC"})
- kwd = {props: {"color": "C1"}}
- result = df.plot.box(return_type="dict", **kwd)
- assert result[expected][0].get_color() == "C1"
- def test_unordered_ts(self):
- df = DataFrame(
- np.array([3.0, 2.0, 1.0]),
- index=[date(2012, 10, 1), date(2012, 9, 1), date(2012, 8, 1)],
- columns=["test"],
- )
- ax = df.plot()
- xticks = ax.lines[0].get_xdata()
- assert xticks[0] < xticks[1]
- ydata = ax.lines[0].get_ydata()
- tm.assert_numpy_array_equal(ydata, np.array([1.0, 2.0, 3.0]))
- @td.skip_if_no_scipy
- def test_kind_both_ways(self):
- df = DataFrame({"x": [1, 2, 3]})
- for kind in plotting.PlotAccessor._common_kinds:
- df.plot(kind=kind)
- getattr(df.plot, kind)()
- for kind in ["scatter", "hexbin"]:
- df.plot("x", "x", kind=kind)
- getattr(df.plot, kind)("x", "x")
- def test_all_invalid_plot_data(self):
- df = DataFrame(list("abcd"))
- for kind in plotting.PlotAccessor._common_kinds:
- msg = "no numeric data to plot"
- with pytest.raises(TypeError, match=msg):
- df.plot(kind=kind)
- def test_partially_invalid_plot_data(self):
- df = DataFrame(np.random.RandomState(42).randn(10, 2), dtype=object)
- df[np.random.rand(df.shape[0]) > 0.5] = "a"
- for kind in plotting.PlotAccessor._common_kinds:
- msg = "no numeric data to plot"
- with pytest.raises(TypeError, match=msg):
- df.plot(kind=kind)
- # area plot doesn't support positive/negative mixed data
- df = DataFrame(np.random.RandomState(42).rand(10, 2), dtype=object)
- df[np.random.rand(df.shape[0]) > 0.5] = "a"
- with pytest.raises(TypeError, match="no numeric data to plot"):
- df.plot(kind="area")
- def test_invalid_kind(self):
- df = DataFrame(np.random.randn(10, 2))
- msg = "invalid_plot_kind is not a valid plot kind"
- with pytest.raises(ValueError, match=msg):
- df.plot(kind="invalid_plot_kind")
- @pytest.mark.parametrize(
- "x,y,lbl",
- [
- (["B", "C"], "A", "a"),
- (["A"], ["B", "C"], ["b", "c"]),
- ],
- )
- def test_invalid_xy_args(self, x, y, lbl):
- # GH 18671, 19699 allows y to be list-like but not x
- df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
- with pytest.raises(ValueError, match="x must be a label or position"):
- df.plot(x=x, y=y, label=lbl)
- def test_bad_label(self):
- df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
- msg = "label should be list-like and same length as y"
- with pytest.raises(ValueError, match=msg):
- df.plot(x="A", y=["B", "C"], label="bad_label")
- @pytest.mark.parametrize("x,y", [("A", "B"), (["A"], "B")])
- def test_invalid_xy_args_dup_cols(self, x, y):
- # GH 18671, 19699 allows y to be list-like but not x
- df = DataFrame([[1, 3, 5], [2, 4, 6]], columns=list("AAB"))
- with pytest.raises(ValueError, match="x must be a label or position"):
- df.plot(x=x, y=y)
- @pytest.mark.parametrize(
- "x,y,lbl,colors",
- [
- ("A", ["B"], ["b"], ["red"]),
- ("A", ["B", "C"], ["b", "c"], ["red", "blue"]),
- (0, [1, 2], ["bokeh", "cython"], ["green", "yellow"]),
- ],
- )
- def test_y_listlike(self, x, y, lbl, colors):
- # GH 19699: tests list-like y and verifies lbls & colors
- df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]})
- _check_plot_works(df.plot, x="A", y=y, label=lbl)
- ax = df.plot(x=x, y=y, label=lbl, color=colors)
- assert len(ax.lines) == len(y)
- self._check_colors(ax.get_lines(), linecolors=colors)
- @pytest.mark.parametrize("x,y,colnames", [(0, 1, ["A", "B"]), (1, 0, [0, 1])])
- def test_xy_args_integer(self, x, y, colnames):
- # GH 20056: tests integer args for xy and checks col names
- df = DataFrame({"A": [1, 2], "B": [3, 4]})
- df.columns = colnames
- _check_plot_works(df.plot, x=x, y=y)
- def test_hexbin_basic(self):
- df = DataFrame(
- {
- "A": np.random.uniform(size=20),
- "B": np.random.uniform(size=20),
- "C": np.arange(20) + np.random.uniform(size=20),
- }
- )
- ax = df.plot.hexbin(x="A", y="B", gridsize=10)
- # TODO: need better way to test. This just does existence.
