123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611 |
- import numpy as np
- import pytest
- from pandas.errors import InvalidIndexError
- from pandas import (
- NA,
- Index,
- RangeIndex,
- Series,
- Timestamp,
- )
- import pandas._testing as tm
- from pandas.core.arrays import (
- ArrowExtensionArray,
- FloatingArray,
- )
- @pytest.fixture
- def index_large():
- # large values used in Index[uint64] tests where no compat needed with Int64/Float64
- large = [2**63, 2**63 + 10, 2**63 + 15, 2**63 + 20, 2**63 + 25]
- return Index(large, dtype=np.uint64)
- class TestGetLoc:
- def test_get_loc(self):
- index = Index([0, 1, 2])
- assert index.get_loc(1) == 1
- def test_get_loc_raises_bad_label(self):
- index = Index([0, 1, 2])
- with pytest.raises(InvalidIndexError, match=r"\[1, 2\]"):
- index.get_loc([1, 2])
- def test_get_loc_float64(self):
- idx = Index([0.0, 1.0, 2.0], dtype=np.float64)
- with pytest.raises(KeyError, match="^'foo'$"):
- idx.get_loc("foo")
- with pytest.raises(KeyError, match=r"^1\.5$"):
- idx.get_loc(1.5)
- with pytest.raises(KeyError, match="^True$"):
- idx.get_loc(True)
- with pytest.raises(KeyError, match="^False$"):
- idx.get_loc(False)
- def test_get_loc_na(self):
- idx = Index([np.nan, 1, 2], dtype=np.float64)
- assert idx.get_loc(1) == 1
- assert idx.get_loc(np.nan) == 0
- idx = Index([np.nan, 1, np.nan], dtype=np.float64)
- assert idx.get_loc(1) == 1
- # representable by slice [0:2:2]
- msg = "'Cannot get left slice bound for non-unique label: nan'"
- with pytest.raises(KeyError, match=msg):
- idx.slice_locs(np.nan)
- # not representable by slice
- idx = Index([np.nan, 1, np.nan, np.nan], dtype=np.float64)
- assert idx.get_loc(1) == 1
- msg = "'Cannot get left slice bound for non-unique label: nan"
- with pytest.raises(KeyError, match=msg):
- idx.slice_locs(np.nan)
- def test_get_loc_missing_nan(self):
- # GH#8569
- idx = Index([1, 2], dtype=np.float64)
- assert idx.get_loc(1) == 0
- with pytest.raises(KeyError, match=r"^3$"):
- idx.get_loc(3)
- with pytest.raises(KeyError, match="^nan$"):
- idx.get_loc(np.nan)
- with pytest.raises(InvalidIndexError, match=r"\[nan\]"):
- # listlike/non-hashable raises TypeError
- idx.get_loc([np.nan])
- @pytest.mark.parametrize("vals", [[1], [1.0], [Timestamp("2019-12-31")], ["test"]])
- def test_get_loc_float_index_nan_with_method(self, vals):
- # GH#39382
- idx = Index(vals)
- with pytest.raises(KeyError, match="nan"):
- idx.get_loc(np.nan)
- @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"])
- def test_get_loc_numericindex_none_raises(self, dtype):
- # case that goes through searchsorted and key is non-comparable to values
- arr = np.arange(10**7, dtype=dtype)
- idx = Index(arr)
- with pytest.raises(KeyError, match="None"):
- idx.get_loc(None)
- def test_get_loc_overflows(self):
- # unique but non-monotonic goes through IndexEngine.mapping.get_item
- idx = Index([0, 2, 1])
- val = np.iinfo(np.int64).max + 1
- with pytest.raises(KeyError, match=str(val)):
- idx.get_loc(val)
- with pytest.raises(KeyError, match=str(val)):
- idx._engine.get_loc(val)
- class TestGetIndexer:
- def test_get_indexer(self):
- index1 = Index([1, 2, 3, 4, 5])
- index2 = Index([2, 4, 6])
- r1 = index1.get_indexer(index2)
