123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- import numpy as np
- import pytest
- import pandas.util._test_decorators as td
- from pandas import (
- Categorical,
- DataFrame,
- MultiIndex,
- Series,
- date_range,
- )
- import pandas._testing as tm
- @td.skip_if_no("xarray")
- class TestDataFrameToXArray:
- @pytest.fixture
- def df(self):
- return DataFrame(
- {
- "a": list("abc"),
- "b": list(range(1, 4)),
- "c": np.arange(3, 6).astype("u1"),
- "d": np.arange(4.0, 7.0, dtype="float64"),
- "e": [True, False, True],
- "f": Categorical(list("abc")),
- "g": date_range("20130101", periods=3),
- "h": date_range("20130101", periods=3, tz="US/Eastern"),
- }
- )
- def test_to_xarray_index_types(self, index_flat, df):
- index = index_flat
- # MultiIndex is tested in test_to_xarray_with_multiindex
- if len(index) == 0:
- pytest.skip("Test doesn't make sense for empty index")
- from xarray import Dataset
- df.index = index[:3]
- df.index.name = "foo"
- df.columns.name = "bar"
- result = df.to_xarray()
- assert result.dims["foo"] == 3
- assert len(result.coords) == 1
- assert len(result.data_vars) == 8
- tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
- assert isinstance(result, Dataset)
- # idempotency
- # datetimes w/tz are preserved
- # column names are lost
- expected = df.copy()
- expected["f"] = expected["f"].astype(object)
- expected.columns.name = None
- tm.assert_frame_equal(result.to_dataframe(), expected)
- def test_to_xarray_empty(self, df):
- from xarray import Dataset
- df.index.name = "foo"
- result = df[0:0].to_xarray()
- assert result.dims["foo"] == 0
- assert isinstance(result, Dataset)
- def test_to_xarray_with_multiindex(self, df):
- from xarray import Dataset
- # MultiIndex
- df.index = MultiIndex.from_product([["a"], range(3)], names=["one", "two"])
- result = df.to_xarray()
- assert result.dims["one"] == 1
- assert result.dims["two"] == 3
- assert len(result.coords) == 2
- assert len(result.data_vars) == 8
- tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
- assert isinstance(result, Dataset)
- result = result.to_dataframe()
- expected = df.copy()
- expected["f"] = expected["f"].astype(object)
- expected.columns.name = None
- tm.assert_frame_equal(result, expected)
- @td.skip_if_no("xarray")
- class TestSeriesToXArray:
- def test_to_xarray_index_types(self, index_flat):
- index = index_flat
- # MultiIndex is tested in test_to_xarray_with_multiindex
- from xarray import DataArray
- ser = Series(range(len(index)), index=index, dtype="int64")
- ser.index.name = "foo"
- result = ser.to_xarray()
- repr(result)
- assert len(result) == len(index)
- assert len(result.coords) == 1
- tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
- assert isinstance(result, DataArray)
- # idempotency
- tm.assert_series_equal(result.to_series(), ser)
- def test_to_xarray_empty(self):
- from xarray import DataArray
- ser = Series([], dtype=object)
- ser.index.name = "foo"
- result = ser.to_xarray()
- assert len(result) == 0
- assert len(result.coords) == 1
- tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
- assert isinstance(result, DataArray)
- def test_to_xarray_with_multiindex(self):
- from xarray import DataArray
- mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
- ser = Series(range(6), dtype="int64", index=mi)
- result = ser.to_xarray()
- assert len(result) == 2
- tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
- assert isinstance(result, DataArray)
- res = result.to_series()
- tm.assert_series_equal(res, ser)
|