12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837 |
- from datetime import datetime
- from decimal import Decimal
- import numpy as np
- import pytest
- from pandas.compat import IS64
- from pandas.errors import (
- PerformanceWarning,
- SpecificationError,
- )
- import pandas as pd
- from pandas import (
- Categorical,
- DataFrame,
- Grouper,
- Index,
- MultiIndex,
- RangeIndex,
- Series,
- Timedelta,
- Timestamp,
- date_range,
- to_datetime,
- )
- import pandas._testing as tm
- from pandas.core.arrays import BooleanArray
- import pandas.core.common as com
- from pandas.tests.groupby import get_groupby_method_args
- def test_repr():
- # GH18203
- result = repr(Grouper(key="A", level="B"))
- expected = "Grouper(key='A', level='B', axis=0, sort=False, dropna=True)"
- assert result == expected
- def test_groupby_std_datetimelike():
- # GH#48481
- tdi = pd.timedelta_range("1 Day", periods=10000)
- ser = Series(tdi)
- ser[::5] *= 2 # get different std for different groups
- df = ser.to_frame("A")
- df["B"] = ser + Timestamp(0)
- df["C"] = ser + Timestamp(0, tz="UTC")
- df.iloc[-1] = pd.NaT # last group includes NaTs
- gb = df.groupby(list(range(5)) * 2000)
- result = gb.std()
- # Note: this does not _exactly_ match what we would get if we did
- # [gb.get_group(i).std() for i in gb.groups]
- # but it _does_ match the floating point error we get doing the
- # same operation on int64 data xref GH#51332
- td1 = Timedelta("2887 days 11:21:02.326710176")
- td4 = Timedelta("2886 days 00:42:34.664668096")
- exp_ser = Series([td1 * 2, td1, td1, td1, td4], index=np.arange(5))
- expected = DataFrame({"A": exp_ser, "B": exp_ser, "C": exp_ser})
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"])
- def test_basic(dtype):
- data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype)
- index = np.arange(9)
- np.random.shuffle(index)
- data = data.reindex(index)
- grouped = data.groupby(lambda x: x // 3, group_keys=False)
- for k, v in grouped:
- assert len(v) == 3
- agged = grouped.aggregate(np.mean)
- assert agged[1] == 1
- tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand
- tm.assert_series_equal(agged, grouped.mean())
- tm.assert_series_equal(grouped.agg(np.sum), grouped.sum())
- expected = grouped.apply(lambda x: x * x.sum())
- transformed = grouped.transform(lambda x: x * x.sum())
- assert transformed[7] == 12
- tm.assert_series_equal(transformed, expected)
- value_grouped = data.groupby(data)
- tm.assert_series_equal(
- value_grouped.aggregate(np.mean), agged, check_index_type=False
- )
- # complex agg
- agged = grouped.aggregate([np.mean, np.std])
- msg = r"nested renamer is not supported"
- with pytest.raises(SpecificationError, match=msg):
- grouped.aggregate({"one": np.mean, "two": np.std})
- group_constants = {0: 10, 1: 20, 2: 30}
- agged = grouped.agg(lambda x: group_constants[x.name] + x.mean())
- assert agged[1] == 21
- # corner cases
- msg = "Must produce aggregated value"
- # exception raised is type Exception
- with pytest.raises(Exception, match=msg):
- grouped.aggregate(lambda x: x * 2)
- def test_groupby_nonobject_dtype(mframe, df_mixed_floats):
- key = mframe.index.codes[0]
- grouped = mframe.groupby(key)
- result = grouped.sum()
- expected = mframe.groupby(key.astype("O")).sum()
- assert result.index.dtype == np.int8
- assert expected.index.dtype == np.int64
- tm.assert_frame_equal(result, expected, check_index_type=False)
- # GH 3911, mixed frame non-conversion
- df = df_mixed_floats.copy()
- df["value"] = range(len(df))
- def max_value(group):
- return group.loc[group["value"].idxmax()]
- applied = df.groupby("A").apply(max_value)
- result = applied.dtypes
- expected = df.dtypes
- tm.assert_series_equal(result, expected)
- def test_inconsistent_return_type():
- # GH5592
- # inconsistent return type
- df = DataFrame(
- {
- "A": ["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"],
- "B": Series(np.arange(7), dtype="int64"),
- "C": date_range("20130101", periods=7),
- }
- )
- def f_0(grp):
- return grp.iloc[0]
- expected = df.groupby("A").first()[["B"]]
- result = df.groupby("A").apply(f_0)[["B"]]
- tm.assert_frame_equal(result, expected)
- def f_1(grp):
- if grp.name == "Tiger":
- return None
- return grp.iloc[0]
- result = df.groupby("A").apply(f_1)[["B"]]
- e = expected.copy()
- e.loc["Tiger"] = np.nan
- tm.assert_frame_equal(result, e)
- def f_2(grp):
- if grp.name == "Pony":
- return None
- return grp.iloc[0]
- result = df.groupby("A").apply(f_2)[["B"]]
- e = expected.copy()
- e.loc["Pony"] = np.nan
- tm.assert_frame_equal(result, e)
- # 5592 revisited, with datetimes
- def f_3(grp):
- if grp.name == "Pony":
- return None
- return grp.iloc[0]
- result = df.groupby("A").apply(f_3)[["C"]]
- e = df.groupby("A").first()[["C"]]
- e.loc["Pony"] = pd.NaT
- tm.assert_frame_equal(result, e)
- # scalar outputs
- def f_4(grp):
- if grp.name == "Pony":
- return None
- return grp.iloc[0].loc["C"]
- result = df.groupby("A").apply(f_4)
- e = df.groupby("A").first()["C"].copy()
- e.loc["Pony"] = np.nan
- e.name = None
- tm.assert_series_equal(result, e)
- def test_pass_args_kwargs(ts, tsframe):
- def f(x, q=None, axis=0):
- return np.percentile(x, q, axis=axis)
- g = lambda x: np.percentile(x, 80, axis=0)
- # Series
- ts_grouped = ts.groupby(lambda x: x.month)
- agg_result = ts_grouped.agg(np.percentile, 80, axis=0)
- apply_result = ts_grouped.apply(np.percentile, 80, axis=0)
- trans_result = ts_grouped.transform(np.percentile, 80, axis=0)
- agg_expected = ts_grouped.quantile(0.8)
- trans_expected = ts_grouped.transform(g)
- tm.assert_series_equal(apply_result, agg_expected)
- tm.assert_series_equal(agg_result, agg_expected)
- tm.assert_series_equal(trans_result, trans_expected)
- agg_result = ts_grouped.agg(f, q=80)
- apply_result = ts_grouped.apply(f, q=80)
- trans_result = ts_grouped.transform(f, q=80)
- tm.assert_series_equal(agg_result, agg_expected)
- tm.assert_series_equal(apply_result, agg_expected)
- tm.assert_series_equal(trans_result, trans_expected)
- # DataFrame
- for as_index in [True, False]:
- df_grouped = tsframe.groupby(lambda x: x.month, as_index=as_index)
- agg_result = df_grouped.agg(np.percentile, 80, axis=0)
- apply_result = df_grouped.apply(DataFrame.quantile, 0.8)
- expected = df_grouped.quantile(0.8)
- tm.assert_frame_equal(apply_result, expected, check_names=False)
- tm.assert_frame_equal(agg_result, expected)
- apply_result = df_grouped.apply(DataFrame.quantile, [0.4, 0.8])
- expected_seq = df_grouped.quantile([0.4, 0.8])
- tm.assert_frame_equal(apply_result, expected_seq, check_names=False)
- agg_result = df_grouped.agg(f, q=80)
- apply_result = df_grouped.apply(DataFrame.quantile, q=0.8)
- tm.assert_frame_equal(agg_result, expected)
- tm.assert_frame_equal(apply_result, expected, check_names=False)
- @pytest.mark.parametrize("as_index", [True, False])
- def test_pass_args_kwargs_duplicate_columns(tsframe, as_index):
- # go through _aggregate_frame with self.axis == 0 and duplicate columns
- tsframe.columns = ["A", "B", "A", "C"]
- gb = tsframe.groupby(lambda x: x.month, as_index=as_index)
- res = gb.agg(np.percentile, 80, axis=0)
- ex_data = {
- 1: tsframe[tsframe.index.month == 1].quantile(0.8),
- 2: tsframe[tsframe.index.month == 2].quantile(0.8),
- }
- expected = DataFrame(ex_data).T
- expected.index = expected.index.astype(np.int32)
- if not as_index:
- # TODO: try to get this more consistent?
