1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169 |
- import array
- from collections import (
- OrderedDict,
- abc,
- defaultdict,
- namedtuple,
- )
- from dataclasses import make_dataclass
- from datetime import (
- date,
- datetime,
- timedelta,
- )
- import functools
- import random
- import re
- from typing import Iterator
- import warnings
- import numpy as np
- from numpy import ma
- from numpy.ma import mrecords
- import pytest
- import pytz
- from pandas.errors import IntCastingNaNError
- import pandas.util._test_decorators as td
- from pandas.core.dtypes.common import is_integer_dtype
- from pandas.core.dtypes.dtypes import (
- DatetimeTZDtype,
- IntervalDtype,
- PandasDtype,
- PeriodDtype,
- )
- import pandas as pd
- from pandas import (
- Categorical,
- CategoricalIndex,
- DataFrame,
- DatetimeIndex,
- Index,
- Interval,
- MultiIndex,
- Period,
- RangeIndex,
- Series,
- Timedelta,
- Timestamp,
- cut,
- date_range,
- isna,
- )
- import pandas._testing as tm
- from pandas.arrays import (
- DatetimeArray,
- IntervalArray,
- PeriodArray,
- SparseArray,
- TimedeltaArray,
- )
- MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"]
- MIXED_INT_DTYPES = [
- "uint8",
- "uint16",
- "uint32",
- "uint64",
- "int8",
- "int16",
- "int32",
- "int64",
- ]
- class TestDataFrameConstructors:
- def test_constructor_from_ndarray_with_str_dtype(self):
- # If we don't ravel/reshape around ensure_str_array, we end up
- # with an array of strings each of which is e.g. "[0 1 2]"
- arr = np.arange(12).reshape(4, 3)
- df = DataFrame(arr, dtype=str)
- expected = DataFrame(arr.astype(str))
- tm.assert_frame_equal(df, expected)
- def test_constructor_from_2d_datetimearray(self, using_array_manager):
- dti = date_range("2016-01-01", periods=6, tz="US/Pacific")
- dta = dti._data.reshape(3, 2)
- df = DataFrame(dta)
- expected = DataFrame({0: dta[:, 0], 1: dta[:, 1]})
- tm.assert_frame_equal(df, expected)
- if not using_array_manager:
- # GH#44724 big performance hit if we de-consolidate
- assert len(df._mgr.blocks) == 1
- def test_constructor_dict_with_tzaware_scalar(self):
- # GH#42505
- dt = Timestamp("2019-11-03 01:00:00-0700").tz_convert("America/Los_Angeles")
- df = DataFrame({"dt": dt}, index=[0])
- expected = DataFrame({"dt": [dt]})
- tm.assert_frame_equal(df, expected)
- # Non-homogeneous
- df = DataFrame({"dt": dt, "value": [1]})
- expected = DataFrame({"dt": [dt], "value": [1]})
- tm.assert_frame_equal(df, expected)
- def test_construct_ndarray_with_nas_and_int_dtype(self):
- # GH#26919 match Series by not casting np.nan to meaningless int
- arr = np.array([[1, np.nan], [2, 3]])
- msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
- with pytest.raises(IntCastingNaNError, match=msg):
- DataFrame(arr, dtype="i8")
- # check this matches Series behavior
- with pytest.raises(IntCastingNaNError, match=msg):
- Series(arr[0], dtype="i8", name=0)
- def test_construct_from_list_of_datetimes(self):
- df = DataFrame([datetime.now(), datetime.now()])
- assert df[0].dtype == np.dtype("M8[ns]")
- def test_constructor_from_tzaware_datetimeindex(self):
- # don't cast a DatetimeIndex WITH a tz, leave as object
- # GH#6032
- naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
- idx = naive.tz_localize("US/Pacific")
- expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
- assert expected.dtype == idx.dtype
- # convert index to series
- result = Series(idx)
- tm.assert_series_equal(result, expected)
- def test_array_of_dt64_nat_with_td64dtype_raises(self, frame_or_series):
- # GH#39462
- nat = np.datetime64("NaT", "ns")
- arr = np.array([nat], dtype=object)
- if frame_or_series is DataFrame:
- arr = arr.reshape(1, 1)
- msg = "Invalid type for timedelta scalar: <class 'numpy.datetime64'>"
- with pytest.raises(TypeError, match=msg):
- frame_or_series(arr, dtype="m8[ns]")
- @pytest.mark.parametrize("kind", ["m", "M"])
- def test_datetimelike_values_with_object_dtype(self, kind, frame_or_series):
- # with dtype=object, we should cast dt64 values to Timestamps, not pydatetimes
- if kind == "M":
- dtype = "M8[ns]"
- scalar_type = Timestamp
- else:
- dtype = "m8[ns]"
- scalar_type = Timedelta
- arr = np.arange(6, dtype="i8").view(dtype).reshape(3, 2)
- if frame_or_series is Series:
- arr = arr[:, 0]
- obj = frame_or_series(arr, dtype=object)
- assert obj._mgr.arrays[0].dtype == object
- assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
- # go through a different path in internals.construction
- obj = frame_or_series(frame_or_series(arr), dtype=object)
- assert obj._mgr.arrays[0].dtype == object
- assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
- obj = frame_or_series(frame_or_series(arr), dtype=PandasDtype(object))
- assert obj._mgr.arrays[0].dtype == object
- assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
- if frame_or_series is DataFrame:
- # other paths through internals.construction
- sers = [Series(x) for x in arr]
