123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- import datetime as dt
- from string import ascii_lowercase
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- MultiIndex,
- NaT,
- Series,
- Timestamp,
- date_range,
- )
- import pandas._testing as tm
- @pytest.mark.slow
- @pytest.mark.parametrize("n", 10 ** np.arange(2, 6))
- @pytest.mark.parametrize("m", [10, 100, 1000])
- @pytest.mark.parametrize("sort", [False, True])
- @pytest.mark.parametrize("dropna", [False, True])
- def test_series_groupby_nunique(n, m, sort, dropna):
- def check_nunique(df, keys, as_index=True):
- original_df = df.copy()
- gr = df.groupby(keys, as_index=as_index, sort=sort)
- left = gr["julie"].nunique(dropna=dropna)
- gr = df.groupby(keys, as_index=as_index, sort=sort)
- right = gr["julie"].apply(Series.nunique, dropna=dropna)
- if not as_index:
- right = right.reset_index(drop=True)
- if as_index:
- tm.assert_series_equal(left, right, check_names=False)
- else:
- tm.assert_frame_equal(left, right, check_names=False)
- tm.assert_frame_equal(df, original_df)
- days = date_range("2015-08-23", periods=10)
- frame = DataFrame(
- {
- "jim": np.random.choice(list(ascii_lowercase), n),
- "joe": np.random.choice(days, n),
- "julie": np.random.randint(0, m, n),
- }
- )
- check_nunique(frame, ["jim"])
- check_nunique(frame, ["jim", "joe"])
- frame.loc[1::17, "jim"] = None
- frame.loc[3::37, "joe"] = None
- frame.loc[7::19, "julie"] = None
- frame.loc[8::19, "julie"] = None
- frame.loc[9::19, "julie"] = None
- check_nunique(frame, ["jim"])
- check_nunique(frame, ["jim", "joe"])
- check_nunique(frame, ["jim"], as_index=False)
- check_nunique(frame, ["jim", "joe"], as_index=False)
- def test_nunique():
- df = DataFrame({"A": list("abbacc"), "B": list("abxacc"), "C": list("abbacx")})
- expected = DataFrame({"A": list("abc"), "B": [1, 2, 1], "C": [1, 1, 2]})
- result = df.groupby("A", as_index=False).nunique()
- tm.assert_frame_equal(result, expected)
- # as_index
- expected.index = list("abc")
- expected.index.name = "A"
- expected = expected.drop(columns="A")
- result = df.groupby("A").nunique()
- tm.assert_frame_equal(result, expected)
- # with na
- result = df.replace({"x": None}).groupby("A").nunique(dropna=False)
- tm.assert_frame_equal(result, expected)
- # dropna
- expected = DataFrame({"B": [1] * 3, "C": [1] * 3}, index=list("abc"))
- expected.index.name = "A"
- result = df.replace({"x": None}).groupby("A").nunique()
- tm.assert_frame_equal(result, expected)
- def test_nunique_with_object():
- # GH 11077
- data = DataFrame(
- [
- [100, 1, "Alice"],
- [200, 2, "Bob"],
- [300, 3, "Charlie"],
- [-400, 4, "Dan"],
- [500, 5, "Edith"],
- ],
- columns=["amount", "id", "name"],
- )
- result = data.groupby(["id", "amount"])["name"].nunique()
- index = MultiIndex.from_arrays([data.id, data.amount])
- expected = Series([1] * 5, name="name", index=index)
- tm.assert_series_equal(result, expected)
- def test_nunique_with_empty_series():
- # GH 12553
- data = Series(name="name", dtype=object)
- result = data.groupby(level=0).nunique()
- expected = Series(name="name", dtype="int64")
- tm.assert_series_equal(result, expected)
- def test_nunique_with_timegrouper():
- # GH 13453
- test = DataFrame(
- {
- "time": [
- Timestamp("2016-06-28 09:35:35"),
- Timestamp("2016-06-28 16:09:30"),
- Timestamp("2016-06-28 16:46:28"),
- ],
- "data": ["1", "2", "3"],
- }
- ).set_index("time")
- result = test.groupby(pd.Grouper(freq="h"))["data"].nunique()
- expected = test.groupby(pd.Grouper(freq="h"))["data"].apply(Series.nunique)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "key, data, dropna, expected",
- [
- (
- ["x", "x", "x"],
- [Timestamp("2019-01-01"), NaT, Timestamp("2019-01-01")],
- True,
- Series([1], index=pd.Index(["x"], name="key"), name="data"),
- ),
- (
- ["x", "x", "x"],
- [dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1)],
- True,
- Series([1], index=pd.Index(["x"], name="key"), name="data"),
- ),
- (
- ["x", "x", "x", "y", "y"],
- [dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1)],
- False,
- Series([2, 2], index=pd.Index(["x", "y"], name="key"), name="data"),
- ),
- (
- ["x", "x", "x", "x", "y"],
- [dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1)],
- False,
- Series([2, 1], index=pd.Index(["x", "y"], name="key"), name="data"),
- ),
- ],
- )
- def test_nunique_with_NaT(key, data, dropna, expected):
- # GH 27951
- df = DataFrame({"key": key, "data": data})
- result = df.groupby(["key"])["data"].nunique(dropna=dropna)
- tm.assert_series_equal(result, expected)
- def test_nunique_preserves_column_level_names():
- # GH 23222
- test = DataFrame([1, 2, 2], columns=pd.Index(["A"], name="level_0"))
- result = test.groupby([0, 0, 0]).nunique()
- expected = DataFrame([2], index=np.array([0]), columns=test.columns)
- tm.assert_frame_equal(result, expected)
- def test_nunique_transform_with_datetime():
- # GH 35109 - transform with nunique on datetimes results in integers
- df = DataFrame(date_range("2008-12-31", "2009-01-02"), columns=["date"])
- result = df.groupby([0, 0, 1])["date"].transform("nunique")
- expected = Series([2, 2, 1], name="date")
- tm.assert_series_equal(result, expected)
- def test_empty_categorical(observed):
- # GH#21334
- cat = Series([1]).astype("category")
- ser = cat[:0]
- gb = ser.groupby(ser, observed=observed)
- result = gb.nunique()
- if observed:
- expected = Series([], index=cat[:0], dtype="int64")
- else:
- expected = Series([0], index=cat, dtype="int64")
- tm.assert_series_equal(result, expected)
|