- expected.index = Index(range(2))
- tm.assert_frame_equal(res, expected)
- def test_len():
- df = tm.makeTimeDataFrame()
- grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day])
- assert len(grouped) == len(df)
- grouped = df.groupby([lambda x: x.year, lambda x: x.month])
- expected = len({(x.year, x.month) for x in df.index})
- assert len(grouped) == expected
- # issue 11016
- df = DataFrame({"a": [np.nan] * 3, "b": [1, 2, 3]})
- assert len(df.groupby("a")) == 0
- assert len(df.groupby("b")) == 3
- assert len(df.groupby(["a", "b"])) == 3
- def test_basic_regression():
- # regression
- result = Series([1.0 * x for x in list(range(1, 10)) * 10])
- data = np.random.random(1100) * 10.0
- groupings = Series(data)
- grouped = result.groupby(groupings)
- grouped.mean()
- @pytest.mark.parametrize(
- "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"]
- )
- def test_with_na_groups(dtype):
- index = Index(np.arange(10))
- values = Series(np.ones(10), index, dtype=dtype)
- labels = Series(
- [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"],
- index=index,
- )
- # this SHOULD be an int
- grouped = values.groupby(labels)
- agged = grouped.agg(len)
- expected = Series([4, 2], index=["bar", "foo"])
- tm.assert_series_equal(agged, expected, check_dtype=False)
- # assert issubclass(agged.dtype.type, np.integer)
- # explicitly return a float from my function
- def f(x):
- return float(len(x))
- agged = grouped.agg(f)
- expected = Series([4.0, 2.0], index=["bar", "foo"])
- tm.assert_series_equal(agged, expected)
- def test_indices_concatenation_order():
- # GH 2808
- def f1(x):
- y = x[(x.b % 2) == 1] ** 2
- if y.empty:
- multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"])
- res = DataFrame(columns=["a"], index=multiindex)
- return res
- else:
- y = y.set_index(["b", "c"])
- return y
- def f2(x):
- y = x[(x.b % 2) == 1] ** 2
- if y.empty:
- return DataFrame()
- else:
- y = y.set_index(["b", "c"])
- return y
- def f3(x):
- y = x[(x.b % 2) == 1] ** 2
- if y.empty:
- multiindex = MultiIndex(
- levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"]
- )
- res = DataFrame(columns=["a", "b"], index=multiindex)
- return res
- else:
- return y
- df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)})
- df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)})
- # correct result
- result1 = df.groupby("a").apply(f1)
- result2 = df2.groupby("a").apply(f1)
- tm.assert_frame_equal(result1, result2)
- # should fail (not the same number of levels)
- msg = "Cannot concat indices that do not have the same number of levels"
- with pytest.raises(AssertionError, match=msg):
- df.groupby("a").apply(f2)
- with pytest.raises(AssertionError, match=msg):
- df2.groupby("a").apply(f2)
- # should fail (incorrect shape)
- with pytest.raises(AssertionError, match=msg):
- df.groupby("a").apply(f3)
- with pytest.raises(AssertionError, match=msg):
- df2.groupby("a").apply(f3)
- def test_attr_wrapper(ts):
- grouped = ts.groupby(lambda x: x.weekday())
- result = grouped.std()
- expected = grouped.agg(lambda x: np.std(x, ddof=1))
- tm.assert_series_equal(result, expected)
- # this is pretty cool
- result = grouped.describe()
- expected = {name: gp.describe() for name, gp in grouped}
- expected = DataFrame(expected).T
- tm.assert_frame_equal(result, expected)
- # get attribute
- result = grouped.dtype
- expected = grouped.agg(lambda x: x.dtype)
- tm.assert_series_equal(result, expected)
- # make sure raises error
- msg = "'SeriesGroupBy' object has no attribute 'foo'"
- with pytest.raises(AttributeError, match=msg):
- getattr(grouped, "foo")
- def test_frame_groupby(tsframe):
- grouped = tsframe.groupby(lambda x: x.weekday())
- # aggregate
- aggregated = grouped.aggregate(np.mean)
- assert len(aggregated) == 5
- assert len(aggregated.columns) == 4
- # by string
- tscopy = tsframe.copy()
- tscopy["weekday"] = [x.weekday() for x in tscopy.index]
- stragged = tscopy.groupby("weekday").aggregate(np.mean)
- tm.assert_frame_equal(stragged, aggregated, check_names=False)
- # transform
- grouped = tsframe.head(30).groupby(lambda x: x.weekday())
- transformed = grouped.transform(lambda x: x - x.mean())
- assert len(transformed) == 30
- assert len(transformed.columns) == 4
- # transform propagate
- transformed = grouped.transform(lambda x: x.mean())
- for name, group in grouped:
- mean = group.mean()
- for idx in group.index:
- tm.assert_series_equal(transformed.xs(idx), mean, check_names=False)
- # iterate
- for weekday, group in grouped:
- assert group.index[0].weekday() == weekday
- # groups / group_indices
- groups = grouped.groups
- indices = grouped.indices
- for k, v in groups.items():
- samething = tsframe.index.take(indices[k])
- assert (samething == v).all()
- def test_frame_groupby_columns(tsframe):
- mapping = {"A": 0, "B": 0, "C": 1, "D": 1}
- grouped = tsframe.groupby(mapping, axis=1)
- # aggregate
- aggregated = grouped.aggregate(np.mean)
- assert len(aggregated) == len(tsframe)
- assert len(aggregated.columns) == 2
- # transform
- tf = lambda x: x - x.mean()
- groupedT = tsframe.T.groupby(mapping, axis=0)
- tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf))
- # iterate
- for k, v in grouped:
- assert len(v.columns) == 2
- def test_frame_set_name_single(df):
- grouped = df.groupby("A")
- result = grouped.mean(numeric_only=True)
- assert result.index.name == "A"
- result = df.groupby("A", as_index=False).mean(numeric_only=True)
- assert result.index.name != "A"
- result = grouped[["C", "D"]].agg(np.mean)
- assert result.index.name == "A"
- result = grouped.agg({"C": np.mean, "D": np.std})
- assert result.index.name == "A"
- result = grouped["C"].mean()
- assert result.index.name == "A"
- result = grouped["C"].agg(np.mean)
- assert result.index.name == "A"
- result = grouped["C"].agg([np.mean, np.std])
- assert result.index.name == "A"
- msg = r"nested renamer is not supported"
- with pytest.raises(SpecificationError, match=msg):
- grouped["C"].agg({"foo": np.mean, "bar": np.std})
- def test_multi_func(df):
- col1 = df["A"]
- col2 = df["B"]
- grouped = df.groupby([col1.get, col2.get])
- agged = grouped.mean(numeric_only=True)
- expected = df.groupby(["A", "B"]).mean()
- # TODO groupby get drops names
- tm.assert_frame_equal(
- agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False
- )
- # some "groups" with no data
- df = DataFrame(
- {
- "v1": np.random.randn(6),
- "v2": np.random.randn(6),
- "k1": np.array(["b", "b", "b", "a", "a", "a"]),
- "k2": np.array(["1", "1", "1", "2", "2", "2"]),
- },
- index=["one", "two", "three", "four", "five", "six"],
- )
- # only verify that it works for now
- grouped = df.groupby(["k1", "k2"])
- grouped.agg(np.sum)
- def test_multi_key_multiple_functions(df):
- grouped = df.groupby(["A", "B"])["C"]
- agged = grouped.agg([np.mean, np.std])
- expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)})
- tm.assert_frame_equal(agged, expected)
- def test_frame_multi_key_function_list():
- data = DataFrame(
- {
- "A": [
- "foo",
- "foo",
- "foo",
- "foo",
- "bar",
- "bar",
- "bar",
- "bar",
- "foo",
- "foo",
- "foo",
- ],
- "B": [
- "one",
- "one",
- "one",
- "two",
- "one",
- "one",
- "one",
- "two",
- "two",
- "two",
- "one",
- ],
- "D": np.random.randn(11),
- "E": np.random.randn(11),
- "F": np.random.randn(11),
- }
- )
- grouped = data.groupby(["A", "B"])
- funcs = [np.mean, np.std]
- agged = grouped.agg(funcs)
- expected = pd.concat(
- [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)],
- keys=["D", "E", "F"],
- axis=1,
- )
- assert isinstance(agged.index, MultiIndex)
- assert isinstance(expected.index, MultiIndex)
- tm.assert_frame_equal(agged, expected)
- def test_frame_multi_key_function_list_partial_failure():
- data = DataFrame(
- {
- "A": [
- "foo",
- "foo",
- "foo",
- "foo",
- "bar",
- "bar",
- "bar",
- "bar",
- "foo",
- "foo",
- "foo",
- ],
- "B": [
- "one",
- "one",
- "one",
- "two",
- "one",
- "one",
- "one",
- "two",
- "two",
- "two",
- "one",
- ],
- "C": [
- "dull",
- "dull",
- "shiny",
- "dull",
- "dull",
- "shiny",
- "shiny",
- "dull",
- "shiny",
- "shiny",
- "shiny",
- ],
- "D": np.random.randn(11),
- "E": np.random.randn(11),
- "F": np.random.randn(11),
- }
- )
- grouped = data.groupby(["A", "B"])
- funcs = [np.mean, np.std]
- with pytest.raises(TypeError, match="Could not convert dullshinyshiny to numeric"):
- grouped.agg(funcs)
- @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()])
- def test_groupby_multiple_columns(df, op):
- data = df
- grouped = data.groupby(["A", "B"])
- result1 = op(grouped)
- keys = []
- values = []
- for n1, gp1 in data.groupby("A"):
- for n2, gp2 in gp1.groupby("B"):
- keys.append((n1, n2))
- values.append(op(gp2.loc[:, ["C", "D"]]))
- mi = MultiIndex.from_tuples(keys, names=["A", "B"])
- expected = pd.concat(values, axis=1).T
- expected.index = mi
- # a little bit crude
- for col in ["C", "D"]:
- result_col = op(grouped[col])
- pivoted = result1[col]
- exp = expected[col]
- tm.assert_series_equal(result_col, exp)
- tm.assert_series_equal(pivoted, exp)
- # test single series works the same
- result = data["C"].groupby([data["A"], data["B"]]).mean()
- expected = data.groupby(["A", "B"]).mean()["C"]
- tm.assert_series_equal(result, expected)
- def test_as_index_select_column():
- # GH 5764
- df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
- result = df.groupby("A", as_index=False)["B"].get_group(1)
- expected = Series([2, 4], name="B")
- tm.assert_series_equal(result, expected)
- result = df.groupby("A", as_index=False, group_keys=True)["B"].apply(
- lambda x: x.cumsum()
- )
- expected = Series(
- [2, 6, 6], name="B", index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)])
- )
- tm.assert_series_equal(result, expected)
- def test_groupby_as_index_select_column_sum_empty_df():
- # GH 35246
- df = DataFrame(columns=Index(["A", "B", "C"], name="alpha"))
- left = df.groupby(by="A", as_index=False)["B"].sum(numeric_only=False)
- expected = DataFrame(columns=df.columns[:2], index=range(0))
- # GH#50744 - Columns after selection shouldn't retain names
- expected.columns.names = [None]
- tm.assert_frame_equal(left, expected)
- def test_groupby_as_index_agg(df):
- grouped = df.groupby("A", as_index=False)
- # single-key
- result = grouped[["C", "D"]].agg(np.mean)
- expected = grouped.mean(numeric_only=True)
- tm.assert_frame_equal(result, expected)
- result2 = grouped.agg({"C": np.mean, "D": np.sum})
- expected2 = grouped.mean(numeric_only=True)
- expected2["D"] = grouped.sum()["D"]
- tm.assert_frame_equal(result2, expected2)
- grouped = df.groupby("A", as_index=True)
- msg = r"nested renamer is not supported"
- with pytest.raises(SpecificationError, match=msg):
- grouped["C"].agg({"Q": np.sum})
- # multi-key
- grouped = df.groupby(["A", "B"], as_index=False)
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- result2 = grouped.agg({"C": np.mean, "D": np.sum})