- obj = frame_or_series(sers, dtype=object)
- assert obj._mgr.arrays[0].dtype == object
- assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
- def test_series_with_name_not_matching_column(self):
- # GH#9232
- x = Series(range(5), name=1)
- y = Series(range(5), name=0)
- result = DataFrame(x, columns=[0])
- expected = DataFrame([], columns=[0])
- tm.assert_frame_equal(result, expected)
- result = DataFrame(y, columns=[1])
- expected = DataFrame([], columns=[1])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "constructor",
- [
- lambda: DataFrame(),
- lambda: DataFrame(None),
- lambda: DataFrame(()),
- lambda: DataFrame([]),
- lambda: DataFrame(_ for _ in []),
- lambda: DataFrame(range(0)),
- lambda: DataFrame(data=None),
- lambda: DataFrame(data=()),
- lambda: DataFrame(data=[]),
- lambda: DataFrame(data=(_ for _ in [])),
- lambda: DataFrame(data=range(0)),
- ],
- )
- def test_empty_constructor(self, constructor):
- expected = DataFrame()
- result = constructor()
- assert len(result.index) == 0
- assert len(result.columns) == 0
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "constructor",
- [
- lambda: DataFrame({}),
- lambda: DataFrame(data={}),
- ],
- )
- def test_empty_constructor_object_index(self, constructor):
- expected = DataFrame(index=RangeIndex(0), columns=RangeIndex(0))
- result = constructor()
- assert len(result.index) == 0
- assert len(result.columns) == 0
- tm.assert_frame_equal(result, expected, check_index_type=True)
- @pytest.mark.parametrize(
- "emptylike,expected_index,expected_columns",
- [
- ([[]], RangeIndex(1), RangeIndex(0)),
- ([[], []], RangeIndex(2), RangeIndex(0)),
- ([(_ for _ in [])], RangeIndex(1), RangeIndex(0)),
- ],
- )
- def test_emptylike_constructor(self, emptylike, expected_index, expected_columns):
- expected = DataFrame(index=expected_index, columns=expected_columns)
- result = DataFrame(emptylike)
- tm.assert_frame_equal(result, expected)
- def test_constructor_mixed(self, float_string_frame):
- index, data = tm.getMixedTypeDict()
- # TODO(wesm), incomplete test?
- indexed_frame = DataFrame(data, index=index) # noqa
- unindexed_frame = DataFrame(data) # noqa
- assert float_string_frame["foo"].dtype == np.object_
- def test_constructor_cast_failure(self):
- # as of 2.0, we raise if we can't respect "dtype", previously we
- # silently ignored
- msg = "could not convert string to float"
- with pytest.raises(ValueError, match=msg):
- DataFrame({"a": ["a", "b", "c"]}, dtype=np.float64)
- # GH 3010, constructing with odd arrays
- df = DataFrame(np.ones((4, 2)))
- # this is ok
- df["foo"] = np.ones((4, 2)).tolist()
- # this is not ok
- msg = "Expected a 1D array, got an array with shape \\(4, 2\\)"
- with pytest.raises(ValueError, match=msg):
- df["test"] = np.ones((4, 2))
- # this is ok
- df["foo2"] = np.ones((4, 2)).tolist()
- def test_constructor_dtype_copy(self):
- orig_df = DataFrame({"col1": [1.0], "col2": [2.0], "col3": [3.0]})
- new_df = DataFrame(orig_df, dtype=float, copy=True)
- new_df["col1"] = 200.0
- assert orig_df["col1"][0] == 1.0
- def test_constructor_dtype_nocast_view_dataframe(self, using_copy_on_write):
- df = DataFrame([[1, 2]])
- should_be_view = DataFrame(df, dtype=df[0].dtype)
- if using_copy_on_write:
- should_be_view.iloc[0, 0] = 99
- assert df.values[0, 0] == 1
- else:
- should_be_view[0][0] = 99
- assert df.values[0, 0] == 99
- def test_constructor_dtype_nocast_view_2d_array(
- self, using_array_manager, using_copy_on_write
- ):
- df = DataFrame([[1, 2], [3, 4]], dtype="int64")
- if not using_array_manager and not using_copy_on_write:
- should_be_view = DataFrame(df.values, dtype=df[0].dtype)
- should_be_view[0][0] = 97
- assert df.values[0, 0] == 97
- else:
- # INFO(ArrayManager) DataFrame(ndarray) doesn't necessarily preserve
- # a view on the array to ensure contiguous 1D arrays
- df2 = DataFrame(df.values, dtype=df[0].dtype)
- assert df2._mgr.arrays[0].flags.c_contiguous
- @td.skip_array_manager_invalid_test
- def test_1d_object_array_does_not_copy(self):
- # https://github.com/pandas-dev/pandas/issues/39272
- arr = np.array(["a", "b"], dtype="object")
- df = DataFrame(arr, copy=False)
- assert np.shares_memory(df.values, arr)
- @td.skip_array_manager_invalid_test
- def test_2d_object_array_does_not_copy(self):
- # https://github.com/pandas-dev/pandas/issues/39272
- arr = np.array([["a", "b"], ["c", "d"]], dtype="object")
- df = DataFrame(arr, copy=False)
- assert np.shares_memory(df.values, arr)
- def test_constructor_dtype_list_data(self):
- df = DataFrame([[1, "2"], [None, "a"]], dtype=object)
- assert df.loc[1, 0] is None
- assert df.loc[0, 1] == "2"
- def test_constructor_list_of_2d_raises(self):
- # https://github.com/pandas-dev/pandas/issues/32289
- a = DataFrame()
- b = np.empty((0, 0))
- with pytest.raises(ValueError, match=r"shape=\(1, 0, 0\)"):
- DataFrame([a])
- with pytest.raises(ValueError, match=r"shape=\(1, 0, 0\)"):
- DataFrame([b])
- a = DataFrame({"A": [1, 2]})
