123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- """ test partial slicing on Series/Frame """
- from datetime import datetime
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- DatetimeIndex,
- Index,
- Series,
- Timedelta,
- Timestamp,
- date_range,
- )
- import pandas._testing as tm
- class TestSlicing:
- def test_string_index_series_name_converted(self):
- # GH#1644
- df = DataFrame(np.random.randn(10, 4), index=date_range("1/1/2000", periods=10))
- result = df.loc["1/3/2000"]
- assert result.name == df.index[2]
- result = df.T["1/3/2000"]
- assert result.name == df.index[2]
- def test_stringified_slice_with_tz(self):
- # GH#2658
- start = "2013-01-07"
- idx = date_range(start=start, freq="1d", periods=10, tz="US/Eastern")
- df = DataFrame(np.arange(10), index=idx)
- df["2013-01-14 23:44:34.437768-05:00":] # no exception here
- def test_return_type_doesnt_depend_on_monotonicity(self):
- # GH#24892 we get Series back regardless of whether our DTI is monotonic
- dti = date_range(start="2015-5-13 23:59:00", freq="min", periods=3)
- ser = Series(range(3), index=dti)
- # non-monotonic index
- ser2 = Series(range(3), index=[dti[1], dti[0], dti[2]])
- # key with resolution strictly lower than "min"
- key = "2015-5-14 00"
- # monotonic increasing index
- result = ser.loc[key]
- expected = ser.iloc[1:]
- tm.assert_series_equal(result, expected)
- # monotonic decreasing index
- result = ser.iloc[::-1].loc[key]
- expected = ser.iloc[::-1][:-1]
- tm.assert_series_equal(result, expected)
- # non-monotonic index
- result2 = ser2.loc[key]
- expected2 = ser2.iloc[::2]
- tm.assert_series_equal(result2, expected2)
- def test_return_type_doesnt_depend_on_monotonicity_higher_reso(self):
- # GH#24892 we get Series back regardless of whether our DTI is monotonic
- dti = date_range(start="2015-5-13 23:59:00", freq="min", periods=3)
- ser = Series(range(3), index=dti)
- # non-monotonic index
- ser2 = Series(range(3), index=[dti[1], dti[0], dti[2]])
- # key with resolution strictly *higher) than "min"
- key = "2015-5-14 00:00:00"
- # monotonic increasing index
- result = ser.loc[key]
- assert result == 1
- # monotonic decreasing index
- result = ser.iloc[::-1].loc[key]
- assert result == 1
- # non-monotonic index
- result2 = ser2.loc[key]
- assert result2 == 0
- def test_monotone_DTI_indexing_bug(self):
- # GH 19362
- # Testing accessing the first element in a monotonic descending
- # partial string indexing.
- df = DataFrame(list(range(5)))
- date_list = [
- "2018-01-02",
- "2017-02-10",
- "2016-03-10",
- "2015-03-15",
- "2014-03-16",
- ]
- date_index = DatetimeIndex(date_list)
- df["date"] = date_index
- expected = DataFrame({0: list(range(5)), "date": date_index})
- tm.assert_frame_equal(df, expected)
- # We get a slice because df.index's resolution is hourly and we
- # are slicing with a daily-resolution string. If both were daily,
- # we would get a single item back
- dti = date_range("20170101 01:00:00", periods=3)
- df = DataFrame({"A": [1, 2, 3]}, index=dti[::-1])
- expected = DataFrame({"A": 1}, index=dti[-1:][::-1])
- result = df.loc["2017-01-03"]
- tm.assert_frame_equal(result, expected)
- result2 = df.iloc[::-1].loc["2017-01-03"]
- expected2 = expected.iloc[::-1]
- tm.assert_frame_equal(result2, expected2)
- def test_slice_year(self):
- dti = date_range(freq="B", start=datetime(2005, 1, 1), periods=500)
- s = Series(np.arange(len(dti)), index=dti)
- result = s["2005"]
- expected = s[s.index.year == 2005]
- tm.assert_series_equal(result, expected)
- df = DataFrame(np.random.rand(len(dti), 5), index=dti)
- result = df.loc["2005"]