- expected2 = grouped.mean()
- expected2["D"] = grouped.sum()["D"]
- tm.assert_frame_equal(result2, expected2)
- expected3 = grouped["C"].sum()
- expected3 = DataFrame(expected3).rename(columns={"C": "Q"})
- result3 = grouped["C"].agg({"Q": np.sum})
- tm.assert_frame_equal(result3, expected3)
- # GH7115 & GH8112 & GH8582
- df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"])
- ts = Series(np.random.randint(5, 10, 50), name="jim")
- gr = df.groupby(ts)
- gr.nth(0) # invokes set_selection_from_grouper internally
- tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum))
- for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]:
- gr = df.groupby(ts, as_index=False)
- left = getattr(gr, attr)()
- gr = df.groupby(ts.values, as_index=True)
- right = getattr(gr, attr)().reset_index(drop=True)
- tm.assert_frame_equal(left, right)
- def test_ops_not_as_index(reduction_func):
- # GH 10355, 21090
- # Using as_index=False should not modify grouped column
- if reduction_func in ("corrwith", "nth", "ngroup"):
- pytest.skip(f"GH 5755: Test not applicable for {reduction_func}")
- df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"])
- expected = getattr(df.groupby("a"), reduction_func)()
- if reduction_func == "size":
- expected = expected.rename("size")
- expected = expected.reset_index()
- if reduction_func != "size":
- # 32 bit compat -> groupby preserves dtype whereas reset_index casts to int64
- expected["a"] = expected["a"].astype(df["a"].dtype)
- g = df.groupby("a", as_index=False)
- result = getattr(g, reduction_func)()
- tm.assert_frame_equal(result, expected)
- result = g.agg(reduction_func)
- tm.assert_frame_equal(result, expected)
- result = getattr(g["b"], reduction_func)()
- tm.assert_frame_equal(result, expected)
- result = g["b"].agg(reduction_func)
- tm.assert_frame_equal(result, expected)
- def test_as_index_series_return_frame(df):
- grouped = df.groupby("A", as_index=False)
- grouped2 = df.groupby(["A", "B"], as_index=False)
- result = grouped["C"].agg(np.sum)
- expected = grouped.agg(np.sum).loc[:, ["A", "C"]]
- assert isinstance(result, DataFrame)
- tm.assert_frame_equal(result, expected)
- result2 = grouped2["C"].agg(np.sum)
- expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]]
- assert isinstance(result2, DataFrame)
- tm.assert_frame_equal(result2, expected2)
- result = grouped["C"].sum()
- expected = grouped.sum().loc[:, ["A", "C"]]
- assert isinstance(result, DataFrame)
- tm.assert_frame_equal(result, expected)
- result2 = grouped2["C"].sum()
- expected2 = grouped2.sum().loc[:, ["A", "B", "C"]]
- assert isinstance(result2, DataFrame)
- tm.assert_frame_equal(result2, expected2)
- def test_as_index_series_column_slice_raises(df):
- # GH15072
- grouped = df.groupby("A", as_index=False)
- msg = r"Column\(s\) C already selected"
- with pytest.raises(IndexError, match=msg):
- grouped["C"].__getitem__("D")
- def test_groupby_as_index_cython(df):
- data = df
- # single-key
- grouped = data.groupby("A", as_index=False)
- result = grouped.mean(numeric_only=True)
- expected = data.groupby(["A"]).mean(numeric_only=True)
- expected.insert(0, "A", expected.index)
- expected.index = RangeIndex(len(expected))
- tm.assert_frame_equal(result, expected)
- # multi-key
- grouped = data.groupby(["A", "B"], as_index=False)
- result = grouped.mean()
- expected = data.groupby(["A", "B"]).mean()
- arrays = list(zip(*expected.index.values))
- expected.insert(0, "A", arrays[0])
- expected.insert(1, "B", arrays[1])
- expected.index = RangeIndex(len(expected))
- tm.assert_frame_equal(result, expected)
- def test_groupby_as_index_series_scalar(df):
- grouped = df.groupby(["A", "B"], as_index=False)
- # GH #421
- result = grouped["C"].agg(len)
- expected = grouped.agg(len).loc[:, ["A", "B", "C"]]
- tm.assert_frame_equal(result, expected)
- def test_groupby_as_index_corner(df, ts):
- msg = "as_index=False only valid with DataFrame"
- with pytest.raises(TypeError, match=msg):
- ts.groupby(lambda x: x.weekday(), as_index=False)
- msg = "as_index=False only valid for axis=0"
- with pytest.raises(ValueError, match=msg):
- df.groupby(lambda x: x.lower(), as_index=False, axis=1)
- def test_groupby_multiple_key():
- df = tm.makeTimeDataFrame()
- grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day])
- agged = grouped.sum()
- tm.assert_almost_equal(df.values, agged.values)
- grouped = df.T.groupby(
- [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1
- )
- agged = grouped.agg(lambda x: x.sum())
- tm.assert_index_equal(agged.index, df.columns)
- tm.assert_almost_equal(df.T.values, agged.values)
- agged = grouped.agg(lambda x: x.sum())
- tm.assert_almost_equal(df.T.values, agged.values)
- def test_groupby_multi_corner(df):
- # test that having an all-NA column doesn't mess you up
- df = df.copy()
- df["bad"] = np.nan
- agged = df.groupby(["A", "B"]).mean()
- expected = df.groupby(["A", "B"]).mean()
- expected["bad"] = np.nan
- tm.assert_frame_equal(agged, expected)
- def test_raises_on_nuisance(df):
- grouped = df.groupby("A")
- with pytest.raises(TypeError, match="Could not convert"):
- grouped.agg(np.mean)
- with pytest.raises(TypeError, match="Could not convert"):
- grouped.mean()
- df = df.loc[:, ["A", "C", "D"]]
- df["E"] = datetime.now()
- grouped = df.groupby("A")
- msg = "datetime64 type does not support sum operations"
- with pytest.raises(TypeError, match=msg):
- grouped.agg(np.sum)
- with pytest.raises(TypeError, match=msg):
- grouped.sum()
- # won't work with axis = 1
- grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1)
- msg = "does not support reduction 'sum'"
- with pytest.raises(TypeError, match=msg):
- grouped.agg(lambda x: x.sum(0, numeric_only=False))
- @pytest.mark.parametrize(
- "agg_function",
- ["max", "min"],
- )
- def test_keep_nuisance_agg(df, agg_function):
- # GH 38815
- grouped = df.groupby("A")
- result = getattr(grouped, agg_function)()
- expected = result.copy()
- expected.loc["bar", "B"] = getattr(df.loc[df["A"] == "bar", "B"], agg_function)()
- expected.loc["foo", "B"] = getattr(df.loc[df["A"] == "foo", "B"], agg_function)()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "agg_function",
- ["sum", "mean", "prod", "std", "var", "sem", "median"],
- )
- @pytest.mark.parametrize("numeric_only", [True, False])
- def test_omit_nuisance_agg(df, agg_function, numeric_only):
- # GH 38774, GH 38815
- grouped = df.groupby("A")
- no_drop_nuisance = ("var", "std", "sem", "mean", "prod", "median")
- if agg_function in no_drop_nuisance and not numeric_only:
- # Added numeric_only as part of GH#46560; these do not drop nuisance
- # columns when numeric_only is False
- klass = ValueError if agg_function in ("std", "sem") else TypeError
- msg = "|".join(["[C|c]ould not convert", "can't multiply sequence"])
- with pytest.raises(klass, match=msg):
- getattr(grouped, agg_function)(numeric_only=numeric_only)
- else:
- result = getattr(grouped, agg_function)(numeric_only=numeric_only)
- if not numeric_only and agg_function == "sum":
- # sum is successful on column B
- columns = ["A", "B", "C", "D"]
- else:
- columns = ["A", "C", "D"]
- expected = getattr(df.loc[:, columns].groupby("A"), agg_function)(
- numeric_only=numeric_only
- )
- tm.assert_frame_equal(result, expected)
- def test_raise_on_nuisance_python_single(df):
- # GH 38815
- grouped = df.groupby("A")
- with pytest.raises(TypeError, match="could not convert"):
- grouped.skew()
- def test_raise_on_nuisance_python_multiple(three_group):
- grouped = three_group.groupby(["A", "B"])
- with pytest.raises(TypeError, match="Could not convert"):
- grouped.agg(np.mean)
- with pytest.raises(TypeError, match="Could not convert"):
- grouped.mean()
- def test_empty_groups_corner(mframe):
- # handle empty groups
- df = DataFrame(
- {
- "k1": np.array(["b", "b", "b", "a", "a", "a"]),
- "k2": np.array(["1", "1", "1", "2", "2", "2"]),
- "k3": ["foo", "bar"] * 3,
- "v1": np.random.randn(6),
- "v2": np.random.randn(6),
- }
- )
- grouped = df.groupby(["k1", "k2"])
- result = grouped[["v1", "v2"]].agg(np.mean)
- expected = grouped.mean(numeric_only=True)
- tm.assert_frame_equal(result, expected)
- grouped = mframe[3:5].groupby(level=0)
- agged = grouped.apply(lambda x: x.mean())
- agged_A = grouped["A"].apply(np.mean)
- tm.assert_series_equal(agged["A"], agged_A)
- assert agged.index.name == "first"
- def test_nonsense_func():
- df = DataFrame([0])
- msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'"
- with pytest.raises(TypeError, match=msg):
- df.groupby(lambda x: x + "foo")
- def test_wrap_aggregated_output_multindex(mframe):
- df = mframe.T
- df["baz", "two"] = "peekaboo"
- keys = [np.array([0, 0, 1]), np.array([0, 0, 1])]
- with pytest.raises(TypeError, match="Could not convert"):
- df.groupby(keys).agg(np.mean)
- agged = df.drop(columns=("baz", "two")).groupby(keys).agg(np.mean)
- assert isinstance(agged.columns, MultiIndex)
- def aggfun(ser):
- if ser.name == ("foo", "one"):
- raise TypeError("Test error message")
- return ser.sum()
- with pytest.raises(TypeError, match="Test error message"):
- df.groupby(keys).aggregate(aggfun)
- def test_groupby_level_apply(mframe):
- result = mframe.groupby(level=0).count()
- assert result.index.name == "first"
- result = mframe.groupby(level=1).count()
- assert result.index.name == "second"
- result = mframe["A"].groupby(level=0).count()
- assert result.index.name == "first"
- def test_groupby_level_mapper(mframe):
- deleveled = mframe.reset_index()
- mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1}
- mapper1 = {"one": 0, "two": 0, "three": 1}
- result0 = mframe.groupby(mapper0, level=0).sum()
- result1 = mframe.groupby(mapper1, level=1).sum()
- mapped_level0 = np.array(
- [mapper0.get(x) for x in deleveled["first"]], dtype=np.int64
- )
- mapped_level1 = np.array(
- [mapper1.get(x) for x in deleveled["second"]], dtype=np.int64
- )
- expected0 = mframe.groupby(mapped_level0).sum()
- expected1 = mframe.groupby(mapped_level1).sum()
- expected0.index.name, expected1.index.name = "first", "second"
- tm.assert_frame_equal(result0, expected0)
- tm.assert_frame_equal(result1, expected1)
- def test_groupby_level_nonmulti():
- # GH 1313, GH 13901
- s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo"))
- expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo"))
- result = s.groupby(level=0).sum()
- tm.assert_series_equal(result, expected)
- result = s.groupby(level=[0]).sum()
- tm.assert_series_equal(result, expected)
- result = s.groupby(level=-1).sum()
- tm.assert_series_equal(result, expected)
- result = s.groupby(level=[-1]).sum()
- tm.assert_series_equal(result, expected)
- msg = "level > 0 or level < -1 only valid with MultiIndex"
- with pytest.raises(ValueError, match=msg):
- s.groupby(level=1)
- with pytest.raises(ValueError, match=msg):
- s.groupby(level=-2)
- msg = "No group keys passed!"