- with pytest.raises(ValueError, match=r"shape=\(2, 2, 1\)"):
- DataFrame([a, a])
- @pytest.mark.parametrize(
- "typ, ad",
- [
- # mixed floating and integer coexist in the same frame
- ["float", {}],
- # add lots of types
- ["float", {"A": 1, "B": "foo", "C": "bar"}],
- # GH 622
- ["int", {}],
- ],
- )
- def test_constructor_mixed_dtypes(self, typ, ad):
- if typ == "int":
- dtypes = MIXED_INT_DTYPES
- arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes]
- elif typ == "float":
- dtypes = MIXED_FLOAT_DTYPES
- arrays = [np.array(np.random.randint(10, size=10), dtype=d) for d in dtypes]
- for d, a in zip(dtypes, arrays):
- assert a.dtype == d
- ad.update(dict(zip(dtypes, arrays)))
- df = DataFrame(ad)
- dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES
- for d in dtypes:
- if d in df:
- assert df.dtypes[d] == d
- def test_constructor_complex_dtypes(self):
- # GH10952
- a = np.random.rand(10).astype(np.complex64)
- b = np.random.rand(10).astype(np.complex128)
- df = DataFrame({"a": a, "b": b})
- assert a.dtype == df.a.dtype
- assert b.dtype == df.b.dtype
- def test_constructor_dtype_str_na_values(self, string_dtype):
- # https://github.com/pandas-dev/pandas/issues/21083
- df = DataFrame({"A": ["x", None]}, dtype=string_dtype)
- result = df.isna()
- expected = DataFrame({"A": [False, True]})
- tm.assert_frame_equal(result, expected)
- assert df.iloc[1, 0] is None
- df = DataFrame({"A": ["x", np.nan]}, dtype=string_dtype)
- assert np.isnan(df.iloc[1, 0])
- def test_constructor_rec(self, float_frame):
- rec = float_frame.to_records(index=False)
- rec.dtype.names = list(rec.dtype.names)[::-1]
- index = float_frame.index
- df = DataFrame(rec)
- tm.assert_index_equal(df.columns, Index(rec.dtype.names))
- df2 = DataFrame(rec, index=index)
- tm.assert_index_equal(df2.columns, Index(rec.dtype.names))
- tm.assert_index_equal(df2.index, index)
- # case with columns != the ones we would infer from the data
- rng = np.arange(len(rec))[::-1]
- df3 = DataFrame(rec, index=rng, columns=["C", "B"])
- expected = DataFrame(rec, index=rng).reindex(columns=["C", "B"])
- tm.assert_frame_equal(df3, expected)
- def test_constructor_bool(self):
- df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)})
- assert df.values.dtype == np.bool_
- def test_constructor_overflow_int64(self):
- # see gh-14881
- values = np.array([2**64 - i for i in range(1, 10)], dtype=np.uint64)
- result = DataFrame({"a": values})
- assert result["a"].dtype == np.uint64
- # see gh-2355
- data_scores = [
- (6311132704823138710, 273),
- (2685045978526272070, 23),
- (8921811264899370420, 45),
- (17019687244989530680, 270),
- (9930107427299601010, 273),
- ]
- dtype = [("uid", "u8"), ("score", "u8")]
- data = np.zeros((len(data_scores),), dtype=dtype)
- data[:] = data_scores
- df_crawls = DataFrame(data)
- assert df_crawls["uid"].dtype == np.uint64
- @pytest.mark.parametrize(
- "values",
- [
- np.array([2**64], dtype=object),
- np.array([2**65]),
- [2**64 + 1],
- np.array([-(2**63) - 4], dtype=object),
- np.array([-(2**64) - 1]),
- [-(2**65) - 2],
- ],
- )
- def test_constructor_int_overflow(self, values):
- # see gh-18584
- value = values[0]
- result = DataFrame(values)
- assert result[0].dtype == object
- assert result[0][0] == value
- @pytest.mark.parametrize(
- "values",
- [
- np.array([1], dtype=np.uint16),
- np.array([1], dtype=np.uint32),
- np.array([1], dtype=np.uint64),
- [np.uint16(1)],
- [np.uint32(1)],
- [np.uint64(1)],
- ],
- )
- def test_constructor_numpy_uints(self, values):
- # GH#47294
- value = values[0]
- result = DataFrame(values)
- assert result[0].dtype == value.dtype
- assert result[0][0] == value
- def test_constructor_ordereddict(self):
- nitems = 100
- nums = list(range(nitems))
- random.shuffle(nums)
- expected = [f"A{i:d}" for i in nums]
- df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems)))
- assert expected == list(df.columns)
- def test_constructor_dict(self):
- datetime_series = tm.makeTimeSeries(nper=30)
- # test expects index shifted by 5
- datetime_series_short = tm.makeTimeSeries(nper=30)[5:]
- frame = DataFrame({"col1": datetime_series, "col2": datetime_series_short})
- # col2 is padded with NaN
- assert len(datetime_series) == 30
- assert len(datetime_series_short) == 25
- tm.assert_series_equal(frame["col1"], datetime_series.rename("col1"))
- exp = Series(
- np.concatenate([[np.nan] * 5, datetime_series_short.values]),
- index=datetime_series.index,
- name="col2",
- )
- tm.assert_series_equal(exp, frame["col2"])
- frame = DataFrame(
- {"col1": datetime_series, "col2": datetime_series_short},
- columns=["col2", "col3", "col4"],
- )
- assert len(frame) == len(datetime_series_short)
- assert "col1" not in frame
- assert isna(frame["col3"]).all()
- # Corner cases
- assert len(DataFrame()) == 0
- # mix dict and array, wrong size - no spec for which error should raise
- # first
- msg = "Mixing dicts with non-Series may lead to ambiguous ordering."