- assert len(ax.collections) == 1
- # GH 6951
- axes = df.plot.hexbin(x="A", y="B", subplots=True)
- # hexbin should have 2 axes in the figure, 1 for plotting and another
- # is colorbar
- assert len(axes[0].figure.axes) == 2
- # return value is single axes
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- def test_hexbin_with_c(self):
- df = DataFrame(
- {
- "A": np.random.uniform(size=20),
- "B": np.random.uniform(size=20),
- "C": np.arange(20) + np.random.uniform(size=20),
- }
- )
- ax = df.plot.hexbin(x="A", y="B", C="C")
- assert len(ax.collections) == 1
- ax = df.plot.hexbin(x="A", y="B", C="C", reduce_C_function=np.std)
- assert len(ax.collections) == 1
- @pytest.mark.parametrize(
- "kwargs, expected",
- [
- ({}, "BuGn"), # default cmap
- ({"colormap": "cubehelix"}, "cubehelix"),
- ({"cmap": "YlGn"}, "YlGn"),
- ],
- )
- def test_hexbin_cmap(self, kwargs, expected):
- df = DataFrame(
- {
- "A": np.random.uniform(size=20),
- "B": np.random.uniform(size=20),
- "C": np.arange(20) + np.random.uniform(size=20),
- }
- )
- ax = df.plot.hexbin(x="A", y="B", **kwargs)
- assert ax.collections[0].cmap.name == expected
- def test_pie_df(self):
- df = DataFrame(
- np.random.rand(5, 3),
- columns=["X", "Y", "Z"],
- index=["a", "b", "c", "d", "e"],
- )
- msg = "pie requires either y column or 'subplots=True'"
- with pytest.raises(ValueError, match=msg):
- df.plot.pie()
- ax = _check_plot_works(df.plot.pie, y="Y")
- self._check_text_labels(ax.texts, df.index)
- ax = _check_plot_works(df.plot.pie, y=2)
- self._check_text_labels(ax.texts, df.index)
- axes = _check_plot_works(
- df.plot.pie,
- default_axes=True,
- subplots=True,
- )
- assert len(axes) == len(df.columns)
- for ax in axes:
- self._check_text_labels(ax.texts, df.index)
- for ax, ylabel in zip(axes, df.columns):
- assert ax.get_ylabel() == ylabel
- labels = ["A", "B", "C", "D", "E"]
- color_args = ["r", "g", "b", "c", "m"]
- axes = _check_plot_works(
- df.plot.pie,
- default_axes=True,
- subplots=True,
- labels=labels,
- colors=color_args,
- )
- assert len(axes) == len(df.columns)
- for ax in axes:
- self._check_text_labels(ax.texts, labels)
- self._check_colors(ax.patches, facecolors=color_args)
- def test_pie_df_nan(self):
- import matplotlib as mpl
- df = DataFrame(np.random.rand(4, 4))
- for i in range(4):
- df.iloc[i, i] = np.nan
- fig, axes = self.plt.subplots(ncols=4)
- # GH 37668
- kwargs = {}
- if mpl.__version__ >= "3.3":
- kwargs = {"normalize": True}
- with tm.assert_produces_warning(None):
- df.plot.pie(subplots=True, ax=axes, legend=True, **kwargs)
- base_expected = ["0", "1", "2", "3"]
- for i, ax in enumerate(axes):
- expected = list(base_expected) # force copy
- expected[i] = ""
- result = [x.get_text() for x in ax.texts]
- assert result == expected
- # legend labels
- # NaN's not included in legend with subplots
- # see https://github.com/pandas-dev/pandas/issues/8390
- result_labels = [x.get_text() for x in ax.get_legend().get_texts()]
- expected_labels = base_expected[:i] + base_expected[i + 1 :]
- assert result_labels == expected_labels
- @pytest.mark.slow
- def test_errorbar_plot(self):
- d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
- df = DataFrame(d)
- d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4}
- df_err = DataFrame(d_err)
- # check line plots
- ax = _check_plot_works(df.plot, yerr=df_err, logy=True)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(df.plot, yerr=df_err, logx=True, logy=True)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(df.plot, yerr=df_err, loglog=True)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(
- (df + 1).plot, yerr=df_err, xerr=df_err, kind="bar", log=True
- )
- self._check_has_errorbars(ax, xerr=2, yerr=2)
- # yerr is raw error values
- ax = _check_plot_works(df["y"].plot, yerr=np.ones(12) * 0.4)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- ax = _check_plot_works(df.plot, yerr=np.ones((2, 12)) * 0.4)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- # yerr is column name
- for yerr in ["yerr", "誤差"]:
- s_df = df.copy()
- s_df[yerr] = np.ones(12) * 0.2