- expected = df[df.index.year == 2005]
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "partial_dtime",
- [
- "2019",
- "2019Q4",
- "Dec 2019",
- "2019-12-31",
- "2019-12-31 23",
- "2019-12-31 23:59",
- ],
- )
- def test_slice_end_of_period_resolution(self, partial_dtime):
- # GH#31064
- dti = date_range("2019-12-31 23:59:55.999999999", periods=10, freq="s")
- ser = Series(range(10), index=dti)
- result = ser[partial_dtime]
- expected = ser.iloc[:5]
- tm.assert_series_equal(result, expected)
- def test_slice_quarter(self):
- dti = date_range(freq="D", start=datetime(2000, 6, 1), periods=500)
- s = Series(np.arange(len(dti)), index=dti)
- assert len(s["2001Q1"]) == 90
- df = DataFrame(np.random.rand(len(dti), 5), index=dti)
- assert len(df.loc["1Q01"]) == 90
- def test_slice_month(self):
- dti = date_range(freq="D", start=datetime(2005, 1, 1), periods=500)
- s = Series(np.arange(len(dti)), index=dti)
- assert len(s["2005-11"]) == 30
- df = DataFrame(np.random.rand(len(dti), 5), index=dti)
- assert len(df.loc["2005-11"]) == 30
- tm.assert_series_equal(s["2005-11"], s["11-2005"])
- def test_partial_slice(self):
- rng = date_range(freq="D", start=datetime(2005, 1, 1), periods=500)
- s = Series(np.arange(len(rng)), index=rng)
- result = s["2005-05":"2006-02"]
- expected = s["20050501":"20060228"]
- tm.assert_series_equal(result, expected)
- result = s["2005-05":]
- expected = s["20050501":]
- tm.assert_series_equal(result, expected)
- result = s[:"2006-02"]
- expected = s[:"20060228"]
- tm.assert_series_equal(result, expected)
- result = s["2005-1-1"]
- assert result == s.iloc[0]
- with pytest.raises(KeyError, match=r"^'2004-12-31'$"):
- s["2004-12-31"]
- def test_partial_slice_daily(self):
- rng = date_range(freq="H", start=datetime(2005, 1, 31), periods=500)
- s = Series(np.arange(len(rng)), index=rng)
- result = s["2005-1-31"]
- tm.assert_series_equal(result, s.iloc[:24])
- with pytest.raises(KeyError, match=r"^'2004-12-31 00'$"):
- s["2004-12-31 00"]
- def test_partial_slice_hourly(self):
- rng = date_range(freq="T", start=datetime(2005, 1, 1, 20, 0, 0), periods=500)
- s = Series(np.arange(len(rng)), index=rng)
- result = s["2005-1-1"]
- tm.assert_series_equal(result, s.iloc[: 60 * 4])
- result = s["2005-1-1 20"]
- tm.assert_series_equal(result, s.iloc[:60])
- assert s["2005-1-1 20:00"] == s.iloc[0]
- with pytest.raises(KeyError, match=r"^'2004-12-31 00:15'$"):
- s["2004-12-31 00:15"]
- def test_partial_slice_minutely(self):
- rng = date_range(freq="S", start=datetime(2005, 1, 1, 23, 59, 0), periods=500)
- s = Series(np.arange(len(rng)), index=rng)
- result = s["2005-1-1 23:59"]
- tm.assert_series_equal(result, s.iloc[:60])
- result = s["2005-1-1"]
- tm.assert_series_equal(result, s.iloc[:60])
- assert s[Timestamp("2005-1-1 23:59:00")] == s.iloc[0]
- with pytest.raises(KeyError, match=r"^'2004-12-31 00:00:00'$"):
- s["2004-12-31 00:00:00"]
- def test_partial_slice_second_precision(self):
- rng = date_range(
- start=datetime(2005, 1, 1, 0, 0, 59, microsecond=999990),
- periods=20,
- freq="US",
- )
- s = Series(np.arange(20), rng)
- tm.assert_series_equal(s["2005-1-1 00:00"], s.iloc[:10])
- tm.assert_series_equal(s["2005-1-1 00:00:59"], s.iloc[:10])
- tm.assert_series_equal(s["2005-1-1 00:01"], s.iloc[10:])
- tm.assert_series_equal(s["2005-1-1 00:01:00"], s.iloc[10:])
- assert s[Timestamp("2005-1-1 00:00:59.999990")] == s.iloc[0]
- with pytest.raises(KeyError, match="2005-1-1 00:00:00"):
- s["2005-1-1 00:00:00"]
- def test_partial_slicing_dataframe(self):
- # GH14856
- # Test various combinations of string slicing resolution vs.