- with pytest.raises(ValueError, match=msg):
- DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]})
- def test_constructor_dict_length1(self):
- # Length-one dict micro-optimization
- frame = DataFrame({"A": {"1": 1, "2": 2}})
- tm.assert_index_equal(frame.index, Index(["1", "2"]))
- def test_constructor_dict_with_index(self):
- # empty dict plus index
- idx = Index([0, 1, 2])
- frame = DataFrame({}, index=idx)
- assert frame.index is idx
- def test_constructor_dict_with_index_and_columns(self):
- # empty dict with index and columns
- idx = Index([0, 1, 2])
- frame = DataFrame({}, index=idx, columns=idx)
- assert frame.index is idx
- assert frame.columns is idx
- assert len(frame._series) == 3
- def test_constructor_dict_of_empty_lists(self):
- # with dict of empty list and Series
- frame = DataFrame({"A": [], "B": []}, columns=["A", "B"])
- tm.assert_index_equal(frame.index, RangeIndex(0), exact=True)
- def test_constructor_dict_with_none(self):
- # GH 14381
- # Dict with None value
- frame_none = DataFrame({"a": None}, index=[0])
- frame_none_list = DataFrame({"a": [None]}, index=[0])
- assert frame_none._get_value(0, "a") is None
- assert frame_none_list._get_value(0, "a") is None
- tm.assert_frame_equal(frame_none, frame_none_list)
- def test_constructor_dict_errors(self):
- # GH10856
- # dict with scalar values should raise error, even if columns passed
- msg = "If using all scalar values, you must pass an index"
- with pytest.raises(ValueError, match=msg):
- DataFrame({"a": 0.7})
- with pytest.raises(ValueError, match=msg):
- DataFrame({"a": 0.7}, columns=["a"])
- @pytest.mark.parametrize("scalar", [2, np.nan, None, "D"])
- def test_constructor_invalid_items_unused(self, scalar):
- # No error if invalid (scalar) value is in fact not used:
- result = DataFrame({"a": scalar}, columns=["b"])
- expected = DataFrame(columns=["b"])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")])
- def test_constructor_dict_nan_key(self, value):
- # GH 18455
- cols = [1, value, 3]
- idx = ["a", value]
- values = [[0, 3], [1, 4], [2, 5]]
- data = {cols[c]: Series(values[c], index=idx) for c in range(3)}
- result = DataFrame(data).sort_values(1).sort_values("a", axis=1)
- expected = DataFrame(
- np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols
- )
- tm.assert_frame_equal(result, expected)
- result = DataFrame(data, index=idx).sort_values("a", axis=1)
- tm.assert_frame_equal(result, expected)
- result = DataFrame(data, index=idx, columns=cols)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("value", [np.nan, None, float("nan")])
- def test_constructor_dict_nan_tuple_key(self, value):
- # GH 18455
- cols = Index([(11, 21), (value, 22), (13, value)])
- idx = Index([("a", value), (value, 2)])
- values = [[0, 3], [1, 4], [2, 5]]
- data = {cols[c]: Series(values[c], index=idx) for c in range(3)}
- result = DataFrame(data).sort_values((11, 21)).sort_values(("a", value), axis=1)
- expected = DataFrame(
- np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols
- )
- tm.assert_frame_equal(result, expected)
- result = DataFrame(data, index=idx).sort_values(("a", value), axis=1)
- tm.assert_frame_equal(result, expected)
- result = DataFrame(data, index=idx, columns=cols)
- tm.assert_frame_equal(result, expected)
- def test_constructor_dict_order_insertion(self):
- datetime_series = tm.makeTimeSeries(nper=30)
- datetime_series_short = tm.makeTimeSeries(nper=25)
- # GH19018
- # initialization ordering: by insertion order if python>= 3.6
- d = {"b": datetime_series_short, "a": datetime_series}
- frame = DataFrame(data=d)
- expected = DataFrame(data=d, columns=list("ba"))
- tm.assert_frame_equal(frame, expected)
- def test_constructor_dict_nan_key_and_columns(self):
- # GH 16894
- result = DataFrame({np.nan: [1, 2], 2: [2, 3]}, columns=[np.nan, 2])
- expected = DataFrame([[1, 2], [2, 3]], columns=[np.nan, 2])
- tm.assert_frame_equal(result, expected)
- def test_constructor_multi_index(self):
- # GH 4078
- # construction error with mi and all-nan frame
- tuples = [(2, 3), (3, 3), (3, 3)]
- mi = MultiIndex.from_tuples(tuples)