- ax = _check_plot_works(s_df.plot, yerr=yerr)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(s_df.plot, y="y", x="x", yerr=yerr)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- with tm.external_error_raised(ValueError):
- df.plot(yerr=np.random.randn(11))
- df_err = DataFrame({"x": ["zzz"] * 12, "y": ["zzz"] * 12})
- with tm.external_error_raised(TypeError):
- df.plot(yerr=df_err)
- @pytest.mark.slow
- @pytest.mark.parametrize("kind", ["line", "bar", "barh"])
- def test_errorbar_plot_different_kinds(self, kind):
- d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
- df = DataFrame(d)
- d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4}
- df_err = DataFrame(d_err)
- ax = _check_plot_works(df.plot, yerr=df_err["x"], kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(df.plot, yerr=d_err, kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(df.plot, yerr=df_err, xerr=df_err, kind=kind)
- self._check_has_errorbars(ax, xerr=2, yerr=2)
- ax = _check_plot_works(df.plot, yerr=df_err["x"], xerr=df_err["x"], kind=kind)
- self._check_has_errorbars(ax, xerr=2, yerr=2)
- ax = _check_plot_works(df.plot, xerr=0.2, yerr=0.2, kind=kind)
- self._check_has_errorbars(ax, xerr=2, yerr=2)
- axes = _check_plot_works(
- df.plot,
- default_axes=True,
- yerr=df_err,
- xerr=df_err,
- subplots=True,
- kind=kind,
- )
- self._check_has_errorbars(axes, xerr=1, yerr=1)
- @pytest.mark.xfail(reason="Iterator is consumed", raises=ValueError)
- def test_errorbar_plot_iterator(self):
- with warnings.catch_warnings():
- d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
- df = DataFrame(d)
- # yerr is iterator
- ax = _check_plot_works(df.plot, yerr=itertools.repeat(0.1, len(df)))
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- def test_errorbar_with_integer_column_names(self):
- # test with integer column names
- df = DataFrame(np.abs(np.random.randn(10, 2)))
- df_err = DataFrame(np.abs(np.random.randn(10, 2)))
- ax = _check_plot_works(df.plot, yerr=df_err)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(df.plot, y=0, yerr=1)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- @pytest.mark.slow
- def test_errorbar_with_partial_columns(self):
- df = DataFrame(np.abs(np.random.randn(10, 3)))
- df_err = DataFrame(np.abs(np.random.randn(10, 2)), columns=[0, 2])
- kinds = ["line", "bar"]
- for kind in kinds:
- ax = _check_plot_works(df.plot, yerr=df_err, kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ix = date_range("1/1/2000", periods=10, freq="M")
- df.set_index(ix, inplace=True)
- df_err.set_index(ix, inplace=True)
- ax = _check_plot_works(df.plot, yerr=df_err, kind="line")
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
- df = DataFrame(d)
- d_err = {"x": np.ones(12) * 0.2, "z": np.ones(12) * 0.4}
- df_err = DataFrame(d_err)
- for err in [d_err, df_err]:
- ax = _check_plot_works(df.plot, yerr=err)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- @pytest.mark.parametrize("kind", ["line", "bar", "barh"])
- def test_errorbar_timeseries(self, kind):
- d = {"x": np.arange(12), "y": np.arange(12, 0, -1)}
- d_err = {"x": np.ones(12) * 0.2, "y": np.ones(12) * 0.4}
- # check time-series plots
- ix = date_range("1/1/2000", "1/1/2001", freq="M")
- tdf = DataFrame(d, index=ix)
- tdf_err = DataFrame(d_err, index=ix)
- ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(tdf.plot, yerr=d_err, kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- ax = _check_plot_works(tdf.plot, y="y", yerr=tdf_err["x"], kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- ax = _check_plot_works(tdf.plot, y="y", yerr="x", kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- ax = _check_plot_works(tdf.plot, yerr=tdf_err, kind=kind)
- self._check_has_errorbars(ax, xerr=0, yerr=2)
- axes = _check_plot_works(
- tdf.plot,
- default_axes=True,
- kind=kind,
- yerr=tdf_err,
- subplots=True,
- )
- self._check_has_errorbars(axes, xerr=0, yerr=1)
- def test_errorbar_asymmetrical(self):
- np.random.seed(0)
- err = np.random.rand(3, 2, 5)
- # each column is [0, 1, 2, 3, 4], [3, 4, 5, 6, 7]...
