test_value_counts.py 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. import numpy as np
  2. from pandas import (
  3. DatetimeIndex,
  4. NaT,
  5. PeriodIndex,
  6. Series,
  7. TimedeltaIndex,
  8. date_range,
  9. period_range,
  10. timedelta_range,
  11. )
  12. import pandas._testing as tm
  13. class TestValueCounts:
  14. # GH#7735
  15. def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
  16. tz = tz_naive_fixture
  17. orig = date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz)
  18. self._check_value_counts_with_repeats(orig)
  19. def test_value_counts_unique_timedeltaindex(self):
  20. orig = timedelta_range("1 days 09:00:00", freq="H", periods=10)
  21. self._check_value_counts_with_repeats(orig)
  22. def test_value_counts_unique_periodindex(self):
  23. orig = period_range("2011-01-01 09:00", freq="H", periods=10)
  24. self._check_value_counts_with_repeats(orig)
  25. def _check_value_counts_with_repeats(self, orig):
  26. # create repeated values, 'n'th element is repeated by n+1 times
  27. idx = type(orig)(
  28. np.repeat(orig._values, range(1, len(orig) + 1)), dtype=orig.dtype
  29. )
  30. exp_idx = orig[::-1]
  31. if not isinstance(exp_idx, PeriodIndex):
  32. exp_idx = exp_idx._with_freq(None)
  33. expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64", name="count")
  34. for obj in [idx, Series(idx)]:
  35. tm.assert_series_equal(obj.value_counts(), expected)
  36. tm.assert_index_equal(idx.unique(), orig)
  37. def test_value_counts_unique_datetimeindex2(self, tz_naive_fixture):
  38. tz = tz_naive_fixture
  39. idx = DatetimeIndex(
  40. [
  41. "2013-01-01 09:00",
  42. "2013-01-01 09:00",
  43. "2013-01-01 09:00",
  44. "2013-01-01 08:00",
  45. "2013-01-01 08:00",
  46. NaT,
  47. ],
  48. tz=tz,
  49. )
  50. self._check_value_counts_dropna(idx)
  51. def test_value_counts_unique_timedeltaindex2(self):
  52. idx = TimedeltaIndex(
  53. [
  54. "1 days 09:00:00",
  55. "1 days 09:00:00",
  56. "1 days 09:00:00",
  57. "1 days 08:00:00",
  58. "1 days 08:00:00",
  59. NaT,
  60. ]
  61. )
  62. self._check_value_counts_dropna(idx)
  63. def test_value_counts_unique_periodindex2(self):
  64. idx = PeriodIndex(
  65. [
  66. "2013-01-01 09:00",
  67. "2013-01-01 09:00",
  68. "2013-01-01 09:00",
  69. "2013-01-01 08:00",
  70. "2013-01-01 08:00",
  71. NaT,
  72. ],
  73. freq="H",
  74. )
  75. self._check_value_counts_dropna(idx)
  76. def _check_value_counts_dropna(self, idx):
  77. exp_idx = idx[[2, 3]]
  78. expected = Series([3, 2], index=exp_idx, name="count")
  79. for obj in [idx, Series(idx)]:
  80. tm.assert_series_equal(obj.value_counts(), expected)
  81. exp_idx = idx[[2, 3, -1]]
  82. expected = Series([3, 2, 1], index=exp_idx, name="count")
  83. for obj in [idx, Series(idx)]:
  84. tm.assert_series_equal(obj.value_counts(dropna=False), expected)
  85. tm.assert_index_equal(idx.unique(), exp_idx)