- df = DataFrame(index=mi, columns=mi)
- assert isna(df).values.ravel().all()
- tuples = [(3, 3), (2, 3), (3, 3)]
- mi = MultiIndex.from_tuples(tuples)
- df = DataFrame(index=mi, columns=mi)
- assert isna(df).values.ravel().all()
- def test_constructor_2d_index(self):
- # GH 25416
- # handling of 2d index in construction
- df = DataFrame([[1]], columns=[[1]], index=[1, 2])
- expected = DataFrame(
- [1, 1],
- index=Index([1, 2], dtype="int64"),
- columns=MultiIndex(levels=[[1]], codes=[[0]]),
- )
- tm.assert_frame_equal(df, expected)
- df = DataFrame([[1]], columns=[[1]], index=[[1, 2]])
- expected = DataFrame(
- [1, 1],
- index=MultiIndex(levels=[[1, 2]], codes=[[0, 1]]),
- columns=MultiIndex(levels=[[1]], codes=[[0]]),
- )
- tm.assert_frame_equal(df, expected)
- def test_constructor_error_msgs(self):
- msg = "Empty data passed with indices specified."
- # passing an empty array with columns specified.
- with pytest.raises(ValueError, match=msg):
- DataFrame(np.empty(0), columns=list("abc"))
- msg = "Mixing dicts with non-Series may lead to ambiguous ordering."
- # mix dict and array, wrong size
- with pytest.raises(ValueError, match=msg):
- DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]})
- # wrong size ndarray, GH 3105
- msg = r"Shape of passed values is \(4, 3\), indices imply \(3, 3\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(
- np.arange(12).reshape((4, 3)),
- columns=["foo", "bar", "baz"],
- index=date_range("2000-01-01", periods=3),
- )
- arr = np.array([[4, 5, 6]])
- msg = r"Shape of passed values is \(1, 3\), indices imply \(1, 4\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(index=[0], columns=range(0, 4), data=arr)
- arr = np.array([4, 5, 6])
- msg = r"Shape of passed values is \(3, 1\), indices imply \(1, 4\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(index=[0], columns=range(0, 4), data=arr)
- # higher dim raise exception
- with pytest.raises(ValueError, match="Must pass 2-d input"):
- DataFrame(np.zeros((3, 3, 3)), columns=["A", "B", "C"], index=[1])
- # wrong size axis labels
- msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(np.random.rand(2, 3), columns=["A", "B", "C"], index=[1])
- msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(np.random.rand(2, 3), columns=["A", "B"], index=[1, 2])
- # gh-26429
- msg = "2 columns passed, passed data had 10 columns"
- with pytest.raises(ValueError, match=msg):
- DataFrame((range(10), range(10, 20)), columns=("ones", "twos"))
- msg = "If using all scalar values, you must pass an index"
- with pytest.raises(ValueError, match=msg):
- DataFrame({"a": False, "b": True})
- def test_constructor_subclass_dict(self, dict_subclass):
- # Test for passing dict subclass to constructor
- data = {
- "col1": dict_subclass((x, 10.0 * x) for x in range(10)),
- "col2": dict_subclass((x, 20.0 * x) for x in range(10)),
- }
- df = DataFrame(data)
- refdf = DataFrame({col: dict(val.items()) for col, val in data.items()})
- tm.assert_frame_equal(refdf, df)
- data = dict_subclass(data.items())
- df = DataFrame(data)
- tm.assert_frame_equal(refdf, df)
- def test_constructor_defaultdict(self, float_frame):
- # try with defaultdict
- data = {}
- float_frame.loc[: float_frame.index[10], "B"] = np.nan
- for k, v in float_frame.items():
- dct = defaultdict(dict)
- dct.update(v.to_dict())
- data[k] = dct
- frame = DataFrame(data)
- expected = frame.reindex(index=float_frame.index)
- tm.assert_frame_equal(float_frame, expected)
- def test_constructor_dict_block(self):
- expected = np.array([[4.0, 3.0, 2.0, 1.0]])
- df = DataFrame(
- {"d": [4.0], "c": [3.0], "b": [2.0], "a": [1.0]},
- columns=["d", "c", "b", "a"],
- )
- tm.assert_numpy_array_equal(df.values, expected)
- def test_constructor_dict_cast(self):
- # cast float tests
- test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
- frame = DataFrame(test_data, dtype=float)
- assert len(frame) == 3
- assert frame["B"].dtype == np.float64
- assert frame["A"].dtype == np.float64
- frame = DataFrame(test_data)
- assert len(frame) == 3
- assert frame["B"].dtype == np.object_
- assert frame["A"].dtype == np.float64