- # index resolution
- # - If string resolution is less precise than index resolution,
- # string is considered a slice
- # - If string resolution is equal to or more precise than index
- # resolution, string is considered an exact match
- formats = [
- "%Y",
- "%Y-%m",
- "%Y-%m-%d",
- "%Y-%m-%d %H",
- "%Y-%m-%d %H:%M",
- "%Y-%m-%d %H:%M:%S",
- ]
- resolutions = ["year", "month", "day", "hour", "minute", "second"]
- for rnum, resolution in enumerate(resolutions[2:], 2):
- # we check only 'day', 'hour', 'minute' and 'second'
- unit = Timedelta("1 " + resolution)
- middate = datetime(2012, 1, 1, 0, 0, 0)
- index = DatetimeIndex([middate - unit, middate, middate + unit])
- values = [1, 2, 3]
- df = DataFrame({"a": values}, index, dtype=np.int64)
- assert df.index.resolution == resolution
- # Timestamp with the same resolution as index
- # Should be exact match for Series (return scalar)
- # and raise KeyError for Frame
- for timestamp, expected in zip(index, values):
- ts_string = timestamp.strftime(formats[rnum])
- # make ts_string as precise as index
- result = df["a"][ts_string]
- assert isinstance(result, np.int64)
- assert result == expected
- msg = rf"^'{ts_string}'$"
- with pytest.raises(KeyError, match=msg):
- df[ts_string]
- # Timestamp with resolution less precise than index
- for fmt in formats[:rnum]:
- for element, theslice in [[0, slice(None, 1)], [1, slice(1, None)]]:
- ts_string = index[element].strftime(fmt)
- # Series should return slice
- result = df["a"][ts_string]
- expected = df["a"][theslice]
- tm.assert_series_equal(result, expected)
- # pre-2.0 df[ts_string] was overloaded to interpret this
- # as slicing along index
- with pytest.raises(KeyError, match=ts_string):
- df[ts_string]
- # Timestamp with resolution more precise than index
- # Compatible with existing key
- # Should return scalar for Series
- # and raise KeyError for Frame
- for fmt in formats[rnum + 1 :]:
- ts_string = index[1].strftime(fmt)
- result = df["a"][ts_string]
- assert isinstance(result, np.int64)
- assert result == 2
- msg = rf"^'{ts_string}'$"
- with pytest.raises(KeyError, match=msg):
- df[ts_string]
- # Not compatible with existing key
- # Should raise KeyError
- for fmt, res in list(zip(formats, resolutions))[rnum + 1 :]:
- ts = index[1] + Timedelta("1 " + res)
- ts_string = ts.strftime(fmt)
- msg = rf"^'{ts_string}'$"
- with pytest.raises(KeyError, match=msg):
- df["a"][ts_string]
- with pytest.raises(KeyError, match=msg):
- df[ts_string]
- def test_partial_slicing_with_multiindex(self):
- # GH 4758
- # partial string indexing with a multi-index buggy
- df = DataFrame(
- {
- "ACCOUNT": ["ACCT1", "ACCT1", "ACCT1", "ACCT2"],
- "TICKER": ["ABC", "MNP", "XYZ", "XYZ"],
- "val": [1, 2, 3, 4],
- },
- index=date_range("2013-06-19 09:30:00", periods=4, freq="5T"),
- )
- df_multi = df.set_index(["ACCOUNT", "TICKER"], append=True)
- expected = DataFrame(
- [[1]], index=Index(["ABC"], name="TICKER"), columns=["val"]
- )
- result = df_multi.loc[("2013-06-19 09:30:00", "ACCT1")]
- tm.assert_frame_equal(result, expected)
- expected = df_multi.loc[
- (Timestamp("2013-06-19 09:30:00", tz=None), "ACCT1", "ABC")
- ]
