123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Series,
- date_range,
- )
- import pandas._testing as tm
- def check(result, expected=None):
- if expected is not None:
- tm.assert_frame_equal(result, expected)
- result.dtypes
- str(result)
- class TestDataFrameNonuniqueIndexes:
- def test_setattr_columns_vs_construct_with_columns(self):
- # assignment
- # GH 3687
- arr = np.random.randn(3, 2)
- idx = list(range(2))
- df = DataFrame(arr, columns=["A", "A"])
- df.columns = idx
- expected = DataFrame(arr, columns=idx)
- check(df, expected)
- def test_setattr_columns_vs_construct_with_columns_datetimeindx(self):
- idx = date_range("20130101", periods=4, freq="Q-NOV")
- df = DataFrame(
- [[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=["a", "a", "a", "a"]
- )
- df.columns = idx
- expected = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=idx)
- check(df, expected)
- def test_insert_with_duplicate_columns(self):
- # insert
- df = DataFrame(
- [[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]],
- columns=["foo", "bar", "foo", "hello"],
- )
- df["string"] = "bah"
- expected = DataFrame(
- [[1, 1, 1, 5, "bah"], [1, 1, 2, 5, "bah"], [2, 1, 3, 5, "bah"]],
- columns=["foo", "bar", "foo", "hello", "string"],
- )
- check(df, expected)
- with pytest.raises(ValueError, match="Length of value"):
- df.insert(0, "AnotherColumn", range(len(df.index) - 1))
- # insert same dtype
- df["foo2"] = 3
- expected = DataFrame(
- [[1, 1, 1, 5, "bah", 3], [1, 1, 2, 5, "bah", 3], [2, 1, 3, 5, "bah", 3]],
- columns=["foo", "bar", "foo", "hello", "string", "foo2"],
- )
- check(df, expected)
- # set (non-dup)
- df["foo2"] = 4
- expected = DataFrame(
- [[1, 1, 1, 5, "bah", 4], [1, 1, 2, 5, "bah", 4], [2, 1, 3, 5, "bah", 4]],
- columns=["foo", "bar", "foo", "hello", "string", "foo2"],
- )
- check(df, expected)
- df["foo2"] = 3
- # delete (non dup)
- del df["bar"]
- expected = DataFrame(
- [[1, 1, 5, "bah", 3], [1, 2, 5, "bah", 3], [2, 3, 5, "bah", 3]],
- columns=["foo", "foo", "hello", "string", "foo2"],
- )
- check(df, expected)
- # try to delete again (its not consolidated)
- del df["hello"]
- expected = DataFrame(
- [[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
- columns=["foo", "foo", "string", "foo2"],
- )
- check(df, expected)
- # consolidate
- df = df._consolidate()
- expected = DataFrame(
- [[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
- columns=["foo", "foo", "string", "foo2"],
- )
- check(df, expected)
- # insert
- df.insert(2, "new_col", 5.0)
- expected = DataFrame(
- [[1, 1, 5.0, "bah", 3], [1, 2, 5.0, "bah", 3], [2, 3, 5.0, "bah", 3]],
- columns=["foo", "foo", "new_col", "string", "foo2"],
- )
- check(df, expected)
- # insert a dup
- with pytest.raises(ValueError, match="cannot insert"):
- df.insert(2, "new_col", 4.0)
- df.insert(2, "new_col", 4.0, allow_duplicates=True)
- expected = DataFrame(
- [
- [1, 1, 4.0, 5.0, "bah", 3],
- [1, 2, 4.0, 5.0, "bah", 3],
- [2, 3, 4.0, 5.0, "bah", 3],
- ],
- columns=["foo", "foo", "new_col", "new_col", "string", "foo2"],
- )
- check(df, expected)
- # delete (dup)
- del df["foo"]
- expected = DataFrame(
- [[4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3]],