- e1 = np.array([1, 3, -1], dtype=np.intp)
- tm.assert_almost_equal(r1, e1)
- @pytest.mark.parametrize("reverse", [True, False])
- @pytest.mark.parametrize(
- "expected,method",
- [
- (np.array([-1, 0, 0, 1, 1], dtype=np.intp), "pad"),
- (np.array([-1, 0, 0, 1, 1], dtype=np.intp), "ffill"),
- (np.array([0, 0, 1, 1, 2], dtype=np.intp), "backfill"),
- (np.array([0, 0, 1, 1, 2], dtype=np.intp), "bfill"),
- ],
- )
- def test_get_indexer_methods(self, reverse, expected, method):
- index1 = Index([1, 2, 3, 4, 5])
- index2 = Index([2, 4, 6])
- if reverse:
- index1 = index1[::-1]
- expected = expected[::-1]
- result = index2.get_indexer(index1, method=method)
- tm.assert_almost_equal(result, expected)
- def test_get_indexer_invalid(self):
- # GH10411
- index = Index(np.arange(10))
- with pytest.raises(ValueError, match="tolerance argument"):
- index.get_indexer([1, 0], tolerance=1)
- with pytest.raises(ValueError, match="limit argument"):
- index.get_indexer([1, 0], limit=1)
- @pytest.mark.parametrize(
- "method, tolerance, indexer, expected",
- [
- ("pad", None, [0, 5, 9], [0, 5, 9]),
- ("backfill", None, [0, 5, 9], [0, 5, 9]),
- ("nearest", None, [0, 5, 9], [0, 5, 9]),
- ("pad", 0, [0, 5, 9], [0, 5, 9]),
- ("backfill", 0, [0, 5, 9], [0, 5, 9]),
- ("nearest", 0, [0, 5, 9], [0, 5, 9]),
- ("pad", None, [0.2, 1.8, 8.5], [0, 1, 8]),
- ("backfill", None, [0.2, 1.8, 8.5], [1, 2, 9]),
- ("nearest", None, [0.2, 1.8, 8.5], [0, 2, 9]),
- ("pad", 1, [0.2, 1.8, 8.5], [0, 1, 8]),
- ("backfill", 1, [0.2, 1.8, 8.5], [1, 2, 9]),
- ("nearest", 1, [0.2, 1.8, 8.5], [0, 2, 9]),
- ("pad", 0.2, [0.2, 1.8, 8.5], [0, -1, -1]),
- ("backfill", 0.2, [0.2, 1.8, 8.5], [-1, 2, -1]),
- ("nearest", 0.2, [0.2, 1.8, 8.5], [0, 2, -1]),
- ],
- )
- def test_get_indexer_nearest(self, method, tolerance, indexer, expected):
- index = Index(np.arange(10))
- actual = index.get_indexer(indexer, method=method, tolerance=tolerance)
- tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp))
- @pytest.mark.parametrize("listtype", [list, tuple, Series, np.array])
- @pytest.mark.parametrize(
- "tolerance, expected",
- list(
- zip(
- [[0.3, 0.3, 0.1], [0.2, 0.1, 0.1], [0.1, 0.5, 0.5]],
- [[0, 2, -1], [0, -1, -1], [-1, 2, 9]],
- )
- ),
- )
- def test_get_indexer_nearest_listlike_tolerance(
- self, tolerance, expected, listtype
- ):
- index = Index(np.arange(10))
- actual = index.get_indexer(
- [0.2, 1.8, 8.5], method="nearest", tolerance=listtype(tolerance)
- )
- tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp))
- def test_get_indexer_nearest_error(self):
- index = Index(np.arange(10))
- with pytest.raises(ValueError, match="limit argument"):
- index.get_indexer([1, 0], method="nearest", limit=1)
- with pytest.raises(ValueError, match="tolerance size must match"):
- index.get_indexer([1, 0], method="nearest", tolerance=[1, 2, 3])
- @pytest.mark.parametrize(
- "method,expected",
- [("pad", [8, 7, 0]), ("backfill", [9, 8, 1]), ("nearest", [9, 7, 0])],
- )
- def test_get_indexer_nearest_decreasing(self, method, expected):
- index = Index(np.arange(10))[::-1]
- actual = index.get_indexer([0, 5, 9], method=method)
- tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp))
- actual = index.get_indexer([0.2, 1.8, 8.5], method=method)
- tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp))
- @pytest.mark.parametrize("idx_dtype", ["int64", "float64", "uint64", "range"])
- @pytest.mark.parametrize("method", ["get_indexer", "get_indexer_non_unique"])
- def test_get_indexer_numeric_index_boolean_target(self, method, idx_dtype):
- # GH 16877
- if idx_dtype == "range":
- numeric_index = RangeIndex(4)
- else:
- numeric_index = Index(np.arange(4, dtype=idx_dtype))
- other = Index([True, False, True])
- result = getattr(numeric_index, method)(other)
- expected = np.array([-1, -1, -1], dtype=np.intp)
- if method == "get_indexer":
- tm.assert_numpy_array_equal(result, expected)
- else:
- missing = np.arange(3, dtype=np.intp)
- tm.assert_numpy_array_equal(result[0], expected)
- tm.assert_numpy_array_equal(result[1], missing)
- @pytest.mark.parametrize("method", ["pad", "backfill", "nearest"])
- def test_get_indexer_with_method_numeric_vs_bool(self, method):
- left = Index([1, 2, 3])
- right = Index([True, False])
- with pytest.raises(TypeError, match="Cannot compare"):
- left.get_indexer(right, method=method)
- with pytest.raises(TypeError, match="Cannot compare"):
- right.get_indexer(left, method=method)
- def test_get_indexer_numeric_vs_bool(self):
- left = Index([1, 2, 3])
- right = Index([True, False])
- res = left.get_indexer(right)
- expected = -1 * np.ones(len(right), dtype=np.intp)
- tm.assert_numpy_array_equal(res, expected)
- res = right.get_indexer(left)
- expected = -1 * np.ones(len(left), dtype=np.intp)
- tm.assert_numpy_array_equal(res, expected)
- res = left.get_indexer_non_unique(right)[0]
- expected = -1 * np.ones(len(right), dtype=np.intp)
- tm.assert_numpy_array_equal(res, expected)
- res = right.get_indexer_non_unique(left)[0]
- expected = -1 * np.ones(len(left), dtype=np.intp)
- tm.assert_numpy_array_equal(res, expected)
- def test_get_indexer_float64(self):
- idx = Index([0.0, 1.0, 2.0], dtype=np.float64)
- tm.assert_numpy_array_equal(
- idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)
- )
- target = [-0.1, 0.5, 1.1]
- tm.assert_numpy_array_equal(
- idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp)
- )
- tm.assert_numpy_array_equal(
- idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp)
- )
- tm.assert_numpy_array_equal(
- idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp)
- )
- def test_get_indexer_nan(self):
- # GH#7820
- result = Index([1, 2, np.nan], dtype=np.float64).get_indexer([np.nan])
- expected = np.array([2], dtype=np.intp)
- tm.assert_numpy_array_equal(result, expected)
- def test_get_indexer_int64(self):
- index = Index(range(0, 20, 2), dtype=np.int64)
- target = Index(np.arange(10), dtype=np.int64)
- indexer = index.get_indexer(target)
- expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- target = Index(np.arange(10), dtype=np.int64)
- indexer = index.get_indexer(target, method="pad")
- expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- target = Index(np.arange(10), dtype=np.int64)
- indexer = index.get_indexer(target, method="backfill")
- expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- def test_get_indexer_uint64(self, index_large):
- target = Index(np.arange(10).astype("uint64") * 5 + 2**63)
- indexer = index_large.get_indexer(target)