- with pytest.raises(ValueError, match=msg):
- s.groupby(level=[])
- msg = "multiple levels only valid with MultiIndex"
- with pytest.raises(ValueError, match=msg):
- s.groupby(level=[0, 0])
- with pytest.raises(ValueError, match=msg):
- s.groupby(level=[0, 1])
- msg = "level > 0 or level < -1 only valid with MultiIndex"
- with pytest.raises(ValueError, match=msg):
- s.groupby(level=[1])
- def test_groupby_complex():
- # GH 12902
- a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1])
- expected = Series((1 + 2j, 5 + 10j))
- result = a.groupby(level=0).sum()
- tm.assert_series_equal(result, expected)
- def test_groupby_complex_numbers():
- # GH 17927
- df = DataFrame(
- [
- {"a": 1, "b": 1 + 1j},
- {"a": 1, "b": 1 + 2j},
- {"a": 4, "b": 1},
- ]
- )
- expected = DataFrame(
- np.array([1, 1, 1], dtype=np.int64),
- index=Index([(1 + 1j), (1 + 2j), (1 + 0j)], name="b"),
- columns=Index(["a"], dtype="object"),
- )
- result = df.groupby("b", sort=False).count()
- tm.assert_frame_equal(result, expected)
- # Sorted by the magnitude of the complex numbers
- expected.index = Index([(1 + 0j), (1 + 1j), (1 + 2j)], name="b")
- result = df.groupby("b", sort=True).count()
- tm.assert_frame_equal(result, expected)
- def test_groupby_series_indexed_differently():
- s1 = Series(
- [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7],
- index=Index(["a", "b", "c", "d", "e", "f", "g"]),
- )
- s2 = Series(
- [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"])
- )
- grouped = s1.groupby(s2)
- agged = grouped.mean()
- exp = s1.groupby(s2.reindex(s1.index).get).mean()
- tm.assert_series_equal(agged, exp)
- def test_groupby_with_hier_columns():
- tuples = list(
- zip(
- *[
- ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
- ["one", "two", "one", "two", "one", "two", "one", "two"],
- ]
- )
- )
- index = MultiIndex.from_tuples(tuples)
- columns = MultiIndex.from_tuples(
- [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")]
- )
- df = DataFrame(np.random.randn(8, 4), index=index, columns=columns)
- result = df.groupby(level=0).mean()
- tm.assert_index_equal(result.columns, columns)
- result = df.groupby(level=0, axis=1).mean()
- tm.assert_index_equal(result.index, df.index)
- result = df.groupby(level=0).agg(np.mean)
- tm.assert_index_equal(result.columns, columns)
- result = df.groupby(level=0).apply(lambda x: x.mean())
- tm.assert_index_equal(result.columns, columns)
- result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1))
- tm.assert_index_equal(result.columns, Index(["A", "B"]))
- tm.assert_index_equal(result.index, df.index)
- # add a nuisance column
- sorted_columns, _ = columns.sortlevel(0)
- df["A", "foo"] = "bar"
- result = df.groupby(level=0).mean(numeric_only=True)
- tm.assert_index_equal(result.columns, df.columns[:-1])
- def test_grouping_ndarray(df):
- grouped = df.groupby(df["A"].values)
- result = grouped.sum()
- expected = df.groupby(df["A"].rename(None)).sum()
- tm.assert_frame_equal(result, expected)
- def test_groupby_wrong_multi_labels():
- index = Index([0, 1, 2, 3, 4], name="index")
- data = DataFrame(
- {
- "foo": ["foo1", "foo1", "foo2", "foo1", "foo3"],
- "bar": ["bar1", "bar2", "bar2", "bar1", "bar1"],
- "baz": ["baz1", "baz1", "baz1", "baz2", "baz2"],
- "spam": ["spam2", "spam3", "spam2", "spam1", "spam1"],
- "data": [20, 30, 40, 50, 60],
- },
- index=index,
- )
- grouped = data.groupby(["foo", "bar", "baz", "spam"])
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- def test_groupby_series_with_name(df):
- result = df.groupby(df["A"]).mean(numeric_only=True)
- result2 = df.groupby(df["A"], as_index=False).mean(numeric_only=True)
- assert result.index.name == "A"
- assert "A" in result2
- result = df.groupby([df["A"], df["B"]]).mean()
- result2 = df.groupby([df["A"], df["B"]], as_index=False).mean()
- assert result.index.names == ("A", "B")
- assert "A" in result2
- assert "B" in result2
- def test_seriesgroupby_name_attr(df):
- # GH 6265
- result = df.groupby("A")["C"]
- assert result.count().name == "C"
- assert result.mean().name == "C"
- testFunc = lambda x: np.sum(x) * 2
- assert result.agg(testFunc).name == "C"
- def test_consistency_name():
- # GH 12363
- df = DataFrame(
- {
- "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
- "B": ["one", "one", "two", "two", "two", "two", "one", "two"],
- "C": np.random.randn(8) + 1.0,
- "D": np.arange(8),
- }
- )
- expected = df.groupby(["A"]).B.count()
- result = df.B.groupby(df.A).count()
- tm.assert_series_equal(result, expected)
- def test_groupby_name_propagation(df):
- # GH 6124
- def summarize(df, name=None):
- return Series({"count": 1, "mean": 2, "omissions": 3}, name=name)
- def summarize_random_name(df):
- # Provide a different name for each Series. In this case, groupby
- # should not attempt to propagate the Series name since they are
- # inconsistent.
- return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"])
- metrics = df.groupby("A").apply(summarize)
- assert metrics.columns.name is None
- metrics = df.groupby("A").apply(summarize, "metrics")
- assert metrics.columns.name == "metrics"
- metrics = df.groupby("A").apply(summarize_random_name)
- assert metrics.columns.name is None
- def test_groupby_nonstring_columns():
- df = DataFrame([np.arange(10) for x in range(10)])
- grouped = df.groupby(0)
- result = grouped.mean()
- expected = df.groupby(df[0]).mean()
- tm.assert_frame_equal(result, expected)
- def test_groupby_mixed_type_columns():
- # GH 13432, unorderable types in py3
- df = DataFrame([[0, 1, 2]], columns=["A", "B", 0])
- expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A"))
- result = df.groupby("A").first()
- tm.assert_frame_equal(result, expected)
- result = df.groupby("A").sum()
- tm.assert_frame_equal(result, expected)
- def test_cython_grouper_series_bug_noncontig():
- arr = np.empty((100, 100))
- arr.fill(np.nan)
- obj = Series(arr[:, 0])
- inds = np.tile(range(10), 10)
- result = obj.groupby(inds).agg(Series.median)
- assert result.isna().all()
- def test_series_grouper_noncontig_index():
- index = Index(tm.rands_array(10, 100))
- values = Series(np.random.randn(50), index=index[::2])
- labels = np.random.randint(0, 5, 50)
- # it works!
- grouped = values.groupby(labels)
- # accessing the index elements causes segfault
- f = lambda x: len(set(map(id, x.index)))
- grouped.agg(f)
- def test_convert_objects_leave_decimal_alone():
- s = Series(range(5))
- labels = np.array(["a", "b", "c", "d", "e"], dtype="O")
- def convert_fast(x):
- return Decimal(str(x.mean()))
- def convert_force_pure(x):
- # base will be length 0
- assert len(x.values.base) > 0
- return Decimal(str(x.mean()))
- grouped = s.groupby(labels)
- result = grouped.agg(convert_fast)
- assert result.dtype == np.object_
- assert isinstance(result[0], Decimal)
- result = grouped.agg(convert_force_pure)
- assert result.dtype == np.object_
- assert isinstance(result[0], Decimal)
- def test_groupby_dtype_inference_empty():
- # GH 6733
- df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")})
- assert df["x"].dtype == np.float64
- result = df.groupby("x").first()
- exp_index = Index([], name="x", dtype=np.float64)
- expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")})
- tm.assert_frame_equal(result, expected, by_blocks=True)
- def test_groupby_unit64_float_conversion():
- # GH: 30859 groupby converts unit64 to floats sometimes
- df = DataFrame({"first": [1], "second": [1], "value": [16148277970000000000]})
- result = df.groupby(["first", "second"])["value"].max()
- expected = Series(
- [16148277970000000000],
- MultiIndex.from_product([[1], [1]], names=["first", "second"]),
- name="value",
- )
- tm.assert_series_equal(result, expected)
- def test_groupby_list_infer_array_like(df):
- result = df.groupby(list(df["A"])).mean(numeric_only=True)
- expected = df.groupby(df["A"]).mean(numeric_only=True)
- tm.assert_frame_equal(result, expected, check_names=False)
- with pytest.raises(KeyError, match=r"^'foo'$"):
- df.groupby(list(df["A"][:-1]))
- # pathological case of ambiguity
- df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)})
- result = df.groupby(["foo", "bar"]).mean()
- expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]]
- def test_groupby_keys_same_size_as_index():
- # GH 11185
- freq = "s"
- index = date_range(
- start=Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq
- )
- df = DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index)
- result = df.groupby([Grouper(level=0, freq=freq), "metric"]).mean()
- expected = df.set_index([df.index, "metric"]).astype(float)
- tm.assert_frame_equal(result, expected)
- def test_groupby_one_row():
- # GH 11741
- msg = r"^'Z'$"
- df1 = DataFrame(np.random.randn(1, 4), columns=list("ABCD"))
- with pytest.raises(KeyError, match=msg):
- df1.groupby("Z")
- df2 = DataFrame(np.random.randn(2, 4), columns=list("ABCD"))
- with pytest.raises(KeyError, match=msg):
- df2.groupby("Z")
- def test_groupby_nat_exclude():
- # GH 6992
- df = DataFrame(
- {
- "values": np.random.randn(8),
- "dt": [
- np.nan,
- Timestamp("2013-01-01"),
- np.nan,
- Timestamp("2013-02-01"),
- np.nan,
- Timestamp("2013-02-01"),
- np.nan,
- Timestamp("2013-01-01"),
- ],
- "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"],
- }
- )
- grouped = df.groupby("dt")
- expected = [Index([1, 7]), Index([3, 5])]
- keys = sorted(grouped.groups.keys())
- assert len(keys) == 2
- for k, e in zip(keys, expected):
- # grouped.groups keys are np.datetime64 with system tz
- # not to be affected by tz, only compare values
- tm.assert_index_equal(grouped.groups[k], e)
- # confirm obj is not filtered
- tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df)
- assert grouped.ngroups == 2
- expected = {
- Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp),
- Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp),
- }
- for k in grouped.indices:
- tm.assert_numpy_array_equal(grouped.indices[k], expected[k])
- tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]])
- tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]])