- columns=["new_col", "new_col", "string", "foo2"],
- )
- tm.assert_frame_equal(df, expected)
- def test_dup_across_dtypes(self):
- # dup across dtypes
- df = DataFrame(
- [[1, 1, 1.0, 5], [1, 1, 2.0, 5], [2, 1, 3.0, 5]],
- columns=["foo", "bar", "foo", "hello"],
- )
- check(df)
- df["foo2"] = 7.0
- expected = DataFrame(
- [[1, 1, 1.0, 5, 7.0], [1, 1, 2.0, 5, 7.0], [2, 1, 3.0, 5, 7.0]],
- columns=["foo", "bar", "foo", "hello", "foo2"],
- )
- check(df, expected)
- result = df["foo"]
- expected = DataFrame([[1, 1.0], [1, 2.0], [2, 3.0]], columns=["foo", "foo"])
- check(result, expected)
- # multiple replacements
- df["foo"] = "string"
- expected = DataFrame(
- [
- ["string", 1, "string", 5, 7.0],
- ["string", 1, "string", 5, 7.0],
- ["string", 1, "string", 5, 7.0],
- ],
- columns=["foo", "bar", "foo", "hello", "foo2"],
- )
- check(df, expected)
- del df["foo"]
- expected = DataFrame(
- [[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "hello", "foo2"]
- )
- check(df, expected)
- def test_column_dups_indexes(self):
- # check column dups with index equal and not equal to df's index
- df = DataFrame(
- np.random.randn(5, 3),
- index=["a", "b", "c", "d", "e"],
- columns=["A", "B", "A"],
- )
- for index in [df.index, pd.Index(list("edcba"))]:
- this_df = df.copy()
- expected_ser = Series(index.values, index=this_df.index)
- expected_df = DataFrame(
- {"A": expected_ser, "B": this_df["B"]},
- columns=["A", "B", "A"],
- )
- this_df["A"] = index
- check(this_df, expected_df)
- def test_changing_dtypes_with_duplicate_columns(self):
- # multiple assignments that change dtypes
- # the location indexer is a slice
- # GH 6120
- df = DataFrame(np.random.randn(5, 2), columns=["that", "that"])
- expected = DataFrame(1.0, index=range(5), columns=["that", "that"])
- df["that"] = 1.0
- check(df, expected)
- df = DataFrame(np.random.rand(5, 2), columns=["that", "that"])
- expected = DataFrame(1, index=range(5), columns=["that", "that"])
- df["that"] = 1
- check(df, expected)
- def test_dup_columns_comparisons(self):
- # equality
- df1 = DataFrame([[1, 2], [2, np.nan], [3, 4], [4, 4]], columns=["A", "B"])
- df2 = DataFrame([[0, 1], [2, 4], [2, np.nan], [4, 5]], columns=["A", "A"])
- # not-comparing like-labelled
- msg = (
- r"Can only compare identically-labeled \(both index and columns\) "
- "DataFrame objects"
- )
- with pytest.raises(ValueError, match=msg):
- df1 == df2
- df1r = df1.reindex_like(df2)
- result = df1r == df2
- expected = DataFrame(
- [[False, True], [True, False], [False, False], [True, False]],
- columns=["A", "A"],
- )
- tm.assert_frame_equal(result, expected)
- def test_mixed_column_selection(self):
- # mixed column selection
- # GH 5639
- dfbool = DataFrame(
- {
- "one": Series([True, True, False], index=["a", "b", "c"]),
- "two": Series([False, False, True, False], index=["a", "b", "c", "d"]),
- "three": Series([False, True, True, True], index=["a", "b", "c", "d"]),
- }
- )
- expected = pd.concat([dfbool["one"], dfbool["three"], dfbool["one"]], axis=1)
- result = dfbool[["one", "three", "one"]]
- check(result, expected)
- def test_multi_axis_dups(self):
- # multi-axis dups
- # GH 6121
- df = DataFrame(
- np.arange(25.0).reshape(5, 5),