- df = DataFrame(np.arange(15).reshape(3, 5)).T
- ax = df.plot(yerr=err, xerr=err / 2)
- yerr_0_0 = ax.collections[1].get_paths()[0].vertices[:, 1]
- expected_0_0 = err[0, :, 0] * np.array([-1, 1])
- tm.assert_almost_equal(yerr_0_0, expected_0_0)
- msg = re.escape(
- "Asymmetrical error bars should be provided with the shape (3, 2, 5)"
- )
- with pytest.raises(ValueError, match=msg):
- df.plot(yerr=err.T)
- tm.close()
- def test_table(self):
- df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
- _check_plot_works(df.plot, table=True)
- _check_plot_works(df.plot, table=df)
- # GH 35945 UserWarning
- with tm.assert_produces_warning(None):
- ax = df.plot()
- assert len(ax.tables) == 0
- plotting.table(ax, df.T)
- assert len(ax.tables) == 1
- def test_errorbar_scatter(self):
- df = DataFrame(
- np.abs(np.random.randn(5, 2)), index=range(5), columns=["x", "y"]
- )
- df_err = DataFrame(
- np.abs(np.random.randn(5, 2)) / 5, index=range(5), columns=["x", "y"]
- )
- ax = _check_plot_works(df.plot.scatter, x="x", y="y")
- self._check_has_errorbars(ax, xerr=0, yerr=0)
- ax = _check_plot_works(df.plot.scatter, x="x", y="y", xerr=df_err)
- self._check_has_errorbars(ax, xerr=1, yerr=0)
- ax = _check_plot_works(df.plot.scatter, x="x", y="y", yerr=df_err)
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- ax = _check_plot_works(df.plot.scatter, x="x", y="y", xerr=df_err, yerr=df_err)
- self._check_has_errorbars(ax, xerr=1, yerr=1)
- def _check_errorbar_color(containers, expected, has_err="has_xerr"):
- lines = []
- errs = [c.lines for c in ax.containers if getattr(c, has_err, False)][0]
- for el in errs:
- if is_list_like(el):
- lines.extend(el)
- else:
- lines.append(el)
- err_lines = [x for x in lines if x in ax.collections]
- self._check_colors(
- err_lines, linecolors=np.array([expected] * len(err_lines))
- )
- # GH 8081
- df = DataFrame(
- np.abs(np.random.randn(10, 5)), columns=["a", "b", "c", "d", "e"]
- )
- ax = df.plot.scatter(x="a", y="b", xerr="d", yerr="e", c="red")
- self._check_has_errorbars(ax, xerr=1, yerr=1)
- _check_errorbar_color(ax.containers, "red", has_err="has_xerr")
- _check_errorbar_color(ax.containers, "red", has_err="has_yerr")
- ax = df.plot.scatter(x="a", y="b", yerr="e", color="green")
- self._check_has_errorbars(ax, xerr=0, yerr=1)
- _check_errorbar_color(ax.containers, "green", has_err="has_yerr")
- def test_scatter_unknown_colormap(self):
- # GH#48726
- df = DataFrame({"a": [1, 2, 3], "b": 4})
- with pytest.raises((ValueError, KeyError), match="'unknown' is not a"):
- df.plot(x="a", y="b", colormap="unknown", kind="scatter")
- def test_sharex_and_ax(self):
- # https://github.com/pandas-dev/pandas/issues/9737 using gridspec,
- # the axis in fig.get_axis() are sorted differently than pandas
- # expected them, so make sure that only the right ones are removed
- import matplotlib.pyplot as plt
- plt.close("all")
- gs, axes = _generate_4_axes_via_gridspec()
- df = DataFrame(
- {
- "a": [1, 2, 3, 4, 5, 6],
- "b": [1, 2, 3, 4, 5, 6],
- "c": [1, 2, 3, 4, 5, 6],
- "d": [1, 2, 3, 4, 5, 6],
- }
- )
- def _check(axes):
- for ax in axes:
- assert len(ax.lines) == 1
- self._check_visible(ax.get_yticklabels(), visible=True)
- for ax in [axes[0], axes[2]]:
- self._check_visible(ax.get_xticklabels(), visible=False)
- self._check_visible(ax.get_xticklabels(minor=True), visible=False)
- for ax in [axes[1], axes[3]]:
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- for ax in axes:
- df.plot(x="a", y="b", title="title", ax=ax, sharex=True)
- gs.tight_layout(plt.gcf())
- _check(axes)
- tm.close()
- gs, axes = _generate_4_axes_via_gridspec()
- with tm.assert_produces_warning(UserWarning):
- axes = df.plot(subplots=True, ax=axes, sharex=True)
- _check(axes)
- tm.close()
- gs, axes = _generate_4_axes_via_gridspec()
- # without sharex, no labels should be touched!