- with pytest.raises(KeyError, match=r"^NaT$"):
- grouped.get_group(pd.NaT)
- nan_df = DataFrame(
- {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]}
- )
- assert nan_df["nan"].dtype == "float64"
- assert nan_df["nat"].dtype == "datetime64[ns]"
- for key in ["nan", "nat"]:
- grouped = nan_df.groupby(key)
- assert grouped.groups == {}
- assert grouped.ngroups == 0
- assert grouped.indices == {}
- with pytest.raises(KeyError, match=r"^nan$"):
- grouped.get_group(np.nan)
- with pytest.raises(KeyError, match=r"^NaT$"):
- grouped.get_group(pd.NaT)
- def test_groupby_two_group_keys_all_nan():
- # GH #36842: Grouping over two group keys shouldn't raise an error
- df = DataFrame({"a": [np.nan, np.nan], "b": [np.nan, np.nan], "c": [1, 2]})
- result = df.groupby(["a", "b"]).indices
- assert result == {}
- def test_groupby_2d_malformed():
- d = DataFrame(index=range(2))
- d["group"] = ["g1", "g2"]
- d["zeros"] = [0, 0]
- d["ones"] = [1, 1]
- d["label"] = ["l1", "l2"]
- tmp = d.groupby(["group"]).mean(numeric_only=True)
- res_values = np.array([[0.0, 1.0], [0.0, 1.0]])
- tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"]))
- tm.assert_numpy_array_equal(tmp.values, res_values)
- def test_int32_overflow():
- B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000)))
- A = np.arange(25000)
- df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)})
- left = df.groupby(["A", "B", "C", "D"]).sum()
- right = df.groupby(["D", "C", "B", "A"]).sum()
- assert len(left) == len(right)
- def test_groupby_sort_multi():
- df = DataFrame(
- {
- "a": ["foo", "bar", "baz"],
- "b": [3, 2, 1],
- "c": [0, 1, 2],
- "d": np.random.randn(3),
- }
- )
- tups = [tuple(row) for row in df[["a", "b", "c"]].values]
- tups = com.asarray_tuplesafe(tups)
- result = df.groupby(["a", "b", "c"], sort=True).sum()
- tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]])
- tups = [tuple(row) for row in df[["c", "a", "b"]].values]
- tups = com.asarray_tuplesafe(tups)
- result = df.groupby(["c", "a", "b"], sort=True).sum()
- tm.assert_numpy_array_equal(result.index.values, tups)
- tups = [tuple(x) for x in df[["b", "c", "a"]].values]
- tups = com.asarray_tuplesafe(tups)
- result = df.groupby(["b", "c", "a"], sort=True).sum()
- tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]])
- df = DataFrame(
- {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)}
- )
- grouped = df.groupby(["a", "b"])["d"]
- result = grouped.sum()
- def _check_groupby(df, result, keys, field, f=lambda x: x.sum()):
- tups = [tuple(row) for row in df[keys].values]
- tups = com.asarray_tuplesafe(tups)
- expected = f(df.groupby(tups)[field])
- for k, v in expected.items():
- assert result[k] == v
- _check_groupby(df, result, ["a", "b"], "d")
- def test_dont_clobber_name_column():
- df = DataFrame(
- {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2}
- )
- result = df.groupby("key", group_keys=False).apply(lambda x: x)
- tm.assert_frame_equal(result, df)
- def test_skip_group_keys():
- tsf = tm.makeTimeDataFrame()
- grouped = tsf.groupby(lambda x: x.month, group_keys=False)
- result = grouped.apply(lambda x: x.sort_values(by="A")[:3])
- pieces = [group.sort_values(by="A")[:3] for key, group in grouped]
- expected = pd.concat(pieces)
- tm.assert_frame_equal(result, expected)
- grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False)
- result = grouped.apply(lambda x: x.sort_values()[:3])
- pieces = [group.sort_values()[:3] for key, group in grouped]
- expected = pd.concat(pieces)
- tm.assert_series_equal(result, expected)
- def test_no_nonsense_name(float_frame):
- # GH #995
- s = float_frame["C"].copy()
- s.name = None
- result = s.groupby(float_frame["A"]).agg(np.sum)
- assert result.name is None
- def test_multifunc_sum_bug():
- # GH #1065
- x = DataFrame(np.arange(9).reshape(3, 3))
- x["test"] = 0
- x["fl"] = [1.3, 1.5, 1.6]
- grouped = x.groupby("test")
- result = grouped.agg({"fl": "sum", 2: "size"})
- assert result["fl"].dtype == np.float64
- def test_handle_dict_return_value(df):
- def f(group):
- return {"max": group.max(), "min": group.min()}
- def g(group):
- return Series({"max": group.max(), "min": group.min()})
- result = df.groupby("A")["C"].apply(f)
- expected = df.groupby("A")["C"].apply(g)
- assert isinstance(result, Series)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("grouper", ["A", ["A", "B"]])
- def test_set_group_name(df, grouper):
- def f(group):
- assert group.name is not None
- return group
- def freduce(group):
- assert group.name is not None
- return group.sum()
- def freducex(x):
- return freduce(x)
- grouped = df.groupby(grouper, group_keys=False)
- # make sure all these work
- grouped.apply(f)
- grouped.aggregate(freduce)
- grouped.aggregate({"C": freduce, "D": freduce})
- grouped.transform(f)
- grouped["C"].apply(f)
- grouped["C"].aggregate(freduce)
- grouped["C"].aggregate([freduce, freducex])
- grouped["C"].transform(f)
- def test_group_name_available_in_inference_pass():
- # gh-15062
- df = DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)})
- names = []
- def f(group):
- names.append(group.name)
- return group.copy()
- df.groupby("a", sort=False, group_keys=False).apply(f)
- expected_names = [0, 1, 2]
- assert names == expected_names
- def test_no_dummy_key_names(df):
- # see gh-1291
- result = df.groupby(df["A"].values).sum()
- assert result.index.name is None
- result = df.groupby([df["A"].values, df["B"].values]).sum()
- assert result.index.names == (None, None)
- def test_groupby_sort_multiindex_series():
- # series multiindex groupby sort argument was not being passed through
- # _compress_group_index
- # GH 9444
- index = MultiIndex(
- levels=[[1, 2], [1, 2]],
- codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]],
- names=["a", "b"],
- )
- mseries = Series([0, 1, 2, 3, 4, 5], index=index)
- index = MultiIndex(
- levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"]
- )
- mseries_result = Series([0, 2, 4], index=index)
- result = mseries.groupby(level=["a", "b"], sort=False).first()
- tm.assert_series_equal(result, mseries_result)
- result = mseries.groupby(level=["a", "b"], sort=True).first()
- tm.assert_series_equal(result, mseries_result.sort_index())
- def test_groupby_reindex_inside_function():
- periods = 1000
- ind = date_range(start="2012/1/1", freq="5min", periods=periods)
- df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind)
- def agg_before(func, fix=False):
- """
- Run an aggregate func on the subset of data.
- """
- def _func(data):
- d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna()
- if fix:
- data[data.index[0]]
- if len(d) == 0:
- return None
- return func(d)
- return _func
- grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day))
- closure_bad = grouped.agg({"high": agg_before(np.max)})
- closure_good = grouped.agg({"high": agg_before(np.max, True)})
- tm.assert_frame_equal(closure_bad, closure_good)
- def test_groupby_multiindex_missing_pair():
- # GH9049
- df = DataFrame(
- {
- "group1": ["a", "a", "a", "b"],
- "group2": ["c", "c", "d", "c"],
- "value": [1, 1, 1, 5],
- }
- )
- df = df.set_index(["group1", "group2"])
- df_grouped = df.groupby(level=["group1", "group2"], sort=True)
- res = df_grouped.agg("sum")
- idx = MultiIndex.from_tuples(
- [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"]
- )
- exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"])
- tm.assert_frame_equal(res, exp)
- def test_groupby_multiindex_not_lexsorted():
- # GH 11640
- # define the lexsorted version
- lexsorted_mi = MultiIndex.from_tuples(
- [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"]
- )
- lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi)
- assert lexsorted_df.columns._is_lexsorted()
- # define the non-lexsorted version
- not_lexsorted_df = DataFrame(
- columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]]
- )
- not_lexsorted_df = not_lexsorted_df.pivot_table(
- index="a", columns=["b", "c"], values="d"
- )
- not_lexsorted_df = not_lexsorted_df.reset_index()
- assert not not_lexsorted_df.columns._is_lexsorted()
- # compare the results
- tm.assert_frame_equal(lexsorted_df, not_lexsorted_df)
- expected = lexsorted_df.groupby("a").mean()
- with tm.assert_produces_warning(PerformanceWarning):
- result = not_lexsorted_df.groupby("a").mean()
- tm.assert_frame_equal(expected, result)
- # a transforming function should work regardless of sort
- # GH 14776
- df = DataFrame(
- {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]}
- ).set_index(["x", "y"])
- assert not df.index._is_lexsorted()
- for level in [0, 1, [0, 1]]:
- for sort in [False, True]:
- result = df.groupby(level=level, sort=sort, group_keys=False).apply(
- DataFrame.drop_duplicates
- )
- expected = df
- tm.assert_frame_equal(expected, result)
- result = (
- df.sort_index()
- .groupby(level=level, sort=sort, group_keys=False)
- .apply(DataFrame.drop_duplicates)
- )
- expected = df.sort_index()
- tm.assert_frame_equal(expected, result)
- def test_index_label_overlaps_location():
- # checking we don't have any label/location confusion in the
- # wake of GH5375
- df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1])
- g = df.groupby(list("ababb"))
- actual = g.filter(lambda x: len(x) > 2)
- expected = df.iloc[[1, 3, 4]]
- tm.assert_frame_equal(actual, expected)
- ser = df[0]
- g = ser.groupby(list("ababb"))
- actual = g.filter(lambda x: len(x) > 2)
- expected = ser.take([1, 3, 4])
- tm.assert_series_equal(actual, expected)
- # and again, with a generic Index of floats
- df.index = df.index.astype(float)
- g = df.groupby(list("ababb"))
- actual = g.filter(lambda x: len(x) > 2)
- expected = df.iloc[[1, 3, 4]]
- tm.assert_frame_equal(actual, expected)
- ser = df[0]
- g = ser.groupby(list("ababb"))
- actual = g.filter(lambda x: len(x) > 2)
- expected = ser.take([1, 3, 4])
- tm.assert_series_equal(actual, expected)
- def test_transform_doesnt_clobber_ints():
- # GH 7972
- n = 6
- x = np.arange(n)
- df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x})
- df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x})
