123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- from datetime import datetime
- import random
- import numpy as np
- import pytest
- from pandas._libs.tslibs import iNaT
- import pandas.util._test_decorators as td
- import pandas as pd
- import pandas._testing as tm
- from pandas.core.interchange.column import PandasColumn
- from pandas.core.interchange.dataframe_protocol import (
- ColumnNullType,
- DtypeKind,
- )
- from pandas.core.interchange.from_dataframe import from_dataframe
- test_data_categorical = {
- "ordered": pd.Categorical(list("testdata") * 30, ordered=True),
- "unordered": pd.Categorical(list("testdata") * 30, ordered=False),
- }
- NCOLS, NROWS = 100, 200
- def _make_data(make_one):
- return {
- f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [make_one() for _ in range(NROWS)]
- for i in range(NCOLS)
- }
- int_data = _make_data(lambda: random.randint(-100, 100))
- uint_data = _make_data(lambda: random.randint(1, 100))
- bool_data = _make_data(lambda: random.choice([True, False]))
- float_data = _make_data(lambda: random.random())
- datetime_data = _make_data(
- lambda: datetime(
- year=random.randint(1900, 2100),
- month=random.randint(1, 12),
- day=random.randint(1, 20),
- )
- )
- string_data = {
- "separator data": [
- "abC|DeF,Hik",
- "234,3245.67",
- "gSaf,qWer|Gre",
- "asd3,4sad|",
- np.NaN,
- ]
- }
- @pytest.mark.parametrize("data", [("ordered", True), ("unordered", False)])
- def test_categorical_dtype(data):
- df = pd.DataFrame({"A": (test_data_categorical[data[0]])})
- col = df.__dataframe__().get_column_by_name("A")
- assert col.dtype[0] == DtypeKind.CATEGORICAL
- assert col.null_count == 0
- assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1)
- assert col.num_chunks() == 1
- desc_cat = col.describe_categorical
- assert desc_cat["is_ordered"] == data[1]
- assert desc_cat["is_dictionary"] is True
- assert isinstance(desc_cat["categories"], PandasColumn)
- tm.assert_series_equal(
- desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"])
- )
- tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
- def test_categorical_pyarrow():
- # GH 49889
- pa = pytest.importorskip("pyarrow", "11.0.0")
- arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"]
- table = pa.table({"weekday": pa.array(arr).dictionary_encode()})
- exchange_df = table.__dataframe__()
- result = from_dataframe(exchange_df)
- weekday = pd.Categorical(
- arr, categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
- )
- expected = pd.DataFrame({"weekday": weekday})
- tm.assert_frame_equal(result, expected)
- def test_empty_categorical_pyarrow():
- # https://github.com/pandas-dev/pandas/issues/53077
- pa = pytest.importorskip("pyarrow", "11.0.0")
- arr = [None]
- table = pa.table({"arr": pa.array(arr, "float64").dictionary_encode()})
- exchange_df = table.__dataframe__()
- result = pd.api.interchange.from_dataframe(exchange_df)
- expected = pd.DataFrame({"arr": pd.Categorical([np.nan])})
- tm.assert_frame_equal(result, expected)
- def test_large_string_pyarrow():
- # GH 52795
- pa = pytest.importorskip("pyarrow", "11.0.0")
- arr = ["Mon", "Tue"]
- table = pa.table({"weekday": pa.array(arr, "large_string")})
- exchange_df = table.__dataframe__()
- result = from_dataframe(exchange_df)
- expected = pd.DataFrame({"weekday": ["Mon", "Tue"]})
- tm.assert_frame_equal(result, expected)
- # check round-trip
- assert pa.Table.equals(pa.interchange.from_dataframe(result), table)
- @pytest.mark.parametrize(
- ("offset", "length", "expected_values"),
- [
- (0, None, [3.3, float("nan"), 2.1]),
- (1, None, [float("nan"), 2.1]),
- (2, None, [2.1]),
- (0, 2, [3.3, float("nan")]),
- (0, 1, [3.3]),
- (1, 1, [float("nan")]),
- ],
- )
- def test_bitmasks_pyarrow(offset, length, expected_values):
- # GH 52795
- pa = pytest.importorskip("pyarrow", "11.0.0")
- arr = [3.3, None, 2.1]
- table = pa.table({"arr": arr}).slice(offset, length)