- expected = np.array([0, -1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- target = Index(np.arange(10).astype("uint64") * 5 + 2**63)
- indexer = index_large.get_indexer(target, method="pad")
- expected = np.array([0, 0, 1, 2, 3, 4, 4, 4, 4, 4], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- target = Index(np.arange(10).astype("uint64") * 5 + 2**63)
- indexer = index_large.get_indexer(target, method="backfill")
- expected = np.array([0, 1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- @pytest.mark.parametrize("val, val2", [(4, 5), (4, 4), (4, NA), (NA, NA)])
- def test_get_loc_masked(self, val, val2, any_numeric_ea_and_arrow_dtype):
- # GH#39133
- idx = Index([1, 2, 3, val, val2], dtype=any_numeric_ea_and_arrow_dtype)
- result = idx.get_loc(2)
- assert result == 1
- with pytest.raises(KeyError, match="9"):
- idx.get_loc(9)
- def test_get_loc_masked_na(self, any_numeric_ea_and_arrow_dtype):
- # GH#39133
- idx = Index([1, 2, NA], dtype=any_numeric_ea_and_arrow_dtype)
- result = idx.get_loc(NA)
- assert result == 2
- idx = Index([1, 2, NA, NA], dtype=any_numeric_ea_and_arrow_dtype)
- result = idx.get_loc(NA)
- tm.assert_numpy_array_equal(result, np.array([False, False, True, True]))
- idx = Index([1, 2, 3], dtype=any_numeric_ea_and_arrow_dtype)
- with pytest.raises(KeyError, match="NA"):
- idx.get_loc(NA)
- def test_get_loc_masked_na_and_nan(self):
- # GH#39133
- idx = Index(
- FloatingArray(
- np.array([1, 2, 1, np.nan]), mask=np.array([False, False, True, False])
- )
- )
- result = idx.get_loc(NA)
- assert result == 2
- result = idx.get_loc(np.nan)
- assert result == 3
- idx = Index(
- FloatingArray(np.array([1, 2, 1.0]), mask=np.array([False, False, True]))
- )
- result = idx.get_loc(NA)
- assert result == 2
- with pytest.raises(KeyError, match="nan"):
- idx.get_loc(np.nan)
- idx = Index(
- FloatingArray(
- np.array([1, 2, np.nan]), mask=np.array([False, False, False])
- )
- )
- result = idx.get_loc(np.nan)
- assert result == 2
- with pytest.raises(KeyError, match="NA"):
- idx.get_loc(NA)
- @pytest.mark.parametrize("val", [4, 2])
- def test_get_indexer_masked_na(self, any_numeric_ea_and_arrow_dtype, val):
- # GH#39133
- idx = Index([1, 2, NA, 3, val], dtype=any_numeric_ea_and_arrow_dtype)
- result = idx.get_indexer_for([1, NA, 5])
- expected = np.array([0, 2, -1])
- tm.assert_numpy_array_equal(result, expected, check_dtype=False)
- @pytest.mark.parametrize("dtype", ["boolean", "bool[pyarrow]"])
- def test_get_indexer_masked_na_boolean(self, dtype):
- # GH#39133
- if dtype == "bool[pyarrow]":
- pytest.importorskip("pyarrow")
- idx = Index([True, False, NA], dtype=dtype)
- result = idx.get_loc(False)
- assert result == 1
- result = idx.get_loc(NA)
- assert result == 2
- def test_get_indexer_arrow_dictionary_target(self):
- pa = pytest.importorskip("pyarrow")
- target = Index(
- ArrowExtensionArray(
- pa.array([1, 2], type=pa.dictionary(pa.int8(), pa.int8()))
- )
- )
- idx = Index([1])
- result = idx.get_indexer(target)
- expected = np.array([0, -1], dtype=np.int64)
- tm.assert_numpy_array_equal(result, expected)
- result_1, result_2 = idx.get_indexer_non_unique(target)
- expected_1, expected_2 = np.array([0, -1], dtype=np.int64), np.array(
- [1], dtype=np.int64