- gb = df.groupby("a")
- result = gb.transform("mean")
- gb2 = df2.groupby("a")
- expected = gb2.transform("mean")
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "sort_column",
- ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]],
- )
- @pytest.mark.parametrize(
- "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]]
- )
- def test_groupby_preserves_sort(sort_column, group_column):
- # Test to ensure that groupby always preserves sort order of original
- # object. Issue #8588 and #9651
- df = DataFrame(
- {
- "int_groups": [3, 1, 0, 1, 0, 3, 3, 3],
- "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"],
- "ints": [8, 7, 4, 5, 2, 9, 1, 1],
- "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5],
- "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"],
- }
- )
- # Try sorting on different types and with different group types
- df = df.sort_values(by=sort_column)
- g = df.groupby(group_column)
- def test_sort(x):
- tm.assert_frame_equal(x, x.sort_values(by=sort_column))
- g.apply(test_sort)
- def test_pivot_table_values_key_error():
- # This test is designed to replicate the error in issue #14938
- df = DataFrame(
- {
- "eventDate": date_range(datetime.today(), periods=20, freq="M").tolist(),
- "thename": range(0, 20),
- }
- )
- df["year"] = df.set_index("eventDate").index.year
- df["month"] = df.set_index("eventDate").index.month
- with pytest.raises(KeyError, match="'badname'"):
- df.reset_index().pivot_table(
- index="year", columns="month", values="badname", aggfunc="count"
- )
- @pytest.mark.parametrize("columns", ["C", ["C"]])
- @pytest.mark.parametrize("keys", [["A"], ["A", "B"]])
- @pytest.mark.parametrize(
- "values",
- [
- [True],
- [0],
- [0.0],
- ["a"],
- Categorical([0]),
- [to_datetime(0)],
- date_range(0, 1, 1, tz="US/Eastern"),
- pd.period_range("2016-01-01", periods=3, freq="D"),
- pd.array([0], dtype="Int64"),
- pd.array([0], dtype="Float64"),
- pd.array([False], dtype="boolean"),
- ],
- ids=[
- "bool",
- "int",
- "float",
- "str",
- "cat",
- "dt64",
- "dt64tz",
- "period",
- "Int64",
- "Float64",
- "boolean",
- ],
- )
- @pytest.mark.parametrize("method", ["attr", "agg", "apply"])
- @pytest.mark.parametrize(
- "op", ["idxmax", "idxmin", "min", "max", "sum", "prod", "skew"]
- )
- def test_empty_groupby(
- columns, keys, values, method, op, request, using_array_manager, dropna
- ):
- # GH8093 & GH26411
- override_dtype = None
- if (
- isinstance(values, Categorical)
- and len(keys) == 1
- and op in ["idxmax", "idxmin"]
- ):
- mark = pytest.mark.xfail(
- raises=ValueError, match="attempt to get arg(min|max) of an empty sequence"
- )
- request.node.add_marker(mark)
- if isinstance(values, BooleanArray) and op in ["sum", "prod"]:
- # We expect to get Int64 back for these
- override_dtype = "Int64"
- if isinstance(values[0], bool) and op in ("prod", "sum"):
- # sum/product of bools is an integer
- override_dtype = "int64"
- df = DataFrame({"A": values, "B": values, "C": values}, columns=list("ABC"))
- if hasattr(values, "dtype"):
- # check that we did the construction right
- assert (df.dtypes == values.dtype).all()
- df = df.iloc[:0]
- gb = df.groupby(keys, group_keys=False, dropna=dropna)[columns]
- def get_result(**kwargs):
- if method == "attr":
- return getattr(gb, op)(**kwargs)
- else:
- return getattr(gb, method)(op, **kwargs)
- def get_categorical_invalid_expected():
- # Categorical is special without 'observed=True', we get an NaN entry
- # corresponding to the unobserved group. If we passed observed=True
- # to groupby, expected would just be 'df.set_index(keys)[columns]'
- # as below
- lev = Categorical([0], dtype=values.dtype)
- if len(keys) != 1:
- idx = MultiIndex.from_product([lev, lev], names=keys)
- else:
- # all columns are dropped, but we end up with one row
- # Categorical is special without 'observed=True'
- idx = Index(lev, name=keys[0])
- expected = DataFrame([], columns=[], index=idx)
- return expected
- is_per = isinstance(df.dtypes[0], pd.PeriodDtype)
- is_dt64 = df.dtypes[0].kind == "M"
- is_cat = isinstance(values, Categorical)
- if isinstance(values, Categorical) and not values.ordered and op in ["min", "max"]:
- msg = f"Cannot perform {op} with non-ordered Categorical"
- with pytest.raises(TypeError, match=msg):
- get_result()
- if isinstance(columns, list):
- # i.e. DataframeGroupBy, not SeriesGroupBy
- result = get_result(numeric_only=True)
- expected = get_categorical_invalid_expected()
- tm.assert_equal(result, expected)
- return
- if op in ["prod", "sum", "skew"]:
- # ops that require more than just ordered-ness
- if is_dt64 or is_cat or is_per:
- # GH#41291
- # datetime64 -> prod and sum are invalid
- if op == "skew":
- msg = "does not support reduction 'skew'"
- elif is_dt64:
- msg = "datetime64 type does not support"
- elif is_per:
- msg = "Period type does not support"
- else:
- msg = "category type does not support"
- with pytest.raises(TypeError, match=msg):
- get_result()
- if not isinstance(columns, list):
- # i.e. SeriesGroupBy
- return
- elif op == "skew":
- # TODO: test the numeric_only=True case
- return
- else:
- # i.e. op in ["prod", "sum"]:
- # i.e. DataFrameGroupBy
- # ops that require more than just ordered-ness
- # GH#41291
- result = get_result(numeric_only=True)
- # with numeric_only=True, these are dropped, and we get
- # an empty DataFrame back
- expected = df.set_index(keys)[[]]
- if is_cat:
- expected = get_categorical_invalid_expected()
- tm.assert_equal(result, expected)
- return
- result = get_result()
- expected = df.set_index(keys)[columns]
- if override_dtype is not None:
- expected = expected.astype(override_dtype)
- if len(keys) == 1:
- expected.index.name = keys[0]
- tm.assert_equal(result, expected)
- def test_empty_groupby_apply_nonunique_columns():
- # GH#44417
- df = DataFrame(np.random.randn(0, 4))
- df[3] = df[3].astype(np.int64)
- df.columns = [0, 1, 2, 0]
- gb = df.groupby(df[1], group_keys=False)
- res = gb.apply(lambda x: x)
- assert (res.dtypes == df.dtypes).all()
- def test_tuple_as_grouping():
- # https://github.com/pandas-dev/pandas/issues/18314
- df = DataFrame(
- {
- ("a", "b"): [1, 1, 1, 1],
- "a": [2, 2, 2, 2],
- "b": [2, 2, 2, 2],
- "c": [1, 1, 1, 1],
- }
- )
- with pytest.raises(KeyError, match=r"('a', 'b')"):
- df[["a", "b", "c"]].groupby(("a", "b"))
- result = df.groupby(("a", "b"))["c"].sum()
- expected = Series([4], name="c", index=Index([1], name=("a", "b")))
- tm.assert_series_equal(result, expected)
- def test_tuple_correct_keyerror():
- # https://github.com/pandas-dev/pandas/issues/18798
- df = DataFrame(1, index=range(3), columns=MultiIndex.from_product([[1, 2], [3, 4]]))
- with pytest.raises(KeyError, match=r"^\(7, 8\)$"):
- df.groupby((7, 8)).mean()
- def test_groupby_agg_ohlc_non_first():
- # GH 21716
- df = DataFrame(
- [[1], [1]],
- columns=Index(["foo"], name="mycols"),
- index=date_range("2018-01-01", periods=2, freq="D", name="dti"),
- )
- expected = DataFrame(
- [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]],
- columns=MultiIndex.from_tuples(
- (
- ("foo", "sum", "foo"),
- ("foo", "ohlc", "open"),
- ("foo", "ohlc", "high"),
- ("foo", "ohlc", "low"),
- ("foo", "ohlc", "close"),
- ),
- names=["mycols", None, None],
- ),
- index=date_range("2018-01-01", periods=2, freq="D", name="dti"),
- )
- result = df.groupby(Grouper(freq="D")).agg(["sum", "ohlc"])
- tm.assert_frame_equal(result, expected)
- def test_groupby_multiindex_nat():
- # GH 9236
- values = [
- (pd.NaT, "a"),
- (datetime(2012, 1, 2), "a"),
- (datetime(2012, 1, 2), "b"),
- (datetime(2012, 1, 3), "a"),
- ]
- mi = MultiIndex.from_tuples(values, names=["date", None])
- ser = Series([3, 2, 2.5, 4], index=mi)
- result = ser.groupby(level=1).mean()
- expected = Series([3.0, 2.5], index=["a", "b"])
- tm.assert_series_equal(result, expected)
- def test_groupby_empty_list_raises():
- # GH 5289
- values = zip(range(10), range(10))
- df = DataFrame(values, columns=["apple", "b"])
- msg = "Grouper and axis must be same length"
- with pytest.raises(ValueError, match=msg):
- df.groupby([[]])
- def test_groupby_multiindex_series_keys_len_equal_group_axis():
- # GH 25704
- index_array = [["x", "x"], ["a", "b"], ["k", "k"]]
- index_names = ["first", "second", "third"]
- ri = MultiIndex.from_arrays(index_array, names=index_names)
- s = Series(data=[1, 2], index=ri)
- result = s.groupby(["first", "third"]).sum()
- index_array = [["x"], ["k"]]
- index_names = ["first", "third"]
- ei = MultiIndex.from_arrays(index_array, names=index_names)
- expected = Series([3], index=ei)
- tm.assert_series_equal(result, expected)
- def test_groupby_groups_in_BaseGrouper():
- # GH 26326
- # Test if DataFrame grouped with a pandas.Grouper has correct groups
- mi = MultiIndex.from_product([["A", "B"], ["C", "D"]], names=["alpha", "beta"])
- df = DataFrame({"foo": [1, 2, 1, 2], "bar": [1, 2, 3, 4]}, index=mi)
- result = df.groupby([Grouper(level="alpha"), "beta"])
- expected = df.groupby(["alpha", "beta"])
- assert result.groups == expected.groups
- result = df.groupby(["beta", Grouper(level="alpha")])
- expected = df.groupby(["beta", "alpha"])
- assert result.groups == expected.groups
- @pytest.mark.parametrize("group_name", ["x", ["x"]])
- def test_groupby_axis_1(group_name):
- # GH 27614
- df = DataFrame(
- np.arange(12).reshape(3, 4), index=[0, 1, 0], columns=[10, 20, 10, 20]
- )
- df.index.name = "y"
- df.columns.name = "x"
- results = df.groupby(group_name, axis=1).sum()
- expected = df.T.groupby(group_name).sum().T
- tm.assert_frame_equal(results, expected)
- # test on MI column
- iterables = [["bar", "baz", "foo"], ["one", "two"]]
- mi = MultiIndex.from_product(iterables=iterables, names=["x", "x1"])
- df = DataFrame(np.arange(18).reshape(3, 6), index=[0, 1, 0], columns=mi)
- results = df.groupby(group_name, axis=1).sum()
- expected = df.T.groupby(group_name).sum().T
- tm.assert_frame_equal(results, expected)
- @pytest.mark.parametrize(
- "op, expected",
- [
- (
- "shift",
- {
- "time": [
- None,
- None,
- Timestamp("2019-01-01 12:00:00"),