- for ax in axes:
- df.plot(x="a", y="b", title="title", ax=ax)
- gs.tight_layout(plt.gcf())
- for ax in axes:
- assert len(ax.lines) == 1
- self._check_visible(ax.get_yticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- tm.close()
- def test_sharey_and_ax(self):
- # https://github.com/pandas-dev/pandas/issues/9737 using gridspec,
- # the axis in fig.get_axis() are sorted differently than pandas
- # expected them, so make sure that only the right ones are removed
- import matplotlib.pyplot as plt
- gs, axes = _generate_4_axes_via_gridspec()
- df = DataFrame(
- {
- "a": [1, 2, 3, 4, 5, 6],
- "b": [1, 2, 3, 4, 5, 6],
- "c": [1, 2, 3, 4, 5, 6],
- "d": [1, 2, 3, 4, 5, 6],
- }
- )
- def _check(axes):
- for ax in axes:
- assert len(ax.lines) == 1
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- for ax in [axes[0], axes[1]]:
- self._check_visible(ax.get_yticklabels(), visible=True)
- for ax in [axes[2], axes[3]]:
- self._check_visible(ax.get_yticklabels(), visible=False)
- for ax in axes:
- df.plot(x="a", y="b", title="title", ax=ax, sharey=True)
- gs.tight_layout(plt.gcf())
- _check(axes)
- tm.close()
- gs, axes = _generate_4_axes_via_gridspec()
- with tm.assert_produces_warning(UserWarning):
- axes = df.plot(subplots=True, ax=axes, sharey=True)
- gs.tight_layout(plt.gcf())
- _check(axes)
- tm.close()
- gs, axes = _generate_4_axes_via_gridspec()
- # without sharex, no labels should be touched!
- for ax in axes:
- df.plot(x="a", y="b", title="title", ax=ax)
- gs.tight_layout(plt.gcf())
- for ax in axes:
- assert len(ax.lines) == 1
- self._check_visible(ax.get_yticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- @td.skip_if_no_scipy
- def test_memory_leak(self):
- """Check that every plot type gets properly collected."""
- results = {}
- for kind in plotting.PlotAccessor._all_kinds:
- args = {}
- if kind in ["hexbin", "scatter", "pie"]:
- df = DataFrame(
- {
- "A": np.random.uniform(size=20),
- "B": np.random.uniform(size=20),
- "C": np.arange(20) + np.random.uniform(size=20),
- }
- )
- args = {"x": "A", "y": "B"}
- elif kind == "area":
- df = tm.makeTimeDataFrame().abs()
- else:
- df = tm.makeTimeDataFrame()
- # Use a weakref so we can see if the object gets collected without
- # also preventing it from being collected
- results[kind] = weakref.proxy(df.plot(kind=kind, **args))
- # have matplotlib delete all the figures
- tm.close()
- # force a garbage collection
- gc.collect()
- msg = "weakly-referenced object no longer exists"
- for result_value in results.values():
- # check that every plot was collected
- with pytest.raises(ReferenceError, match=msg):
- # need to actually access something to get an error
- result_value.lines
- def test_df_gridspec_patterns(self):
- # GH 10819
- from matplotlib import gridspec
- import matplotlib.pyplot as plt
- ts = Series(np.random.randn(10), index=date_range("1/1/2000", periods=10))
- df = DataFrame(np.random.randn(10, 2), index=ts.index, columns=list("AB"))
- def _get_vertical_grid():
- gs = gridspec.GridSpec(3, 1)
- fig = plt.figure()
- ax1 = fig.add_subplot(gs[:2, :])
- ax2 = fig.add_subplot(gs[2, :])
- return ax1, ax2
- def _get_horizontal_grid():
- gs = gridspec.GridSpec(1, 3)
- fig = plt.figure()
- ax1 = fig.add_subplot(gs[:, :2])
- ax2 = fig.add_subplot(gs[:, 2])
- return ax1, ax2
- for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]:
- ax1 = ts.plot(ax=ax1)
- assert len(ax1.lines) == 1
- ax2 = df.plot(ax=ax2)
- assert len(ax2.lines) == 2
- for ax in [ax1, ax2]:
- self._check_visible(ax.get_yticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- tm.close()
- # subplots=True
- for ax1, ax2 in [_get_vertical_grid(), _get_horizontal_grid()]:
- axes = df.plot(subplots=True, ax=[ax1, ax2])
- assert len(ax1.lines) == 1
- assert len(ax2.lines) == 1
- for ax in axes:
- self._check_visible(ax.get_yticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- tm.close()
- # vertical / subplots / sharex=True / sharey=True
- ax1, ax2 = _get_vertical_grid()
- with tm.assert_produces_warning(UserWarning):
- axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True)
- assert len(axes[0].lines) == 1
- assert len(axes[1].lines) == 1
- for ax in [ax1, ax2]:
- # yaxis are visible because there is only one column
- self._check_visible(ax.get_yticklabels(), visible=True)
- # xaxis of axes0 (top) are hidden