- exchange_df = table.__dataframe__()
- result = from_dataframe(exchange_df)
- expected = pd.DataFrame({"arr": expected_values})
- tm.assert_frame_equal(result, expected)
- # check round-trip
- assert pa.Table.equals(pa.interchange.from_dataframe(result), table)
- @pytest.mark.parametrize(
- "data", [int_data, uint_data, float_data, bool_data, datetime_data]
- )
- def test_dataframe(data):
- df = pd.DataFrame(data)
- df2 = df.__dataframe__()
- assert df2.num_columns() == NCOLS
- assert df2.num_rows() == NROWS
- assert list(df2.column_names()) == list(data.keys())
- indices = (0, 2)
- names = tuple(list(data.keys())[idx] for idx in indices)
- result = from_dataframe(df2.select_columns(indices))
- expected = from_dataframe(df2.select_columns_by_name(names))
- tm.assert_frame_equal(result, expected)
- assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
- assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list)
- def test_missing_from_masked():
- df = pd.DataFrame(
- {
- "x": np.array([1, 2, 3, 4, 0]),
- "y": np.array([1.5, 2.5, 3.5, 4.5, 0]),
- "z": np.array([True, False, True, True, True]),
- }
- )
- df2 = df.__dataframe__()
- rng = np.random.RandomState(42)
- dict_null = {col: rng.randint(low=0, high=len(df)) for col in df.columns}
- for col, num_nulls in dict_null.items():
- null_idx = df.index[
- rng.choice(np.arange(len(df)), size=num_nulls, replace=False)
- ]
- df.loc[null_idx, col] = None
- df2 = df.__dataframe__()
- assert df2.get_column_by_name("x").null_count == dict_null["x"]
- assert df2.get_column_by_name("y").null_count == dict_null["y"]
- assert df2.get_column_by_name("z").null_count == dict_null["z"]
- @pytest.mark.parametrize(
- "data",
- [
- {"x": [1.5, 2.5, 3.5], "y": [9.2, 10.5, 11.8]},
- {"x": [1, 2, 0], "y": [9.2, 10.5, 11.8]},
- {
- "x": np.array([True, True, False]),
- "y": np.array([1, 2, 0]),
- "z": np.array([9.2, 10.5, 11.8]),
- },
- ],
- )
- def test_mixed_data(data):
- df = pd.DataFrame(data)
- df2 = df.__dataframe__()
- for col_name in df.columns:
- assert df2.get_column_by_name(col_name).null_count == 0
- def test_mixed_missing():
- df = pd.DataFrame(
- {
- "x": np.array([True, None, False, None, True]),
- "y": np.array([None, 2, None, 1, 2]),
- "z": np.array([9.2, 10.5, None, 11.8, None]),
- }
- )
- df2 = df.__dataframe__()
- for col_name in df.columns:
- assert df2.get_column_by_name(col_name).null_count == 2
- def test_string():
- test_str_data = string_data["separator data"] + [""]
- df = pd.DataFrame({"A": test_str_data})
- col = df.__dataframe__().get_column_by_name("A")
- assert col.size() == 6
- assert col.null_count == 1
- assert col.dtype[0] == DtypeKind.STRING
- assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
- df_sliced = df[1:]
- col = df_sliced.__dataframe__().get_column_by_name("A")
- assert col.size() == 5
- assert col.null_count == 1
- assert col.dtype[0] == DtypeKind.STRING
- assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0)
- def test_nonstring_object():
- df = pd.DataFrame({"A": ["a", 10, 1.0, ()]})
- col = df.__dataframe__().get_column_by_name("A")
- with pytest.raises(NotImplementedError, match="not supported yet"):
- col.dtype
- def test_datetime():
- df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]})
- col = df.__dataframe__().get_column_by_name("A")
- assert col.size() == 2
- assert col.null_count == 1
- assert col.dtype[0] == DtypeKind.DATETIME
- assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT)
- tm.assert_frame_equal(df, from_dataframe(df.__dataframe__()))
- @td.skip_if_np_lt("1.23")
- def test_categorical_to_numpy_dlpack():
- # https://github.com/pandas-dev/pandas/issues/48393
- df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])})
- col = df.__dataframe__().get_column_by_name("A")
- result = np.from_dlpack(col.get_buffers()["data"][0])
- expected = np.array([0, 1, 0], dtype="int8")
- tm.assert_numpy_array_equal(result, expected)
|