- Timestamp("2019-01-01 12:30:00"),
- None,
- None,
- ]
- },
- ),
- (
- "bfill",
- {
- "time": [
- Timestamp("2019-01-01 12:00:00"),
- Timestamp("2019-01-01 12:30:00"),
- Timestamp("2019-01-01 14:00:00"),
- Timestamp("2019-01-01 14:30:00"),
- Timestamp("2019-01-01 14:00:00"),
- Timestamp("2019-01-01 14:30:00"),
- ]
- },
- ),
- (
- "ffill",
- {
- "time": [
- Timestamp("2019-01-01 12:00:00"),
- Timestamp("2019-01-01 12:30:00"),
- Timestamp("2019-01-01 12:00:00"),
- Timestamp("2019-01-01 12:30:00"),
- Timestamp("2019-01-01 14:00:00"),
- Timestamp("2019-01-01 14:30:00"),
- ]
- },
- ),
- ],
- )
- def test_shift_bfill_ffill_tz(tz_naive_fixture, op, expected):
- # GH19995, GH27992: Check that timezone does not drop in shift, bfill, and ffill
- tz = tz_naive_fixture
- data = {
- "id": ["A", "B", "A", "B", "A", "B"],
- "time": [
- Timestamp("2019-01-01 12:00:00"),
- Timestamp("2019-01-01 12:30:00"),
- None,
- None,
- Timestamp("2019-01-01 14:00:00"),
- Timestamp("2019-01-01 14:30:00"),
- ],
- }
- df = DataFrame(data).assign(time=lambda x: x.time.dt.tz_localize(tz))
- grouped = df.groupby("id")
- result = getattr(grouped, op)()
- expected = DataFrame(expected).assign(time=lambda x: x.time.dt.tz_localize(tz))
- tm.assert_frame_equal(result, expected)
- def test_groupby_only_none_group():
- # see GH21624
- # this was crashing with "ValueError: Length of passed values is 1, index implies 0"
- df = DataFrame({"g": [None], "x": 1})
- actual = df.groupby("g")["x"].transform("sum")
- expected = Series([np.nan], name="x")
- tm.assert_series_equal(actual, expected)
- def test_groupby_duplicate_index():
- # GH#29189 the groupby call here used to raise
- ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0])
- gb = ser.groupby(level=0)
- result = gb.mean()
- expected = Series([2, 5.5, 8], index=[2.0, 4.0, 5.0])
- tm.assert_series_equal(result, expected)
- def test_group_on_empty_multiindex(transformation_func, request):
- # GH 47787
- # With one row, those are transforms so the schema should be the same
- df = DataFrame(
- data=[[1, Timestamp("today"), 3, 4]],
- columns=["col_1", "col_2", "col_3", "col_4"],
- )
- df["col_3"] = df["col_3"].astype(int)
- df["col_4"] = df["col_4"].astype(int)
- df = df.set_index(["col_1", "col_2"])
- if transformation_func == "fillna":
- args = ("ffill",)
- else:
- args = ()
- result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func, *args)
- expected = df.groupby(["col_1"]).transform(transformation_func, *args).iloc[:0]
- if transformation_func in ("diff", "shift"):
- expected = expected.astype(int)
- tm.assert_equal(result, expected)
- result = (
- df["col_3"].iloc[:0].groupby(["col_1"]).transform(transformation_func, *args)
- )
- expected = (
- df["col_3"].groupby(["col_1"]).transform(transformation_func, *args).iloc[:0]
- )
- if transformation_func in ("diff", "shift"):
- expected = expected.astype(int)
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize(
- "idx",
- [
- Index(["a", "a"], name="foo"),
- MultiIndex.from_tuples((("a", "a"), ("a", "a")), names=["foo", "bar"]),
- ],
- )
- def test_dup_labels_output_shape(groupby_func, idx):
- if groupby_func in {"size", "ngroup", "cumcount"}:
- pytest.skip(f"Not applicable for {groupby_func}")
- df = DataFrame([[1, 1]], columns=idx)
- grp_by = df.groupby([0])
- args = get_groupby_method_args(groupby_func, df)
- result = getattr(grp_by, groupby_func)(*args)
- assert result.shape == (1, 2)
- tm.assert_index_equal(result.columns, idx)
- def test_groupby_crash_on_nunique(axis):
- # Fix following 30253
- dti = date_range("2016-01-01", periods=2, name="foo")
- df = DataFrame({("A", "B"): [1, 2], ("A", "C"): [1, 3], ("D", "B"): [0, 0]})
- df.columns.names = ("bar", "baz")
- df.index = dti
- axis_number = df._get_axis_number(axis)
- if not axis_number:
- df = df.T
- gb = df.groupby(axis=axis_number, level=0)
- result = gb.nunique()
- expected = DataFrame({"A": [1, 2], "D": [1, 1]}, index=dti)
- expected.columns.name = "bar"
- if not axis_number:
- expected = expected.T
- tm.assert_frame_equal(result, expected)
- if axis_number == 0:
- # same thing, but empty columns
- gb2 = df[[]].groupby(axis=axis_number, level=0)
- exp = expected[[]]
- else:
- # same thing, but empty rows
- gb2 = df.loc[[]].groupby(axis=axis_number, level=0)
- # default for empty when we can't infer a dtype is float64
- exp = expected.loc[[]].astype(np.float64)
- res = gb2.nunique()
- tm.assert_frame_equal(res, exp)
- def test_groupby_list_level():
- # GH 9790
- expected = DataFrame(np.arange(0, 9).reshape(3, 3), dtype=float)
- result = expected.groupby(level=[0]).mean()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "max_seq_items, expected",
- [
- (5, "{0: [0], 1: [1], 2: [2], 3: [3], 4: [4]}"),
- (4, "{0: [0], 1: [1], 2: [2], 3: [3], ...}"),
- (1, "{0: [0], ...}"),
- ],
- )
- def test_groups_repr_truncates(max_seq_items, expected):
- # GH 1135
- df = DataFrame(np.random.randn(5, 1))
- df["a"] = df.index
- with pd.option_context("display.max_seq_items", max_seq_items):
- result = df.groupby("a").groups.__repr__()
- assert result == expected
- result = df.groupby(np.array(df.a)).groups.__repr__()
- assert result == expected
- def test_group_on_two_row_multiindex_returns_one_tuple_key():
- # GH 18451
- df = DataFrame([{"a": 1, "b": 2, "c": 99}, {"a": 1, "b": 2, "c": 88}])
- df = df.set_index(["a", "b"])
- grp = df.groupby(["a", "b"])
- result = grp.indices
- expected = {(1, 2): np.array([0, 1], dtype=np.int64)}
- assert len(result) == 1
- key = (1, 2)
- assert (result[key] == expected[key]).all()
- @pytest.mark.parametrize(
- "klass, attr, value",
- [
- (DataFrame, "level", "a"),
- (DataFrame, "as_index", False),
- (DataFrame, "sort", False),
- (DataFrame, "group_keys", False),
- (DataFrame, "observed", True),
- (DataFrame, "dropna", False),
- (Series, "level", "a"),
- (Series, "as_index", False),
- (Series, "sort", False),
- (Series, "group_keys", False),
- (Series, "observed", True),
- (Series, "dropna", False),
- ],
- )
- def test_subsetting_columns_keeps_attrs(klass, attr, value):
- # GH 9959 - When subsetting columns, don't drop attributes
- df = DataFrame({"a": [1], "b": [2], "c": [3]})
- if attr != "axis":
- df = df.set_index("a")
- expected = df.groupby("a", **{attr: value})
- result = expected[["b"]] if klass is DataFrame else expected["b"]
- assert getattr(result, attr) == getattr(expected, attr)
- def test_subsetting_columns_axis_1():
- # GH 37725
- g = DataFrame({"A": [1], "B": [2], "C": [3]}).groupby([0, 0, 1], axis=1)
- match = "Cannot subset columns when using axis=1"
- with pytest.raises(ValueError, match=match):
- g[["A", "B"]].sum()
- @pytest.mark.parametrize("func", ["sum", "any", "shift"])
- def test_groupby_column_index_name_lost(func):
- # GH: 29764 groupby loses index sometimes
- expected = Index(["a"], name="idx")
- df = DataFrame([[1]], columns=expected)
- df_grouped = df.groupby([1])
- result = getattr(df_grouped, func)().columns
- tm.assert_index_equal(result, expected)
- def test_groupby_duplicate_columns():
- # GH: 31735
- df = DataFrame(
- {"A": ["f", "e", "g", "h"], "B": ["a", "b", "c", "d"], "C": [1, 2, 3, 4]}
- ).astype(object)
- df.columns = ["A", "B", "B"]
- result = df.groupby([0, 0, 0, 0]).min()
- expected = DataFrame(
- [["e", "a", 1]], index=np.array([0]), columns=["A", "B", "B"], dtype=object
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_series_with_tuple_name():
- # GH 37755
- ser = Series([1, 2, 3, 4], index=[1, 1, 2, 2], name=("a", "a"))
- ser.index.name = ("b", "b")
- result = ser.groupby(level=0).last()
- expected = Series([2, 4], index=[1, 2], name=("a", "a"))
- expected.index.name = ("b", "b")
- tm.assert_series_equal(result, expected)
- @pytest.mark.xfail(not IS64, reason="GH#38778: fail on 32-bit system")
- @pytest.mark.parametrize(
- "func, values", [("sum", [97.0, 98.0]), ("mean", [24.25, 24.5])]
- )
- def test_groupby_numerical_stability_sum_mean(func, values):
- # GH#38778
- data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15]
- df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data})
- result = getattr(df.groupby("group"), func)()
- expected = DataFrame({"a": values, "b": values}, index=Index([1, 2], name="group"))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.xfail(not IS64, reason="GH#38778: fail on 32-bit system")
- def test_groupby_numerical_stability_cumsum():
- # GH#38934
- data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15]
- df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data})
- result = df.groupby("group").cumsum()
- exp_data = (
- [1e16] * 2 + [1e16 + 96, 1e16 + 98] + [5e15 + 97, 5e15 + 98] + [97.0, 98.0]
- )
- expected = DataFrame({"a": exp_data, "b": exp_data})
- tm.assert_frame_equal(result, expected, check_exact=True)
- def test_groupby_cumsum_skipna_false():
- # GH#46216 don't propagate np.nan above the diagonal
- arr = np.random.randn(5, 5)
- df = DataFrame(arr)
- for i in range(5):
- df.iloc[i, i] = np.nan
- df["A"] = 1
- gb = df.groupby("A")
- res = gb.cumsum(skipna=False)
- expected = df[[0, 1, 2, 3, 4]].cumsum(skipna=False)
- tm.assert_frame_equal(res, expected)
- def test_groupby_cumsum_timedelta64():
- # GH#46216 don't ignore is_datetimelike in libgroupby.group_cumsum
- dti = date_range("2016-01-01", periods=5)
- ser = Series(dti) - dti[0]
- ser[2] = pd.NaT
- df = DataFrame({"A": 1, "B": ser})
- gb = df.groupby("A")
- res = gb.cumsum(numeric_only=False, skipna=True)
- exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, ser[4], ser[4] * 2]})
- tm.assert_frame_equal(res, exp)
- res = gb.cumsum(numeric_only=False, skipna=False)
- exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, pd.NaT, pd.NaT]})
- tm.assert_frame_equal(res, exp)
- def test_groupby_mean_duplicate_index(rand_series_with_duplicate_datetimeindex):
- dups = rand_series_with_duplicate_datetimeindex
- result = dups.groupby(level=0).mean()
- expected = dups.groupby(dups.index).mean()
- tm.assert_series_equal(result, expected)
- def test_groupby_all_nan_groups_drop():
- # GH 15036
