123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import MultiIndex
- import pandas._testing as tm
- def test_fillna(idx):
- # GH 11343
- msg = "isna is not defined for MultiIndex"
- with pytest.raises(NotImplementedError, match=msg):
- idx.fillna(idx[0])
- def test_dropna():
- # GH 6194
- idx = MultiIndex.from_arrays(
- [
- [1, np.nan, 3, np.nan, 5],
- [1, 2, np.nan, np.nan, 5],
- ["a", "b", "c", np.nan, "e"],
- ]
- )
- exp = MultiIndex.from_arrays([[1, 5], [1, 5], ["a", "e"]])
- tm.assert_index_equal(idx.dropna(), exp)
- tm.assert_index_equal(idx.dropna(how="any"), exp)
- exp = MultiIndex.from_arrays(
- [[1, np.nan, 3, 5], [1, 2, np.nan, 5], ["a", "b", "c", "e"]]
- )
- tm.assert_index_equal(idx.dropna(how="all"), exp)
- msg = "invalid how option: xxx"
- with pytest.raises(ValueError, match=msg):
- idx.dropna(how="xxx")
- # GH26408
- # test if missing values are dropped for multiindex constructed
- # from codes and values
- idx = MultiIndex(
- levels=[[np.nan, None, pd.NaT, "128", 2], [np.nan, None, pd.NaT, "128", 2]],
- codes=[[0, -1, 1, 2, 3, 4], [0, -1, 3, 3, 3, 4]],
- )
- expected = MultiIndex.from_arrays([["128", 2], ["128", 2]])
- tm.assert_index_equal(idx.dropna(), expected)
- tm.assert_index_equal(idx.dropna(how="any"), expected)
- expected = MultiIndex.from_arrays(
- [[np.nan, np.nan, "128", 2], ["128", "128", "128", 2]]
- )
- tm.assert_index_equal(idx.dropna(how="all"), expected)
- def test_nulls(idx):
- # this is really a smoke test for the methods
- # as these are adequately tested for function elsewhere
- msg = "isna is not defined for MultiIndex"
- with pytest.raises(NotImplementedError, match=msg):
- idx.isna()
- @pytest.mark.xfail(reason="isna is not defined for MultiIndex")
- def test_hasnans_isnans(idx):
- # GH 11343, added tests for hasnans / isnans
- index = idx.copy()
- # cases in indices doesn't include NaN
- expected = np.array([False] * len(index), dtype=bool)
- tm.assert_numpy_array_equal(index._isnan, expected)
- assert index.hasnans is False
- index = idx.copy()
- values = index.values
- values[1] = np.nan
- index = type(idx)(values)
- expected = np.array([False] * len(index), dtype=bool)
- expected[1] = True
- tm.assert_numpy_array_equal(index._isnan, expected)
- assert index.hasnans is True
- def test_nan_stays_float():
- # GH 7031
- idx0 = MultiIndex(levels=[["A", "B"], []], codes=[[1, 0], [-1, -1]], names=[0, 1])
- idx1 = MultiIndex(levels=[["C"], ["D"]], codes=[[0], [0]], names=[0, 1])
- idxm = idx0.join(idx1, how="outer")
- assert pd.isna(idx0.get_level_values(1)).all()
- # the following failed in 0.14.1
- assert pd.isna(idxm.get_level_values(1)[:-1]).all()
- df0 = pd.DataFrame([[1, 2]], index=idx0)
- df1 = pd.DataFrame([[3, 4]], index=idx1)
- dfm = df0 - df1
- assert pd.isna(df0.index.get_level_values(1)).all()
- # the following failed in 0.14.1
- assert pd.isna(dfm.index.get_level_values(1)[:-1]).all()
- def test_tuples_have_na():
- index = MultiIndex(
- levels=[[1, 0], [0, 1, 2, 3]],
- codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
- )
- assert pd.isna(index[4][0])
- assert pd.isna(index.values[4][0])
|