123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import numpy as np
- from pandas import (
- DatetimeIndex,
- NaT,
- PeriodIndex,
- Series,
- TimedeltaIndex,
- date_range,
- period_range,
- timedelta_range,
- )
- import pandas._testing as tm
- class TestValueCounts:
- # GH#7735
- def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
- tz = tz_naive_fixture
- orig = date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz)
- self._check_value_counts_with_repeats(orig)
- def test_value_counts_unique_timedeltaindex(self):
- orig = timedelta_range("1 days 09:00:00", freq="H", periods=10)
- self._check_value_counts_with_repeats(orig)
- def test_value_counts_unique_periodindex(self):
- orig = period_range("2011-01-01 09:00", freq="H", periods=10)
- self._check_value_counts_with_repeats(orig)
- def _check_value_counts_with_repeats(self, orig):
- # create repeated values, 'n'th element is repeated by n+1 times
- idx = type(orig)(
- np.repeat(orig._values, range(1, len(orig) + 1)), dtype=orig.dtype
- )
- exp_idx = orig[::-1]
- if not isinstance(exp_idx, PeriodIndex):
- exp_idx = exp_idx._with_freq(None)
- expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64", name="count")
- for obj in [idx, Series(idx)]:
- tm.assert_series_equal(obj.value_counts(), expected)
- tm.assert_index_equal(idx.unique(), orig)
- def test_value_counts_unique_datetimeindex2(self, tz_naive_fixture):
- tz = tz_naive_fixture
- idx = DatetimeIndex(
- [
- "2013-01-01 09:00",
- "2013-01-01 09:00",
- "2013-01-01 09:00",
- "2013-01-01 08:00",
- "2013-01-01 08:00",
- NaT,
- ],
- tz=tz,
- )
- self._check_value_counts_dropna(idx)
- def test_value_counts_unique_timedeltaindex2(self):
- idx = TimedeltaIndex(
- [
- "1 days 09:00:00",
- "1 days 09:00:00",
- "1 days 09:00:00",
- "1 days 08:00:00",
- "1 days 08:00:00",
- NaT,
- ]
- )
- self._check_value_counts_dropna(idx)
- def test_value_counts_unique_periodindex2(self):
- idx = PeriodIndex(
- [
- "2013-01-01 09:00",
- "2013-01-01 09:00",
- "2013-01-01 09:00",
- "2013-01-01 08:00",
- "2013-01-01 08:00",
- NaT,
- ],
- freq="H",
- )
- self._check_value_counts_dropna(idx)
- def _check_value_counts_dropna(self, idx):
- exp_idx = idx[[2, 3]]
- expected = Series([3, 2], index=exp_idx, name="count")
- for obj in [idx, Series(idx)]:
- tm.assert_series_equal(obj.value_counts(), expected)
- exp_idx = idx[[2, 3, -1]]
- expected = Series([3, 2, 1], index=exp_idx, name="count")
- for obj in [idx, Series(idx)]:
- tm.assert_series_equal(obj.value_counts(dropna=False), expected)
- tm.assert_index_equal(idx.unique(), exp_idx)
|