123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- PeriodIndex,
- Series,
- date_range,
- period_range,
- )
- import pandas._testing as tm
- class TestPeriodIndex:
- def test_getitem_periodindex_duplicates_string_slice(self, using_copy_on_write):
- # monotonic
- idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
- ts = Series(np.random.randn(len(idx)), index=idx)
- original = ts.copy()
- result = ts["2007"]
- expected = ts[1:3]
- tm.assert_series_equal(result, expected)
- result[:] = 1
- if using_copy_on_write:
- tm.assert_series_equal(ts, original)
- else:
- assert (ts[1:3] == 1).all()
- # not monotonic
- idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq="A-JUN")
- ts = Series(np.random.randn(len(idx)), index=idx)
- result = ts["2007"]
- expected = ts[idx == "2007"]
- tm.assert_series_equal(result, expected)
- def test_getitem_periodindex_quarter_string(self):
- pi = PeriodIndex(["2Q05", "3Q05", "4Q05", "1Q06", "2Q06"], freq="Q")
- ser = Series(np.random.rand(len(pi)), index=pi).cumsum()
- # Todo: fix these accessors!
- assert ser["05Q4"] == ser[2]
- def test_pindex_slice_index(self):
- pi = period_range(start="1/1/10", end="12/31/12", freq="M")
- s = Series(np.random.rand(len(pi)), index=pi)
- res = s["2010"]
- exp = s[0:12]
- tm.assert_series_equal(res, exp)
- res = s["2011"]
- exp = s[12:24]
- tm.assert_series_equal(res, exp)
- @pytest.mark.parametrize("make_range", [date_range, period_range])
- def test_range_slice_day(self, make_range):
- # GH#6716
- idx = make_range(start="2013/01/01", freq="D", periods=400)
- msg = "slice indices must be integers or None or have an __index__ method"
- # slices against index should raise IndexError
- values = [
- "2014",
- "2013/02",
- "2013/01/02",
- "2013/02/01 9H",
- "2013/02/01 09:00",
- ]
- for v in values:
- with pytest.raises(TypeError, match=msg):
- idx[v:]
- s = Series(np.random.rand(len(idx)), index=idx)
- tm.assert_series_equal(s["2013/01/02":], s[1:])
- tm.assert_series_equal(s["2013/01/02":"2013/01/05"], s[1:5])
- tm.assert_series_equal(s["2013/02":], s[31:])
- tm.assert_series_equal(s["2014":], s[365:])
- invalid = ["2013/02/01 9H", "2013/02/01 09:00"]
- for v in invalid:
- with pytest.raises(TypeError, match=msg):
- idx[v:]
- @pytest.mark.parametrize("make_range", [date_range, period_range])
- def test_range_slice_seconds(self, make_range):
- # GH#6716
- idx = make_range(start="2013/01/01 09:00:00", freq="S", periods=4000)
- msg = "slice indices must be integers or None or have an __index__ method"
- # slices against index should raise IndexError
- values = [
- "2014",
- "2013/02",
- "2013/01/02",
- "2013/02/01 9H",
- "2013/02/01 09:00",
- ]
- for v in values:
- with pytest.raises(TypeError, match=msg):
- idx[v:]
- s = Series(np.random.rand(len(idx)), index=idx)
- tm.assert_series_equal(s["2013/01/01 09:05":"2013/01/01 09:10"], s[300:660])
- tm.assert_series_equal(s["2013/01/01 10:00":"2013/01/01 10:05"], s[3600:3960])
- tm.assert_series_equal(s["2013/01/01 10H":], s[3600:])
- tm.assert_series_equal(s[:"2013/01/01 09:30"], s[:1860])
- for d in ["2013/01/01", "2013/01", "2013"]:
- tm.assert_series_equal(s[d:], s)
- @pytest.mark.parametrize("make_range", [date_range, period_range])
- def test_range_slice_outofbounds(self, make_range):
- # GH#5407
- idx = make_range(start="2013/10/01", freq="D", periods=10)
- df = DataFrame({"units": [100 + i for i in range(10)]}, index=idx)
- empty = DataFrame(index=type(idx)([], freq="D"), columns=["units"])
- empty["units"] = empty["units"].astype("int64")
- tm.assert_frame_equal(df["2013/09/01":"2013/09/30"], empty)
- tm.assert_frame_equal(df["2013/09/30":"2013/10/02"], df.iloc[:2])
- tm.assert_frame_equal(df["2013/10/01":"2013/10/02"], df.iloc[:2])
- tm.assert_frame_equal(df["2013/10/02":"2013/09/30"], empty)
- tm.assert_frame_equal(df["2013/10/15":"2013/10/17"], empty)
- tm.assert_frame_equal(df["2013-06":"2013-09"], empty)
- tm.assert_frame_equal(df["2013-11":"2013-12"], empty)
- @pytest.mark.parametrize("make_range", [date_range, period_range])
- def test_maybe_cast_slice_bound(self, make_range, frame_or_series):
- idx = make_range(start="2013/10/01", freq="D", periods=10)
- obj = DataFrame({"units": [100 + i for i in range(10)]}, index=idx)
- obj = tm.get_obj(obj, frame_or_series)
- msg = (
- f"cannot do slice indexing on {type(idx).__name__} with "
- r"these indexers \[foo\] of type str"
- )
- # Check the lower-level calls are raising where expected.
- with pytest.raises(TypeError, match=msg):
- idx._maybe_cast_slice_bound("foo", "left")
- with pytest.raises(TypeError, match=msg):
- idx.get_slice_bound("foo", "left")
- with pytest.raises(TypeError, match=msg):
- obj["2013/09/30":"foo"]
- with pytest.raises(TypeError, match=msg):
- obj["foo":"2013/09/30"]
- with pytest.raises(TypeError, match=msg):
- obj.loc["2013/09/30":"foo"]
- with pytest.raises(TypeError, match=msg):
- obj.loc["foo":"2013/09/30"]
- def test_partial_slice_doesnt_require_monotonicity(self):
- # See also: DatetimeIndex test ofm the same name
- dti = date_range("2014-01-01", periods=30, freq="30D")
- pi = dti.to_period("D")
- ser_montonic = Series(np.arange(30), index=pi)
- shuffler = list(range(0, 30, 2)) + list(range(1, 31, 2))
- ser = ser_montonic[shuffler]
- nidx = ser.index
- # Manually identified locations of year==2014
- indexer_2014 = np.array(
- [0, 1, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 20], dtype=np.intp
- )
- assert (nidx[indexer_2014].year == 2014).all()
- assert not (nidx[~indexer_2014].year == 2014).any()
- result = nidx.get_loc("2014")
- tm.assert_numpy_array_equal(result, indexer_2014)
- expected = ser[indexer_2014]
- result = ser.loc["2014"]
- tm.assert_series_equal(result, expected)
- result = ser["2014"]
- tm.assert_series_equal(result, expected)
- # Manually identified locations where ser.index is within Mat 2015
- indexer_may2015 = np.array([23], dtype=np.intp)
- assert nidx[23].year == 2015 and nidx[23].month == 5
- result = nidx.get_loc("May 2015")
- tm.assert_numpy_array_equal(result, indexer_may2015)
- expected = ser[indexer_may2015]
- result = ser.loc["May 2015"]
- tm.assert_series_equal(result, expected)
- result = ser["May 2015"]
- tm.assert_series_equal(result, expected)
|