- def test_constructor_dict_cast2(self):
- # can't cast to float
- test_data = {
- "A": dict(zip(range(20), tm.makeStringIndex(20))),
- "B": dict(zip(range(15), np.random.randn(15))),
- }
- with pytest.raises(ValueError, match="could not convert string"):
- DataFrame(test_data, dtype=float)
- def test_constructor_dict_dont_upcast(self):
- d = {"Col1": {"Row1": "A String", "Row2": np.nan}}
- df = DataFrame(d)
- assert isinstance(df["Col1"]["Row2"], float)
- def test_constructor_dict_dont_upcast2(self):
- dm = DataFrame([[1, 2], ["a", "b"]], index=[1, 2], columns=[1, 2])
- assert isinstance(dm[1][1], int)
- def test_constructor_dict_of_tuples(self):
- # GH #1491
- data = {"a": (1, 2, 3), "b": (4, 5, 6)}
- result = DataFrame(data)
- expected = DataFrame({k: list(v) for k, v in data.items()})
- tm.assert_frame_equal(result, expected, check_dtype=False)
- def test_constructor_dict_of_ranges(self):
- # GH 26356
- data = {"a": range(3), "b": range(3, 6)}
- result = DataFrame(data)
- expected = DataFrame({"a": [0, 1, 2], "b": [3, 4, 5]})
- tm.assert_frame_equal(result, expected)
- def test_constructor_dict_of_iterators(self):
- # GH 26349
- data = {"a": iter(range(3)), "b": reversed(range(3))}
- result = DataFrame(data)
- expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]})
- tm.assert_frame_equal(result, expected)
- def test_constructor_dict_of_generators(self):
- # GH 26349
- data = {"a": (i for i in (range(3))), "b": (i for i in reversed(range(3)))}
- result = DataFrame(data)
- expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]})
- tm.assert_frame_equal(result, expected)
- def test_constructor_dict_multiindex(self):
- d = {
- ("a", "a"): {("i", "i"): 0, ("i", "j"): 1, ("j", "i"): 2},
- ("b", "a"): {("i", "i"): 6, ("i", "j"): 5, ("j", "i"): 4},
- ("b", "c"): {("i", "i"): 7, ("i", "j"): 8, ("j", "i"): 9},
- }
- _d = sorted(d.items())
- df = DataFrame(d)
- expected = DataFrame(
- [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])
- ).T
- expected.index = MultiIndex.from_tuples(expected.index)
- tm.assert_frame_equal(
- df,
- expected,
- )
- d["z"] = {"y": 123.0, ("i", "i"): 111, ("i", "j"): 111, ("j", "i"): 111}
- _d.insert(0, ("z", d["z"]))
- expected = DataFrame(
- [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)
- ).T
- expected.index = Index(expected.index, tupleize_cols=False)
- df = DataFrame(d)
- df = df.reindex(columns=expected.columns, index=expected.index)
- tm.assert_frame_equal(df, expected)
- def test_constructor_dict_datetime64_index(self):
- # GH 10160
- dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"]
- def create_data(constructor):
- return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)}
- data_datetime64 = create_data(np.datetime64)
- data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d"))
- data_Timestamp = create_data(Timestamp)
- expected = DataFrame(
- [
- {0: 0, 1: None, 2: None, 3: None},
- {0: None, 1: 2, 2: None, 3: None},
- {0: None, 1: None, 2: 4, 3: None},
- {0: None, 1: None, 2: None, 3: 6},
- ],
- index=[Timestamp(dt) for dt in dates_as_str],
- )
- result_datetime64 = DataFrame(data_datetime64)
- result_datetime = DataFrame(data_datetime)
- result_Timestamp = DataFrame(data_Timestamp)
- tm.assert_frame_equal(result_datetime64, expected)
- tm.assert_frame_equal(result_datetime, expected)
- tm.assert_frame_equal(result_Timestamp, expected)
- @pytest.mark.parametrize(
- "klass,name",
- [
- (lambda x: np.timedelta64(x, "D"), "timedelta64"),
- (lambda x: timedelta(days=x), "pytimedelta"),
- (lambda x: Timedelta(x, "D"), "Timedelta[ns]"),
- (lambda x: Timedelta(x, "D").as_unit("s"), "Timedelta[s]"),
- ],
- )
- def test_constructor_dict_timedelta64_index(self, klass, name):
- # GH 10160
- td_as_int = [1, 2, 3, 4]
- data = {i: {klass(s): 2 * i} for i, s in enumerate(td_as_int)}
- expected = DataFrame(
- [
- {0: 0, 1: None, 2: None, 3: None},
- {0: None, 1: 2, 2: None, 3: None},
- {0: None, 1: None, 2: 4, 3: None},
- {0: None, 1: None, 2: None, 3: 6},
- ],
- index=[Timedelta(td, "D") for td in td_as_int],
- )