- )
- tm.assert_numpy_array_equal(result_1, expected_1)
- tm.assert_numpy_array_equal(result_2, expected_2)
- class TestWhere:
- @pytest.mark.parametrize(
- "index",
- [
- Index(np.arange(5, dtype="float64")),
- Index(range(0, 20, 2), dtype=np.int64),
- Index(np.arange(5, dtype="uint64")),
- ],
- )
- def test_where(self, listlike_box, index):
- cond = [True] * len(index)
- expected = index
- result = index.where(listlike_box(cond))
- cond = [False] + [True] * (len(index) - 1)
- expected = Index([index._na_value] + index[1:].tolist(), dtype=np.float64)
- result = index.where(listlike_box(cond))
- tm.assert_index_equal(result, expected)
- def test_where_uint64(self):
- idx = Index([0, 6, 2], dtype=np.uint64)
- mask = np.array([False, True, False])
- other = np.array([1], dtype=np.int64)
- expected = Index([1, 6, 1], dtype=np.uint64)
- result = idx.where(mask, other)
- tm.assert_index_equal(result, expected)
- result = idx.putmask(~mask, other)
- tm.assert_index_equal(result, expected)
- def test_where_infers_type_instead_of_trying_to_convert_string_to_float(self):
- # GH 32413
- index = Index([1, np.nan])
- cond = index.notna()
- other = Index(["a", "b"], dtype="string")
- expected = Index([1.0, "b"])
- result = index.where(cond, other)
- tm.assert_index_equal(result, expected)
- class TestTake:
- @pytest.mark.parametrize("idx_dtype", [np.float64, np.int64, np.uint64])
- def test_take_preserve_name(self, idx_dtype):
- index = Index([1, 2, 3, 4], dtype=idx_dtype, name="foo")
- taken = index.take([3, 0, 1])
- assert index.name == taken.name
- def test_take_fill_value_float64(self):
- # GH 12631
- idx = Index([1.0, 2.0, 3.0], name="xxx", dtype=np.float64)
- result = idx.take(np.array([1, 0, -1]))
- expected = Index([2.0, 1.0, 3.0], dtype=np.float64, name="xxx")
- tm.assert_index_equal(result, expected)
- # fill_value
- result = idx.take(np.array([1, 0, -1]), fill_value=True)
- expected = Index([2.0, 1.0, np.nan], dtype=np.float64, name="xxx")
- tm.assert_index_equal(result, expected)
- # allow_fill=False
- result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
- expected = Index([2.0, 1.0, 3.0], dtype=np.float64, name="xxx")
- tm.assert_index_equal(result, expected)
- msg = (
- "When allow_fill=True and fill_value is not None, "
- "all indices must be >= -1"
- )
- with pytest.raises(ValueError, match=msg):
- idx.take(np.array([1, 0, -2]), fill_value=True)
- with pytest.raises(ValueError, match=msg):
- idx.take(np.array([1, 0, -5]), fill_value=True)
- msg = "index -5 is out of bounds for (axis 0 with )?size 3"
- with pytest.raises(IndexError, match=msg):
- idx.take(np.array([1, -5]))
- @pytest.mark.parametrize("dtype", [np.int64, np.uint64])
- def test_take_fill_value_ints(self, dtype):
- # see gh-12631
- idx = Index([1, 2, 3], dtype=dtype, name="xxx")
- result = idx.take(np.array([1, 0, -1]))
- expected = Index([2, 1, 3], dtype=dtype, name="xxx")
- tm.assert_index_equal(result, expected)
- name = type(idx).__name__
- msg = f"Unable to fill values because {name} cannot contain NA"
- # fill_value=True
- with pytest.raises(ValueError, match=msg):
- idx.take(np.array([1, 0, -1]), fill_value=True)
- # allow_fill=False
- result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