- self._check_visible(axes[0].get_xticklabels(), visible=False)
- self._check_visible(axes[0].get_xticklabels(minor=True), visible=False)
- self._check_visible(axes[1].get_xticklabels(), visible=True)
- self._check_visible(axes[1].get_xticklabels(minor=True), visible=True)
- tm.close()
- # horizontal / subplots / sharex=True / sharey=True
- ax1, ax2 = _get_horizontal_grid()
- with tm.assert_produces_warning(UserWarning):
- axes = df.plot(subplots=True, ax=[ax1, ax2], sharex=True, sharey=True)
- assert len(axes[0].lines) == 1
- assert len(axes[1].lines) == 1
- self._check_visible(axes[0].get_yticklabels(), visible=True)
- # yaxis of axes1 (right) are hidden
- self._check_visible(axes[1].get_yticklabels(), visible=False)
- for ax in [ax1, ax2]:
- # xaxis are visible because there is only one column
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- tm.close()
- # boxed
- def _get_boxed_grid():
- gs = gridspec.GridSpec(3, 3)
- fig = plt.figure()
- ax1 = fig.add_subplot(gs[:2, :2])
- ax2 = fig.add_subplot(gs[:2, 2])
- ax3 = fig.add_subplot(gs[2, :2])
- ax4 = fig.add_subplot(gs[2, 2])
- return ax1, ax2, ax3, ax4
- axes = _get_boxed_grid()
- df = DataFrame(np.random.randn(10, 4), index=ts.index, columns=list("ABCD"))
- axes = df.plot(subplots=True, ax=axes)
- for ax in axes:
- assert len(ax.lines) == 1
- # axis are visible because these are not shared
- self._check_visible(ax.get_yticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- tm.close()
- # subplots / sharex=True / sharey=True
- axes = _get_boxed_grid()
- with tm.assert_produces_warning(UserWarning):
- axes = df.plot(subplots=True, ax=axes, sharex=True, sharey=True)
- for ax in axes:
- assert len(ax.lines) == 1
- for ax in [axes[0], axes[2]]: # left column
- self._check_visible(ax.get_yticklabels(), visible=True)
- for ax in [axes[1], axes[3]]: # right column
- self._check_visible(ax.get_yticklabels(), visible=False)
- for ax in [axes[0], axes[1]]: # top row
- self._check_visible(ax.get_xticklabels(), visible=False)
- self._check_visible(ax.get_xticklabels(minor=True), visible=False)
- for ax in [axes[2], axes[3]]: # bottom row
- self._check_visible(ax.get_xticklabels(), visible=True)
- self._check_visible(ax.get_xticklabels(minor=True), visible=True)
- tm.close()
- def test_df_grid_settings(self):
- # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
- self._check_grid_settings(
- DataFrame({"a": [1, 2, 3], "b": [2, 3, 4]}),
- plotting.PlotAccessor._dataframe_kinds,
- kws={"x": "a", "y": "b"},
- )
- def test_plain_axes(self):
- # supplied ax itself is a SubplotAxes, but figure contains also
- # a plain Axes object (GH11556)
- fig, ax = self.plt.subplots()
- fig.add_axes([0.2, 0.2, 0.2, 0.2])
- Series(np.random.rand(10)).plot(ax=ax)
- # supplied ax itself is a plain Axes, but because the cmap keyword
- # a new ax is created for the colorbar -> also multiples axes (GH11520)
- df = DataFrame({"a": np.random.randn(8), "b": np.random.randn(8)})
- fig = self.plt.figure()
- ax = fig.add_axes((0, 0, 1, 1))
- df.plot(kind="scatter", ax=ax, x="a", y="b", c="a", cmap="hsv")
- # other examples
- fig, ax = self.plt.subplots()
- from mpl_toolkits.axes_grid1 import make_axes_locatable
- divider = make_axes_locatable(ax)
- cax = divider.append_axes("right", size="5%", pad=0.05)
- Series(np.random.rand(10)).plot(ax=ax)
- Series(np.random.rand(10)).plot(ax=cax)
- fig, ax = self.plt.subplots()
- from mpl_toolkits.axes_grid1.inset_locator import inset_axes
- iax = inset_axes(ax, width="30%", height=1.0, loc=3)
- Series(np.random.rand(10)).plot(ax=ax)
- Series(np.random.rand(10)).plot(ax=iax)
- @pytest.mark.parametrize("method", ["line", "barh", "bar"])
- def test_secondary_axis_font_size(self, method):
- # GH: 12565
- df = (
- DataFrame(np.random.randn(15, 2), columns=list("AB"))
- .assign(C=lambda df: df.B.cumsum())
- .assign(D=lambda df: df.C * 1.1)
- )
- fontsize = 20
- sy = ["C", "D"]
- kwargs = {"secondary_y": sy, "fontsize": fontsize, "mark_right": True}
- ax = getattr(df.plot, method)(**kwargs)
- self._check_ticks_props(axes=ax.right_ax, ylabelsize=fontsize)
- def test_x_string_values_ticks(self):
- # Test if string plot index have a fixed xtick position
- # GH: 7612, GH: 22334
- df = DataFrame(
- {
- "sales": [3, 2, 3],
- "visits": [20, 42, 28],
- "day": ["Monday", "Tuesday", "Wednesday"],
- }
- )
- ax = df.plot.area(x="day")
- ax.set_xlim(-1, 3)
