123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- import pytest
- from pandas import (
- DataFrame,
- Index,
- Series,
- )
- import pandas._testing as tm
- @pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)])
- def test_groupby_sample_balanced_groups_shape(n, frac):
- values = [1] * 10 + [2] * 10
- df = DataFrame({"a": values, "b": values})
- result = df.groupby("a").sample(n=n, frac=frac)
- values = [1] * 2 + [2] * 2
- expected = DataFrame({"a": values, "b": values}, index=result.index)
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a")["b"].sample(n=n, frac=frac)
- expected = Series(values, name="b", index=result.index)
- tm.assert_series_equal(result, expected)
- def test_groupby_sample_unbalanced_groups_shape():
- values = [1] * 10 + [2] * 20
- df = DataFrame({"a": values, "b": values})
- result = df.groupby("a").sample(n=5)
- values = [1] * 5 + [2] * 5
- expected = DataFrame({"a": values, "b": values}, index=result.index)
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a")["b"].sample(n=5)
- expected = Series(values, name="b", index=result.index)
- tm.assert_series_equal(result, expected)
- def test_groupby_sample_index_value_spans_groups():
- values = [1] * 3 + [2] * 3
- df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2])
- result = df.groupby("a").sample(n=2)
- values = [1] * 2 + [2] * 2
- expected = DataFrame({"a": values, "b": values}, index=result.index)
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a")["b"].sample(n=2)
- expected = Series(values, name="b", index=result.index)
- tm.assert_series_equal(result, expected)
- def test_groupby_sample_n_and_frac_raises():
- df = DataFrame({"a": [1, 2], "b": [1, 2]})
- msg = "Please enter a value for `frac` OR `n`, not both"
- with pytest.raises(ValueError, match=msg):
- df.groupby("a").sample(n=1, frac=1.0)
- with pytest.raises(ValueError, match=msg):
- df.groupby("a")["b"].sample(n=1, frac=1.0)
- def test_groupby_sample_frac_gt_one_without_replacement_raises():
- df = DataFrame({"a": [1, 2], "b": [1, 2]})
- msg = "Replace has to be set to `True` when upsampling the population `frac` > 1."
- with pytest.raises(ValueError, match=msg):
- df.groupby("a").sample(frac=1.5, replace=False)
- with pytest.raises(ValueError, match=msg):
- df.groupby("a")["b"].sample(frac=1.5, replace=False)
- @pytest.mark.parametrize("n", [-1, 1.5])
- def test_groupby_sample_invalid_n_raises(n):
- df = DataFrame({"a": [1, 2], "b": [1, 2]})
- if n < 0:
- msg = "A negative number of rows requested. Please provide `n` >= 0."
- else:
- msg = "Only integers accepted as `n` values"
- with pytest.raises(ValueError, match=msg):
- df.groupby("a").sample(n=n)
- with pytest.raises(ValueError, match=msg):
- df.groupby("a")["b"].sample(n=n)
- def test_groupby_sample_oversample():
- values = [1] * 10 + [2] * 10
- df = DataFrame({"a": values, "b": values})
- result = df.groupby("a").sample(frac=2.0, replace=True)
- values = [1] * 20 + [2] * 20
- expected = DataFrame({"a": values, "b": values}, index=result.index)
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a")["b"].sample(frac=2.0, replace=True)
- expected = Series(values, name="b", index=result.index)
- tm.assert_series_equal(result, expected)
- def test_groupby_sample_without_n_or_frac():
- values = [1] * 10 + [2] * 10
- df = DataFrame({"a": values, "b": values})
- result = df.groupby("a").sample(n=None, frac=None)
- expected = DataFrame({"a": [1, 2], "b": [1, 2]}, index=result.index)
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a")["b"].sample(n=None, frac=None)
- expected = Series([1, 2], name="b", index=result.index)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "index, expected_index",
- [(["w", "x", "y", "z"], ["w", "w", "y", "y"]), ([3, 4, 5, 6], [3, 3, 5, 5])],
- )
- def test_groupby_sample_with_weights(index, expected_index):
- # GH 39927 - tests for integer index needed
- values = [1] * 2 + [2] * 2
- df = DataFrame({"a": values, "b": values}, index=Index(index))
- result = df.groupby("a").sample(n=2, replace=True, weights=[1, 0, 1, 0])
- expected = DataFrame({"a": values, "b": values}, index=Index(expected_index))
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a")["b"].sample(n=2, replace=True, weights=[1, 0, 1, 0])
- expected = Series(values, name="b", index=Index(expected_index))
- tm.assert_series_equal(result, expected)
- def test_groupby_sample_with_selections():
- # GH 39928
- values = [1] * 10 + [2] * 10
- df = DataFrame({"a": values, "b": values, "c": values})
- result = df.groupby("a")[["b", "c"]].sample(n=None, frac=None)
- expected = DataFrame({"b": [1, 2], "c": [1, 2]}, index=result.index)
- tm.assert_frame_equal(result, expected)
- def test_groupby_sample_with_empty_inputs():
- # GH48459
- df = DataFrame({"a": [], "b": []})
- groupby_df = df.groupby("a")
- result = groupby_df.sample()
- expected = df
- tm.assert_frame_equal(result, expected)
|