- expected = Index([2, 1, 3], dtype=dtype, name="xxx")
- tm.assert_index_equal(result, expected)
- with pytest.raises(ValueError, match=msg):
- idx.take(np.array([1, 0, -2]), fill_value=True)
- with pytest.raises(ValueError, match=msg):
- idx.take(np.array([1, 0, -5]), fill_value=True)
- msg = "index -5 is out of bounds for (axis 0 with )?size 3"
- with pytest.raises(IndexError, match=msg):
- idx.take(np.array([1, -5]))
- class TestContains:
- @pytest.mark.parametrize("dtype", [np.float64, np.int64, np.uint64])
- def test_contains_none(self, dtype):
- # GH#35788 should return False, not raise TypeError
- index = Index([0, 1, 2, 3, 4], dtype=dtype)
- assert None not in index
- def test_contains_float64_nans(self):
- index = Index([1.0, 2.0, np.nan], dtype=np.float64)
- assert np.nan in index
- def test_contains_float64_not_nans(self):
- index = Index([1.0, 2.0, np.nan], dtype=np.float64)
- assert 1.0 in index
- class TestSliceLocs:
- @pytest.mark.parametrize("dtype", [int, float])
- def test_slice_locs(self, dtype):
- index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype))
- n = len(index)
- assert index.slice_locs(start=2) == (2, n)
- assert index.slice_locs(start=3) == (3, n)
- assert index.slice_locs(3, 8) == (3, 6)
- assert index.slice_locs(5, 10) == (3, n)
- assert index.slice_locs(end=8) == (0, 6)
- assert index.slice_locs(end=9) == (0, 7)
- # reversed
- index2 = index[::-1]
- assert index2.slice_locs(8, 2) == (2, 6)
- assert index2.slice_locs(7, 3) == (2, 5)
- @pytest.mark.parametrize("dtype", [int, float])
- def test_slice_locs_float_locs(self, dtype):
- index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype))
- n = len(index)
- assert index.slice_locs(5.0, 10.0) == (3, n)
- assert index.slice_locs(4.5, 10.5) == (3, 8)
- index2 = index[::-1]
- assert index2.slice_locs(8.5, 1.5) == (2, 6)
- assert index2.slice_locs(10.5, -1) == (0, n)
- @pytest.mark.parametrize("dtype", [int, float])
- def test_slice_locs_dup_numeric(self, dtype):
- index = Index(np.array([10, 12, 12, 14], dtype=dtype))
- assert index.slice_locs(12, 12) == (1, 3)
- assert index.slice_locs(11, 13) == (1, 3)
- index2 = index[::-1]
- assert index2.slice_locs(12, 12) == (1, 3)
- assert index2.slice_locs(13, 11) == (1, 3)
- def test_slice_locs_na(self):
- index = Index([np.nan, 1, 2])
- assert index.slice_locs(1) == (1, 3)
- assert index.slice_locs(np.nan) == (0, 3)
- index = Index([0, np.nan, np.nan, 1, 2])
- assert index.slice_locs(np.nan) == (1, 5)
- def test_slice_locs_na_raises(self):
- index = Index([np.nan, 1, 2])
- with pytest.raises(KeyError, match=""):
- index.slice_locs(start=1.5)
- with pytest.raises(KeyError, match=""):
- index.slice_locs(end=1.5)
- class TestGetSliceBounds:
- @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)])
- def test_get_slice_bounds_within(self, side, expected):
- index = Index(range(6))
- result = index.get_slice_bound(4, side=side)
- assert result == expected
- @pytest.mark.parametrize("side", ["left", "right"])
- @pytest.mark.parametrize("bound, expected", [(-1, 0), (10, 6)])
- def test_get_slice_bounds_outside(self, side, expected, bound):
- index = Index(range(6))
- result = index.get_slice_bound(bound, side=side)
- assert result == expected
|