- result = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- def test_constructor_period_dict(self):
- # PeriodIndex
- a = pd.PeriodIndex(["2012-01", "NaT", "2012-04"], freq="M")
- b = pd.PeriodIndex(["2012-02-01", "2012-03-01", "NaT"], freq="D")
- df = DataFrame({"a": a, "b": b})
- assert df["a"].dtype == a.dtype
- assert df["b"].dtype == b.dtype
- # list of periods
- df = DataFrame({"a": a.astype(object).tolist(), "b": b.astype(object).tolist()})
- assert df["a"].dtype == a.dtype
- assert df["b"].dtype == b.dtype
- def test_constructor_dict_extension_scalar(self, ea_scalar_and_dtype):
- ea_scalar, ea_dtype = ea_scalar_and_dtype
- df = DataFrame({"a": ea_scalar}, index=[0])
- assert df["a"].dtype == ea_dtype
- expected = DataFrame(index=[0], columns=["a"], data=ea_scalar)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "data,dtype",
- [
- (Period("2020-01"), PeriodDtype("M")),
- (Interval(left=0, right=5), IntervalDtype("int64", "right")),
- (
- Timestamp("2011-01-01", tz="US/Eastern"),
- DatetimeTZDtype(tz="US/Eastern"),
- ),
- ],
- )
- def test_constructor_extension_scalar_data(self, data, dtype):
- # GH 34832
- df = DataFrame(index=[0, 1], columns=["a", "b"], data=data)
- assert df["a"].dtype == dtype
- assert df["b"].dtype == dtype
- arr = pd.array([data] * 2, dtype=dtype)
- expected = DataFrame({"a": arr, "b": arr})
- tm.assert_frame_equal(df, expected)
- def test_nested_dict_frame_constructor(self):
- rng = pd.period_range("1/1/2000", periods=5)
- df = DataFrame(np.random.randn(10, 5), columns=rng)
- data = {}
- for col in df.columns:
- for row in df.index:
- data.setdefault(col, {})[row] = df._get_value(row, col)
- result = DataFrame(data, columns=rng)
- tm.assert_frame_equal(result, df)
- data = {}
- for col in df.columns:
- for row in df.index:
- data.setdefault(row, {})[col] = df._get_value(row, col)
- result = DataFrame(data, index=rng).T
- tm.assert_frame_equal(result, df)
- def _check_basic_constructor(self, empty):
- # mat: 2d matrix with shape (3, 2) to input. empty - makes sized
- # objects
- mat = empty((2, 3), dtype=float)
- # 2-D input
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
- assert len(frame.index) == 2
- assert len(frame.columns) == 3
- # 1-D input
- frame = DataFrame(empty((3,)), columns=["A"], index=[1, 2, 3])
- assert len(frame.index) == 3
- assert len(frame.columns) == 1
- if empty is not np.ones:
- msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
- with pytest.raises(IntCastingNaNError, match=msg):
- DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64)
- return
- else:
- frame = DataFrame(
- mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64
- )
- assert frame.values.dtype == np.int64
- # wrong size axis labels
- msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(mat, columns=["A", "B", "C"], index=[1])
- msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(mat, columns=["A", "B"], index=[1, 2])
- # higher dim raise exception
- with pytest.raises(ValueError, match="Must pass 2-d input"):
- DataFrame(empty((3, 3, 3)), columns=["A", "B", "C"], index=[1])
- # automatic labeling
- frame = DataFrame(mat)
- tm.assert_index_equal(frame.index, Index(range(2)), exact=True)
- tm.assert_index_equal(frame.columns, Index(range(3)), exact=True)
- frame = DataFrame(mat, index=[1, 2])
- tm.assert_index_equal(frame.columns, Index(range(3)), exact=True)
- frame = DataFrame(mat, columns=["A", "B", "C"])
- tm.assert_index_equal(frame.index, Index(range(2)), exact=True)
- # 0-length axis
- frame = DataFrame(empty((0, 3)))
- assert len(frame.index) == 0
- frame = DataFrame(empty((3, 0)))
- assert len(frame.columns) == 0
- def test_constructor_ndarray(self):
- self._check_basic_constructor(np.ones)
- frame = DataFrame(["foo", "bar"], index=[0, 1], columns=["A"])
- assert len(frame) == 2
- def test_constructor_maskedarray(self):
- self._check_basic_constructor(ma.masked_all)
- # Check non-masked values
- mat = ma.masked_all((2, 3), dtype=float)
- mat[0, 0] = 1.0
- mat[1, 2] = 2.0
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
- assert 1.0 == frame["A"][1]
- assert 2.0 == frame["C"][2]
- # what is this even checking??