- s = Series([1, 2, 3], [np.nan, np.nan, np.nan])
- result = s.groupby(s.index).sum()
- expected = Series([], index=Index([], dtype=np.float64), dtype=np.int64)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("numeric_only", [True, False])
- def test_groupby_empty_multi_column(as_index, numeric_only):
- # GH 15106 & GH 41998
- df = DataFrame(data=[], columns=["A", "B", "C"])
- gb = df.groupby(["A", "B"], as_index=as_index)
- result = gb.sum(numeric_only=numeric_only)
- if as_index:
- index = MultiIndex([[], []], [[], []], names=["A", "B"])
- columns = ["C"] if not numeric_only else []
- else:
- index = RangeIndex(0)
- columns = ["A", "B", "C"] if not numeric_only else ["A", "B"]
- expected = DataFrame([], columns=columns, index=index)
- tm.assert_frame_equal(result, expected)
- def test_groupby_aggregation_non_numeric_dtype():
- # GH #43108
- df = DataFrame(
- [["M", [1]], ["M", [1]], ["W", [10]], ["W", [20]]], columns=["MW", "v"]
- )
- expected = DataFrame(
- {
- "v": [[1, 1], [10, 20]],
- },
- index=Index(["M", "W"], dtype="object", name="MW"),
- )
- gb = df.groupby(by=["MW"])
- result = gb.sum()
- tm.assert_frame_equal(result, expected)
- def test_groupby_aggregation_multi_non_numeric_dtype():
- # GH #42395
- df = DataFrame(
- {
- "x": [1, 0, 1, 1, 0],
- "y": [Timedelta(i, "days") for i in range(1, 6)],
- "z": [Timedelta(i * 10, "days") for i in range(1, 6)],
- }
- )
- expected = DataFrame(
- {
- "y": [Timedelta(i, "days") for i in range(7, 9)],
- "z": [Timedelta(i * 10, "days") for i in range(7, 9)],
- },
- index=Index([0, 1], dtype="int64", name="x"),
- )
- gb = df.groupby(by=["x"])
- result = gb.sum()
- tm.assert_frame_equal(result, expected)
- def test_groupby_aggregation_numeric_with_non_numeric_dtype():
- # GH #43108
- df = DataFrame(
- {
- "x": [1, 0, 1, 1, 0],
- "y": [Timedelta(i, "days") for i in range(1, 6)],
- "z": list(range(1, 6)),
- }
- )
- expected = DataFrame(
- {"y": [Timedelta(7, "days"), Timedelta(8, "days")], "z": [7, 8]},
- index=Index([0, 1], dtype="int64", name="x"),
- )
- gb = df.groupby(by=["x"])
- result = gb.sum()
- tm.assert_frame_equal(result, expected)
- def test_groupby_filtered_df_std():
- # GH 16174
- dicts = [
- {"filter_col": False, "groupby_col": True, "bool_col": True, "float_col": 10.5},
- {"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 20.5},
- {"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 30.5},
- ]
- df = DataFrame(dicts)
- df_filter = df[df["filter_col"] == True] # noqa:E712
- dfgb = df_filter.groupby("groupby_col")
- result = dfgb.std()
- expected = DataFrame(
- [[0.0, 0.0, 7.071068]],
- columns=["filter_col", "bool_col", "float_col"],
- index=Index([True], name="groupby_col"),
- )
- tm.assert_frame_equal(result, expected)
- def test_datetime_categorical_multikey_groupby_indices():
- # GH 26859
- df = DataFrame(
- {
- "a": Series(list("abc")),
- "b": Series(
- to_datetime(["2018-01-01", "2018-02-01", "2018-03-01"]),
- dtype="category",
- ),
- "c": Categorical.from_codes([-1, 0, 1], categories=[0, 1]),
- }
- )
- result = df.groupby(["a", "b"]).indices
- expected = {
- ("a", Timestamp("2018-01-01 00:00:00")): np.array([0]),
- ("b", Timestamp("2018-02-01 00:00:00")): np.array([1]),
- ("c", Timestamp("2018-03-01 00:00:00")): np.array([2]),
- }
- assert result == expected
- def test_rolling_wrong_param_min_period():
- # GH34037
- name_l = ["Alice"] * 5 + ["Bob"] * 5
- val_l = [np.nan, np.nan, 1, 2, 3] + [np.nan, 1, 2, 3, 4]
- test_df = DataFrame([name_l, val_l]).T
- test_df.columns = ["name", "val"]
- result_error_msg = r"__init__\(\) got an unexpected keyword argument 'min_period'"
- with pytest.raises(TypeError, match=result_error_msg):
- test_df.groupby("name")["val"].rolling(window=2, min_period=1).sum()
- def test_by_column_values_with_same_starting_value():
- # GH29635
- df = DataFrame(
- {
- "Name": ["Thomas", "Thomas", "Thomas John"],
- "Credit": [1200, 1300, 900],
- "Mood": ["sad", "happy", "happy"],
- }
- )
- aggregate_details = {"Mood": Series.mode, "Credit": "sum"}
- result = df.groupby(["Name"]).agg(aggregate_details)
- expected_result = DataFrame(
- {
- "Mood": [["happy", "sad"], "happy"],
- "Credit": [2500, 900],
- "Name": ["Thomas", "Thomas John"],
- }
- ).set_index("Name")
- tm.assert_frame_equal(result, expected_result)
- def test_groupby_none_in_first_mi_level():
- # GH#47348
- arr = [[None, 1, 0, 1], [2, 3, 2, 3]]
- ser = Series(1, index=MultiIndex.from_arrays(arr, names=["a", "b"]))
- result = ser.groupby(level=[0, 1]).sum()
- expected = Series(
- [1, 2], MultiIndex.from_tuples([(0.0, 2), (1.0, 3)], names=["a", "b"])
- )
- tm.assert_series_equal(result, expected)
- def test_groupby_none_column_name():
- # GH#47348
- df = DataFrame({None: [1, 1, 2, 2], "b": [1, 1, 2, 3], "c": [4, 5, 6, 7]})
- result = df.groupby(by=[None]).sum()
- expected = DataFrame({"b": [2, 5], "c": [9, 13]}, index=Index([1, 2], name=None))
- tm.assert_frame_equal(result, expected)
- def test_single_element_list_grouping():
- # GH 42795
- df = DataFrame({"a": [1, 2], "b": [np.nan, 5], "c": [np.nan, 2]}, index=["x", "y"])
- result = [key for key, _ in df.groupby(["a"])]
- expected = [(1,), (2,)]
- assert result == expected
- @pytest.mark.parametrize("func", ["sum", "cumsum", "cumprod", "prod"])
- def test_groupby_avoid_casting_to_float(func):
- # GH#37493
- val = 922337203685477580
- df = DataFrame({"a": 1, "b": [val]})
- result = getattr(df.groupby("a"), func)() - val
- expected = DataFrame({"b": [0]}, index=Index([1], name="a"))
- if func in ["cumsum", "cumprod"]:
- expected = expected.reset_index(drop=True)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("func, val", [("sum", 3), ("prod", 2)])
- def test_groupby_sum_support_mask(any_numeric_ea_dtype, func, val):
- # GH#37493
- df = DataFrame({"a": 1, "b": [1, 2, pd.NA]}, dtype=any_numeric_ea_dtype)
- result = getattr(df.groupby("a"), func)()
- expected = DataFrame(
- {"b": [val]},
- index=Index([1], name="a", dtype=any_numeric_ea_dtype),
- dtype=any_numeric_ea_dtype,
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("val, dtype", [(111, "int"), (222, "uint")])
- def test_groupby_overflow(val, dtype):
- # GH#37493
- df = DataFrame({"a": 1, "b": [val, val]}, dtype=f"{dtype}8")
- result = df.groupby("a").sum()
- expected = DataFrame(
- {"b": [val * 2]},
- index=Index([1], name="a", dtype=f"{dtype}8"),
- dtype=f"{dtype}64",
- )
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a").cumsum()
- expected = DataFrame({"b": [val, val * 2]}, dtype=f"{dtype}64")
- tm.assert_frame_equal(result, expected)
- result = df.groupby("a").prod()
- expected = DataFrame(
- {"b": [val * val]},
- index=Index([1], name="a", dtype=f"{dtype}8"),
- dtype=f"{dtype}64",
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("skipna, val", [(True, 3), (False, pd.NA)])
- def test_groupby_cumsum_mask(any_numeric_ea_dtype, skipna, val):
- # GH#37493
- df = DataFrame({"a": 1, "b": [1, pd.NA, 2]}, dtype=any_numeric_ea_dtype)
- result = df.groupby("a").cumsum(skipna=skipna)
- expected = DataFrame(
- {"b": [1, pd.NA, val]},
- dtype=any_numeric_ea_dtype,
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "val_in, index, val_out",
- [
- (
- [1.0, 2.0, 3.0, 4.0, 5.0],
- ["foo", "foo", "bar", "baz", "blah"],
- [3.0, 4.0, 5.0, 3.0],
- ),
- (
- [1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
- ["foo", "foo", "bar", "baz", "blah", "blah"],
- [3.0, 4.0, 11.0, 3.0],
- ),
- ],
- )
- def test_groupby_index_name_in_index_content(val_in, index, val_out):
- # GH 48567
- series = Series(data=val_in, name="values", index=Index(index, name="blah"))
- result = series.groupby("blah").sum()
- expected = Series(
- data=val_out,
- name="values",
- index=Index(["bar", "baz", "blah", "foo"], name="blah"),
- )
- tm.assert_series_equal(result, expected)
- result = series.to_frame().groupby("blah").sum()
- expected = expected.to_frame()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("n", [1, 10, 32, 100, 1000])
- def test_sum_of_booleans(n):
- # GH 50347
- df = DataFrame({"groupby_col": 1, "bool": [True] * n})
- df["bool"] = df["bool"].eq(True)
- result = df.groupby("groupby_col").sum()
- expected = DataFrame({"bool": [n]}, index=Index([1], name="groupby_col"))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.filterwarnings(
- "ignore:invalid value encountered in remainder:RuntimeWarning"
- )
- @pytest.mark.parametrize("method", ["head", "tail", "nth", "first", "last"])
- def test_groupby_method_drop_na(method):
- # GH 21755
- df = DataFrame({"A": ["a", np.nan, "b", np.nan, "c"], "B": range(5)})
- if method == "nth":
- result = getattr(df.groupby("A"), method)(n=0)
- else:
- result = getattr(df.groupby("A"), method)()
- if method in ["first", "last"]:
- expected = DataFrame({"B": [0, 2, 4]}).set_index(
- Series(["a", "b", "c"], name="A")
- )
- else:
- expected = DataFrame({"A": ["a", "b", "c"], "B": [0, 2, 4]}, index=[0, 2, 4])
- tm.assert_frame_equal(result, expected)
- def test_groupby_reduce_period():
- # GH#51040
- pi = pd.period_range("2016-01-01", periods=100, freq="D")
- grps = list(range(10)) * 10
- ser = pi.to_series()
- gb = ser.groupby(grps)
- with pytest.raises(TypeError, match="Period type does not support sum operations"):
- gb.sum()
- with pytest.raises(
- TypeError, match="Period type does not support cumsum operations"
- ):
- gb.cumsum()
- with pytest.raises(TypeError, match="Period type does not support prod operations"):
- gb.prod()
- with pytest.raises(
- TypeError, match="Period type does not support cumprod operations"
- ):
- gb.cumprod()
- res = gb.max()
- expected = ser[-10:]
- expected.index = Index(range(10), dtype=np.int_)
- tm.assert_series_equal(res, expected)
- res = gb.min()
- expected = ser[:10]
- expected.index = Index(range(10), dtype=np.int_)
- tm.assert_series_equal(res, expected)
- def test_obj_with_exclusions_duplicate_columns():
- # GH#50806
- df = DataFrame([[0, 1, 2, 3]])
- df.columns = [0, 1, 2, 0]
- gb = df.groupby(df[1])
- result = gb._obj_with_exclusions
- expected = df.take([0, 2, 3], axis=1)
- tm.assert_frame_equal(result, expected)
|