- xticklabels = [t.get_text() for t in ax.get_xticklabels()]
- labels_position = dict(zip(xticklabels, ax.get_xticks()))
- # Testing if the label stayed at the right position
- assert labels_position["Monday"] == 0.0
- assert labels_position["Tuesday"] == 1.0
- assert labels_position["Wednesday"] == 2.0
- def test_x_multiindex_values_ticks(self):
- # Test if multiindex plot index have a fixed xtick position
- # GH: 15912
- index = MultiIndex.from_product([[2012, 2013], [1, 2]])
- df = DataFrame(np.random.randn(4, 2), columns=["A", "B"], index=index)
- ax = df.plot()
- ax.set_xlim(-1, 4)
- xticklabels = [t.get_text() for t in ax.get_xticklabels()]
- labels_position = dict(zip(xticklabels, ax.get_xticks()))
- # Testing if the label stayed at the right position
- assert labels_position["(2012, 1)"] == 0.0
- assert labels_position["(2012, 2)"] == 1.0
- assert labels_position["(2013, 1)"] == 2.0
- assert labels_position["(2013, 2)"] == 3.0
- @pytest.mark.parametrize("kind", ["line", "area"])
- def test_xlim_plot_line(self, kind):
- # test if xlim is set correctly in plot.line and plot.area
- # GH 27686
- df = DataFrame([2, 4], index=[1, 2])
- ax = df.plot(kind=kind)
- xlims = ax.get_xlim()
- assert xlims[0] < 1
- assert xlims[1] > 2
- def test_xlim_plot_line_correctly_in_mixed_plot_type(self):
- # test if xlim is set correctly when ax contains multiple different kinds
- # of plots, GH 27686
- fig, ax = self.plt.subplots()
- indexes = ["k1", "k2", "k3", "k4"]
- df = DataFrame(
- {
- "s1": [1000, 2000, 1500, 2000],
- "s2": [900, 1400, 2000, 3000],
- "s3": [1500, 1500, 1600, 1200],
- "secondary_y": [1, 3, 4, 3],
- },
- index=indexes,
- )
- df[["s1", "s2", "s3"]].plot.bar(ax=ax, stacked=False)
- df[["secondary_y"]].plot(ax=ax, secondary_y=True)
- xlims = ax.get_xlim()
- assert xlims[0] < 0
- assert xlims[1] > 3
- # make sure axis labels are plotted correctly as well
- xticklabels = [t.get_text() for t in ax.get_xticklabels()]
- assert xticklabels == indexes
- def test_plot_no_rows(self):
- # GH 27758
- df = DataFrame(columns=["foo"], dtype=int)
- assert df.empty
- ax = df.plot()
- assert len(ax.get_lines()) == 1
- line = ax.get_lines()[0]
- assert len(line.get_xdata()) == 0
- assert len(line.get_ydata()) == 0
- def test_plot_no_numeric_data(self):
- df = DataFrame(["a", "b", "c"])
- with pytest.raises(TypeError, match="no numeric data to plot"):
- df.plot()
- @td.skip_if_no_scipy
- @pytest.mark.parametrize(
- "kind", ("line", "bar", "barh", "hist", "kde", "density", "area", "pie")
- )
- def test_group_subplot(self, kind):
- d = {
- "a": np.arange(10),
- "b": np.arange(10) + 1,
- "c": np.arange(10) + 1,
- "d": np.arange(10),
- "e": np.arange(10),
- }
- df = DataFrame(d)
- axes = df.plot(subplots=[("b", "e"), ("c", "d")], kind=kind)
- assert len(axes) == 3 # 2 groups + single column a
- expected_labels = (["b", "e"], ["c", "d"], ["a"])
- for ax, labels in zip(axes, expected_labels):
- if kind != "pie":
- self._check_legend_labels(ax, labels=labels)
- if kind == "line":
- assert len(ax.lines) == len(labels)
- def test_group_subplot_series_notimplemented(self):
- ser = Series(range(1))
- msg = "An iterable subplots for a Series"
- with pytest.raises(NotImplementedError, match=msg):
- ser.plot(subplots=[("a",)])
- def test_group_subplot_multiindex_notimplemented(self):
- df = DataFrame(np.eye(2), columns=MultiIndex.from_tuples([(0, 1), (1, 2)]))
- msg = "An iterable subplots for a DataFrame with a MultiIndex"
- with pytest.raises(NotImplementedError, match=msg):
- df.plot(subplots=[(0, 1)])
- def test_group_subplot_nonunique_cols_notimplemented(self):
- df = DataFrame(np.eye(2), columns=["a", "a"])
- msg = "An iterable subplots for a DataFrame with non-unique"
- with pytest.raises(NotImplementedError, match=msg):
- df.plot(subplots=[("a",)])
- @pytest.mark.parametrize(
- "subplots, expected_msg",
- [
- (123, "subplots should be a bool or an iterable"),
- ("a", "each entry should be a list/tuple"), # iterable of non-iterable
- ((1,), "each entry should be a list/tuple"), # iterable of non-iterable
- (("a",), "each entry should be a list/tuple"), # iterable of strings
- ],
- )
- def test_group_subplot_bad_input(self, subplots, expected_msg):
- # Make sure error is raised when subplots is not a properly
- # formatted iterable. Only iterables of iterables are permitted, and
- # entries should not be strings.