- index=["a", "b", "c", "d", "e"],
- columns=["A", "B", "C", "D", "E"],
- )
- z = df[["A", "C", "A"]].copy()
- expected = z.loc[["a", "c", "a"]]
- df = DataFrame(
- np.arange(25.0).reshape(5, 5),
- index=["a", "b", "c", "d", "e"],
- columns=["A", "B", "C", "D", "E"],
- )
- z = df[["A", "C", "A"]]
- result = z.loc[["a", "c", "a"]]
- check(result, expected)
- def test_columns_with_dups(self):
- # GH 3468 related
- # basic
- df = DataFrame([[1, 2]], columns=["a", "a"])
- df.columns = ["a", "a.1"]
- str(df)
- expected = DataFrame([[1, 2]], columns=["a", "a.1"])
- tm.assert_frame_equal(df, expected)
- df = DataFrame([[1, 2, 3]], columns=["b", "a", "a"])
- df.columns = ["b", "a", "a.1"]
- str(df)
- expected = DataFrame([[1, 2, 3]], columns=["b", "a", "a.1"])
- tm.assert_frame_equal(df, expected)
- def test_columns_with_dup_index(self):
- # with a dup index
- df = DataFrame([[1, 2]], columns=["a", "a"])
- df.columns = ["b", "b"]
- str(df)
- expected = DataFrame([[1, 2]], columns=["b", "b"])
- tm.assert_frame_equal(df, expected)
- def test_multi_dtype(self):
- # multi-dtype
- df = DataFrame(
- [[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]],
- columns=["a", "a", "b", "b", "d", "c", "c"],
- )
- df.columns = list("ABCDEFG")
- str(df)
- expected = DataFrame(
- [[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("ABCDEFG")
- )
- tm.assert_frame_equal(df, expected)
- def test_multi_dtype2(self):
- df = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a", "a", "a"])
- df.columns = ["a", "a.1", "a.2", "a.3"]
- str(df)
- expected = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a.1", "a.2", "a.3"])
- tm.assert_frame_equal(df, expected)
- def test_dups_across_blocks(self, using_array_manager):
- # dups across blocks
- df_float = DataFrame(np.random.randn(10, 3), dtype="float64")
- df_int = DataFrame(np.random.randn(10, 3).astype("int64"))
- df_bool = DataFrame(True, index=df_float.index, columns=df_float.columns)
- df_object = DataFrame("foo", index=df_float.index, columns=df_float.columns)
- df_dt = DataFrame(
- pd.Timestamp("20010101"), index=df_float.index, columns=df_float.columns
- )
- df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
- if not using_array_manager:
- assert len(df._mgr.blknos) == len(df.columns)
- assert len(df._mgr.blklocs) == len(df.columns)
- # testing iloc
- for i in range(len(df.columns)):
- df.iloc[:, i]
- def test_dup_columns_across_dtype(self):
- # dup columns across dtype GH 2079/2194
- vals = [[1, -1, 2.0], [2, -2, 3.0]]
- rs = DataFrame(vals, columns=["A", "A", "B"])
- xp = DataFrame(vals)
- xp.columns = ["A", "A", "B"]
- tm.assert_frame_equal(rs, xp)
- def test_set_value_by_index(self):
- # See gh-12344
- warn = None
- msg = "will attempt to set the values inplace"
- df = DataFrame(np.arange(9).reshape(3, 3).T)
- df.columns = list("AAA")
- expected = df.iloc[:, 2]
- with tm.assert_produces_warning(warn, match=msg):
- df.iloc[:, 0] = 3
- tm.assert_series_equal(df.iloc[:, 2], expected)
- df = DataFrame(np.arange(9).reshape(3, 3).T)
- df.columns = [2, float(2), str(2)]
- expected = df.iloc[:, 1]
- with tm.assert_produces_warning(warn, match=msg):
- df.iloc[:, 0] = 3
- tm.assert_series_equal(df.iloc[:, 1], expected)
|