123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Index,
- MultiIndex,
- )
- import pandas._testing as tm
- def test_reindex(idx):
- result, indexer = idx.reindex(list(idx[:4]))
- assert isinstance(result, MultiIndex)
- assert result.names == ["first", "second"]
- assert [level.name for level in result.levels] == ["first", "second"]
- result, indexer = idx.reindex(list(idx))
- assert isinstance(result, MultiIndex)
- assert indexer is None
- assert result.names == ["first", "second"]
- assert [level.name for level in result.levels] == ["first", "second"]
- def test_reindex_level(idx):
- index = Index(["one"])
- target, indexer = idx.reindex(index, level="second")
- target2, indexer2 = index.reindex(idx, level="second")
- exp_index = idx.join(index, level="second", how="right")
- exp_index2 = idx.join(index, level="second", how="left")
- assert target.equals(exp_index)
- exp_indexer = np.array([0, 2, 4])
- tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False)
- assert target2.equals(exp_index2)
- exp_indexer2 = np.array([0, -1, 0, -1, 0, -1])
- tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False)
- with pytest.raises(TypeError, match="Fill method not supported"):
- idx.reindex(idx, method="pad", level="second")
- def test_reindex_preserves_names_when_target_is_list_or_ndarray(idx):
- # GH6552
- idx = idx.copy()
- target = idx.copy()
- idx.names = target.names = [None, None]
- other_dtype = MultiIndex.from_product([[1, 2], [3, 4]])
- # list & ndarray cases
- assert idx.reindex([])[0].names == [None, None]
- assert idx.reindex(np.array([]))[0].names == [None, None]
- assert idx.reindex(target.tolist())[0].names == [None, None]
- assert idx.reindex(target.values)[0].names == [None, None]
- assert idx.reindex(other_dtype.tolist())[0].names == [None, None]
- assert idx.reindex(other_dtype.values)[0].names == [None, None]
- idx.names = ["foo", "bar"]
- assert idx.reindex([])[0].names == ["foo", "bar"]
- assert idx.reindex(np.array([]))[0].names == ["foo", "bar"]
- assert idx.reindex(target.tolist())[0].names == ["foo", "bar"]
- assert idx.reindex(target.values)[0].names == ["foo", "bar"]
- assert idx.reindex(other_dtype.tolist())[0].names == ["foo", "bar"]
- assert idx.reindex(other_dtype.values)[0].names == ["foo", "bar"]
- def test_reindex_lvl_preserves_names_when_target_is_list_or_array():
- # GH7774
- idx = MultiIndex.from_product([[0, 1], ["a", "b"]], names=["foo", "bar"])
- assert idx.reindex([], level=0)[0].names == ["foo", "bar"]
- assert idx.reindex([], level=1)[0].names == ["foo", "bar"]
- def test_reindex_lvl_preserves_type_if_target_is_empty_list_or_array():
- # GH7774
- idx = MultiIndex.from_product([[0, 1], ["a", "b"]])
- assert idx.reindex([], level=0)[0].levels[0].dtype.type == np.int64
- assert idx.reindex([], level=1)[0].levels[1].dtype.type == np.object_
- # case with EA levels
- cat = pd.Categorical(["foo", "bar"])
- dti = pd.date_range("2016-01-01", periods=2, tz="US/Pacific")
- mi = MultiIndex.from_product([cat, dti])
- assert mi.reindex([], level=0)[0].levels[0].dtype == cat.dtype
- assert mi.reindex([], level=1)[0].levels[1].dtype == dti.dtype
- def test_reindex_base(idx):
- expected = np.arange(idx.size, dtype=np.intp)
- actual = idx.get_indexer(idx)
- tm.assert_numpy_array_equal(expected, actual)
- with pytest.raises(ValueError, match="Invalid fill method"):
- idx.get_indexer(idx, method="invalid")
- def test_reindex_non_unique():
- idx = MultiIndex.from_tuples([(0, 0), (1, 1), (1, 1), (2, 2)])
- a = pd.Series(np.arange(4), index=idx)
- new_idx = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)])
- msg = "cannot handle a non-unique multi-index!"
- with pytest.raises(ValueError, match=msg):
- a.reindex(new_idx)
- @pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]])
- def test_reindex_empty_with_level(values):
- # GH41170
- idx = MultiIndex.from_arrays(values)
- result, result_indexer = idx.reindex(np.array(["b"]), level=0)
- expected = MultiIndex(levels=[["b"], values[1]], codes=[[], []])
- expected_indexer = np.array([], dtype=result_indexer.dtype)
- tm.assert_index_equal(result, expected)
- tm.assert_numpy_array_equal(result_indexer, expected_indexer)
- def test_reindex_not_all_tuples():
- keys = [("i", "i"), ("i", "j"), ("j", "i"), "j"]
- mi = MultiIndex.from_tuples(keys[:-1])
- idx = Index(keys)
- res, indexer = mi.reindex(idx)
- tm.assert_index_equal(res, idx)
- expected = np.array([0, 1, 2, -1], dtype=np.intp)
- tm.assert_numpy_array_equal(indexer, expected)
- def test_reindex_limit_arg_with_multiindex():
- # GH21247
- idx = MultiIndex.from_tuples([(3, "A"), (4, "A"), (4, "B")])
- df = pd.Series([0.02, 0.01, 0.012], index=idx)
- new_idx = MultiIndex.from_tuples(
- [
- (3, "A"),
- (3, "B"),
- (4, "A"),
- (4, "B"),
- (4, "C"),
- (5, "B"),
- (5, "C"),
- (6, "B"),
- (6, "C"),
- ]
- )
- with pytest.raises(
- ValueError,
- match="limit argument only valid if doing pad, backfill or nearest reindexing",
- ):
- df.reindex(new_idx, fill_value=0, limit=1)
- def test_reindex_with_none_in_nested_multiindex():
- # GH42883
- index = MultiIndex.from_tuples([(("a", None), 1), (("b", None), 2)])
- index2 = MultiIndex.from_tuples([(("b", None), 2), (("a", None), 1)])
- df1_dtype = pd.DataFrame([1, 2], index=index)
- df2_dtype = pd.DataFrame([2, 1], index=index2)
- result = df1_dtype.reindex_like(df2_dtype)
- expected = df2_dtype
- tm.assert_frame_equal(result, expected)
|