- result = df_multi.loc[("2013-06-19 09:30:00", "ACCT1", "ABC")]
- tm.assert_series_equal(result, expected)
- # partial string indexing on first level, scalar indexing on the other two
- result = df_multi.loc[("2013-06-19", "ACCT1", "ABC")]
- expected = df_multi.iloc[:1].droplevel([1, 2])
- tm.assert_frame_equal(result, expected)
- def test_partial_slicing_with_multiindex_series(self):
- # GH 4294
- # partial slice on a series mi
- ser = DataFrame(
- np.random.rand(1000, 1000), index=date_range("2000-1-1", periods=1000)
- ).stack()
- s2 = ser[:-1].copy()
- expected = s2["2000-1-4"]
- result = s2[Timestamp("2000-1-4")]
- tm.assert_series_equal(result, expected)
- result = ser[Timestamp("2000-1-4")]
- expected = ser["2000-1-4"]
- tm.assert_series_equal(result, expected)
- df2 = DataFrame(ser)
- expected = df2.xs("2000-1-4")
- result = df2.loc[Timestamp("2000-1-4")]
- tm.assert_frame_equal(result, expected)
- def test_partial_slice_requires_monotonicity(self):
- # Disallowed since 2.0 (GH 37819)
- ser = Series(np.arange(10), date_range("2014-01-01", periods=10))
- nonmonotonic = ser[[3, 5, 4]]
- timestamp = Timestamp("2014-01-10")
- with pytest.raises(
- KeyError, match="Value based partial slicing on non-monotonic"
- ):
- nonmonotonic["2014-01-10":]
- with pytest.raises(KeyError, match=r"Timestamp\('2014-01-10 00:00:00'\)"):
- nonmonotonic[timestamp:]
- with pytest.raises(
- KeyError, match="Value based partial slicing on non-monotonic"
- ):
- nonmonotonic.loc["2014-01-10":]
- with pytest.raises(KeyError, match=r"Timestamp\('2014-01-10 00:00:00'\)"):
- nonmonotonic.loc[timestamp:]
- def test_loc_datetime_length_one(self):
- # GH16071
- df = DataFrame(
- columns=["1"],
- index=date_range("2016-10-01T00:00:00", "2016-10-01T23:59:59"),
- )
- result = df.loc[datetime(2016, 10, 1) :]
- tm.assert_frame_equal(result, df)
- result = df.loc["2016-10-01T00:00:00":]
- tm.assert_frame_equal(result, df)
- @pytest.mark.parametrize(
- "start",
- [
- "2018-12-02 21:50:00+00:00",
- Timestamp("2018-12-02 21:50:00+00:00"),
- Timestamp("2018-12-02 21:50:00+00:00").to_pydatetime(),
- ],
- )
- @pytest.mark.parametrize(
- "end",
- [
- "2018-12-02 21:52:00+00:00",
- Timestamp("2018-12-02 21:52:00+00:00"),
- Timestamp("2018-12-02 21:52:00+00:00").to_pydatetime(),
- ],
- )
- def test_getitem_with_datestring_with_UTC_offset(self, start, end):
- # GH 24076
- idx = date_range(
- start="2018-12-02 14:50:00-07:00",
- end="2018-12-02 14:50:00-07:00",
- freq="1min",
- )
- df = DataFrame(1, index=idx, columns=["A"])
- result = df[start:end]
- expected = df.iloc[0:3, :]
- tm.assert_frame_equal(result, expected)
- # GH 16785
- start = str(start)
- end = str(end)
- with pytest.raises(ValueError, match="Both dates must"):
- df[start : end[:-4] + "1:00"]
- with pytest.raises(ValueError, match="The index must be timezone"):
- df = df.tz_localize(None)
- df[start:end]
- def test_slice_reduce_to_series(self):
- # GH 27516
- df = DataFrame({"A": range(24)}, index=date_range("2000", periods=24, freq="M"))
- expected = Series(
- range(12), index=date_range("2000", periods=12, freq="M"), name="A"
- )
- result = df.loc["2000", "A"]
- tm.assert_series_equal(result, expected)
|