- d = {"a": np.arange(10), "b": np.arange(10)}
- df = DataFrame(d)
- with pytest.raises(ValueError, match=expected_msg):
- df.plot(subplots=subplots)
- def test_group_subplot_invalid_column_name(self):
- d = {"a": np.arange(10), "b": np.arange(10)}
- df = DataFrame(d)
- with pytest.raises(ValueError, match=r"Column label\(s\) \['bad_name'\]"):
- df.plot(subplots=[("a", "bad_name")])
- def test_group_subplot_duplicated_column(self):
- d = {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)}
- df = DataFrame(d)
- with pytest.raises(ValueError, match="should be in only one subplot"):
- df.plot(subplots=[("a", "b"), ("a", "c")])
- @pytest.mark.parametrize("kind", ("box", "scatter", "hexbin"))
- def test_group_subplot_invalid_kind(self, kind):
- d = {"a": np.arange(10), "b": np.arange(10)}
- df = DataFrame(d)
- with pytest.raises(
- ValueError, match="When subplots is an iterable, kind must be one of"
- ):
- df.plot(subplots=[("a", "b")], kind=kind)
- @pytest.mark.parametrize(
- "index_name, old_label, new_label",
- [
- (None, "", "new"),
- ("old", "old", "new"),
- (None, "", ""),
- (None, "", 1),
- (None, "", [1, 2]),
- ],
- )
- @pytest.mark.parametrize("kind", ["line", "area", "bar"])
- def test_xlabel_ylabel_dataframe_single_plot(
- self, kind, index_name, old_label, new_label
- ):
- # GH 9093
- df = DataFrame([[1, 2], [2, 5]], columns=["Type A", "Type B"])
- df.index.name = index_name
- # default is the ylabel is not shown and xlabel is index name
- ax = df.plot(kind=kind)
- assert ax.get_xlabel() == old_label
- assert ax.get_ylabel() == ""
- # old xlabel will be overridden and assigned ylabel will be used as ylabel
- ax = df.plot(kind=kind, ylabel=new_label, xlabel=new_label)
- assert ax.get_ylabel() == str(new_label)
- assert ax.get_xlabel() == str(new_label)
- @pytest.mark.parametrize(
- "xlabel, ylabel",
- [
- (None, None),
- ("X Label", None),
- (None, "Y Label"),
- ("X Label", "Y Label"),
- ],
- )
- @pytest.mark.parametrize("kind", ["scatter", "hexbin"])
- def test_xlabel_ylabel_dataframe_plane_plot(self, kind, xlabel, ylabel):
- # GH 37001
- xcol = "Type A"
- ycol = "Type B"
- df = DataFrame([[1, 2], [2, 5]], columns=[xcol, ycol])
- # default is the labels are column names
- ax = df.plot(kind=kind, x=xcol, y=ycol, xlabel=xlabel, ylabel=ylabel)
- assert ax.get_xlabel() == (xcol if xlabel is None else xlabel)
- assert ax.get_ylabel() == (ycol if ylabel is None else ylabel)
- @pytest.mark.parametrize("secondary_y", (False, True))
- def test_secondary_y(self, secondary_y):
- ax_df = DataFrame([0]).plot(
- secondary_y=secondary_y, ylabel="Y", ylim=(0, 100), yticks=[99]
- )
- for ax in ax_df.figure.axes:
- if ax.yaxis.get_visible():
- assert ax.get_ylabel() == "Y"
- assert ax.get_ylim() == (0, 100)
- assert ax.get_yticks()[0] == 99
- def _generate_4_axes_via_gridspec():
- import matplotlib as mpl
- import matplotlib.gridspec
- import matplotlib.pyplot as plt
- gs = mpl.gridspec.GridSpec(2, 2)
- ax_tl = plt.subplot(gs[0, 0])
- ax_ll = plt.subplot(gs[1, 0])
- ax_tr = plt.subplot(gs[0, 1])
- ax_lr = plt.subplot(gs[1, 1])
- return gs, [ax_tl, ax_ll, ax_tr, ax_lr]
|