123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- date_range,
- )
- import pandas._testing as tm
- @pytest.mark.parametrize("func", ["ffill", "bfill"])
- def test_groupby_column_index_name_lost_fill_funcs(func):
- # GH: 29764 groupby loses index sometimes
- df = DataFrame(
- [[1, 1.0, -1.0], [1, np.nan, np.nan], [1, 2.0, -2.0]],
- columns=Index(["type", "a", "b"], name="idx"),
- )
- df_grouped = df.groupby(["type"])[["a", "b"]]
- result = getattr(df_grouped, func)().columns
- expected = Index(["a", "b"], name="idx")
- tm.assert_index_equal(result, expected)
- @pytest.mark.parametrize("func", ["ffill", "bfill"])
- def test_groupby_fill_duplicate_column_names(func):
- # GH: 25610 ValueError with duplicate column names
- df1 = DataFrame({"field1": [1, 3, 4], "field2": [1, 3, 4]})
- df2 = DataFrame({"field1": [1, np.nan, 4]})
- df_grouped = pd.concat([df1, df2], axis=1).groupby(by=["field2"])
- expected = DataFrame(
- [[1, 1.0], [3, np.nan], [4, 4.0]], columns=["field1", "field1"]
- )
- result = getattr(df_grouped, func)()
- tm.assert_frame_equal(result, expected)
- def test_ffill_missing_arguments():
- # GH 14955
- df = DataFrame({"a": [1, 2], "b": [1, 1]})
- with pytest.raises(ValueError, match="Must specify a fill"):
- df.groupby("b").fillna()
- @pytest.mark.parametrize(
- "method, expected", [("ffill", [None, "a", "a"]), ("bfill", ["a", "a", None])]
- )
- def test_fillna_with_string_dtype(method, expected):
- # GH 40250
- df = DataFrame({"a": pd.array([None, "a", None], dtype="string"), "b": [0, 0, 0]})
- grp = df.groupby("b")
- result = grp.fillna(method=method)
- expected = DataFrame({"a": pd.array(expected, dtype="string")})
- tm.assert_frame_equal(result, expected)
- def test_fill_consistency():
- # GH9221
- # pass thru keyword arguments to the generated wrapper
- # are set if the passed kw is None (only)
- df = DataFrame(
- index=pd.MultiIndex.from_product(
- [["value1", "value2"], date_range("2014-01-01", "2014-01-06")]
- ),
- columns=Index(["1", "2"], name="id"),
- )
- df["1"] = [
- np.nan,
- 1,
- np.nan,
- np.nan,
- 11,
- np.nan,
- np.nan,
- 2,
- np.nan,
- np.nan,
- 22,
- np.nan,
- ]
- df["2"] = [
- np.nan,
- 3,
- np.nan,
- np.nan,
- 33,
- np.nan,
- np.nan,
- 4,
- np.nan,
- np.nan,
- 44,
- np.nan,
- ]
- expected = df.groupby(level=0, axis=0).fillna(method="ffill")
- result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("method", ["ffill", "bfill"])
- @pytest.mark.parametrize("dropna", [True, False])
- @pytest.mark.parametrize("has_nan_group", [True, False])
- def test_ffill_handles_nan_groups(dropna, method, has_nan_group):
- # GH 34725
- df_without_nan_rows = DataFrame([(1, 0.1), (2, 0.2)])
- ridx = [-1, 0, -1, -1, 1, -1]
- df = df_without_nan_rows.reindex(ridx).reset_index(drop=True)
- group_b = np.nan if has_nan_group else "b"
- df["group_col"] = pd.Series(["a"] * 3 + [group_b] * 3)
- grouped = df.groupby(by="group_col", dropna=dropna)
- result = getattr(grouped, method)(limit=None)
- expected_rows = {
- ("ffill", True, True): [-1, 0, 0, -1, -1, -1],
- ("ffill", True, False): [-1, 0, 0, -1, 1, 1],
- ("ffill", False, True): [-1, 0, 0, -1, 1, 1],
- ("ffill", False, False): [-1, 0, 0, -1, 1, 1],
- ("bfill", True, True): [0, 0, -1, -1, -1, -1],
- ("bfill", True, False): [0, 0, -1, 1, 1, -1],
- ("bfill", False, True): [0, 0, -1, 1, 1, -1],
- ("bfill", False, False): [0, 0, -1, 1, 1, -1],
- }
- ridx = expected_rows.get((method, dropna, has_nan_group))
- expected = df_without_nan_rows.reindex(ridx).reset_index(drop=True)
- # columns are a 'take' on df.columns, which are object dtype
- expected.columns = expected.columns.astype(object)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("min_count, value", [(2, np.nan), (-1, 1.0)])
- @pytest.mark.parametrize("func", ["first", "last", "max", "min"])
- def test_min_count(func, min_count, value):
- # GH#37821
- df = DataFrame({"a": [1] * 3, "b": [1, np.nan, np.nan], "c": [np.nan] * 3})
- result = getattr(df.groupby("a"), func)(min_count=min_count)
- expected = DataFrame({"b": [value], "c": [np.nan]}, index=Index([1], name="a"))
- tm.assert_frame_equal(result, expected)
- def test_indices_with_missing():
- # GH 9304
- df = DataFrame({"a": [1, 1, np.nan], "b": [2, 3, 4], "c": [5, 6, 7]})
- g = df.groupby(["a", "b"])
- result = g.indices
- expected = {(1.0, 2): np.array([0]), (1.0, 3): np.array([1])}
- assert result == expected
|