- mat = ma.masked_all((2, 3), dtype=float)
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
- assert np.all(~np.asarray(frame == frame))
- def test_constructor_maskedarray_nonfloat(self):
- # masked int promoted to float
- mat = ma.masked_all((2, 3), dtype=int)
- # 2-D input
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
- assert len(frame.index) == 2
- assert len(frame.columns) == 3
- assert np.all(~np.asarray(frame == frame))
- # cast type
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.float64)
- assert frame.values.dtype == np.float64
- # Check non-masked values
- mat2 = ma.copy(mat)
- mat2[0, 0] = 1
- mat2[1, 2] = 2
- frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2])
- assert 1 == frame["A"][1]
- assert 2 == frame["C"][2]
- # masked np.datetime64 stays (use NaT as null)
- mat = ma.masked_all((2, 3), dtype="M8[ns]")
- # 2-D input
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
- assert len(frame.index) == 2
- assert len(frame.columns) == 3
- assert isna(frame).values.all()
- # cast type
- msg = r"datetime64\[ns\] values and dtype=int64 is not supported"
- with pytest.raises(TypeError, match=msg):
- with warnings.catch_warnings():
- warnings.filterwarnings(
- "ignore",
- category=DeprecationWarning,
- message="elementwise comparison failed",
- )
- DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64)
- # Check non-masked values
- mat2 = ma.copy(mat)
- mat2[0, 0] = 1
- mat2[1, 2] = 2
- frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2])
- assert 1 == frame["A"].view("i8")[1]
- assert 2 == frame["C"].view("i8")[2]
- # masked bool promoted to object
- mat = ma.masked_all((2, 3), dtype=bool)
- # 2-D input
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
- assert len(frame.index) == 2
- assert len(frame.columns) == 3
- assert np.all(~np.asarray(frame == frame))
- # cast type
- frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=object)
- assert frame.values.dtype == object
- # Check non-masked values
- mat2 = ma.copy(mat)
- mat2[0, 0] = True
- mat2[1, 2] = False
- frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2])
- assert frame["A"][1] is True
- assert frame["C"][2] is False
- def test_constructor_maskedarray_hardened(self):
- # Check numpy masked arrays with hard masks -- from GH24574
- mat_hard = ma.masked_all((2, 2), dtype=float).harden_mask()
- result = DataFrame(mat_hard, columns=["A", "B"], index=[1, 2])
- expected = DataFrame(
- {"A": [np.nan, np.nan], "B": [np.nan, np.nan]},
- columns=["A", "B"],
- index=[1, 2],
- dtype=float,
- )
- tm.assert_frame_equal(result, expected)
- # Check case where mask is hard but no data are masked
- mat_hard = ma.ones((2, 2), dtype=float).harden_mask()
- result = DataFrame(mat_hard, columns=["A", "B"], index=[1, 2])
- expected = DataFrame(
- {"A": [1.0, 1.0], "B": [1.0, 1.0]},
- columns=["A", "B"],
- index=[1, 2],
- dtype=float,
- )
- tm.assert_frame_equal(result, expected)
- def test_constructor_maskedrecarray_dtype(self):
- # Ensure constructor honors dtype
- data = np.ma.array(
- np.ma.zeros(5, dtype=[("date", "<f8"), ("price", "<f8")]), mask=[False] * 5
- )
- data = data.view(mrecords.mrecarray)
- with pytest.raises(TypeError, match=r"Pass \{name: data\[name\]"):
- # Support for MaskedRecords deprecated GH#40363
- DataFrame(data, dtype=int)
- def test_constructor_corner_shape(self):
- df = DataFrame(index=[])
- assert df.values.shape == (0, 0)
- @pytest.mark.parametrize(
- "data, index, columns, dtype, expected",
- [
- (None, list(range(10)), ["a", "b"], object, np.object_),
- (None, None, ["a", "b"], "int64", np.dtype("int64")),
- (None, list(range(10)), ["a", "b"], int, np.dtype("float64")),
- ({}, None, ["foo", "bar"], None, np.object_),
- ({"b": 1}, list(range(10)), list("abc"), int, np.dtype("float64")),
- ],
- )
- def test_constructor_dtype(self, data, index, columns, dtype, expected):
- df = DataFrame(data, index, columns, dtype)
- assert df.values.dtype == expected
- @pytest.mark.parametrize(
- "data,input_dtype,expected_dtype",
- (
- ([True, False, None], "boolean", pd.BooleanDtype),
- ([1.0, 2.0, None], "Float64", pd.Float64Dtype),
- ([1, 2, None], "Int64", pd.Int64Dtype),
- (["a", "b", "c"], "string", pd.StringDtype),
- ),
- )
- def test_constructor_dtype_nullable_extension_arrays(
- self, data, input_dtype, expected_dtype
- ):
- df = DataFrame({"a": data}, dtype=input_dtype)
- assert df["a"].dtype == expected_dtype()
- def test_constructor_scalar_inference(self):
- data = {"int": 1, "bool": True, "float": 3.0, "complex": 4j, "object": "foo"}
- df = DataFrame(data, index=np.arange(10))
- assert df["int"].dtype == np.int64
- assert df["bool"].dtype == np.bool_
- assert df["float"].dtype == np.float64
- assert df["complex"].dtype == np.complex128
- assert df["object"].dtype == np.object_
- def test_constructor_arrays_and_scalars(self):
- df = DataFrame({"a": np.random.randn(10), "b": True})
- exp = DataFrame({"a": df["a"].values, "b": [True] * 10})
- tm.assert_frame_equal(df, exp)
- with pytest.raises(ValueError, match="must pass an index"):
- DataFrame({"a": False, "b": True})
- def test_constructor_DataFrame(self, float_frame):
- df = DataFrame(float_frame)
- tm.assert_frame_equal(df, float_frame)
- df_casted = DataFrame(float_frame, dtype=np.int64)
- assert df_casted.values.dtype == np.int64
- def test_constructor_empty_dataframe(self):
- # GH 20624
- actual = DataFrame(DataFrame(), dtype="object")
- expected = DataFrame([], dtype="object")
- tm.assert_frame_equal(actual, expected)
- def test_constructor_more(self, float_frame):
- # used to be in test_matrix.py
- arr = np.random.randn(10)
- dm = DataFrame(arr, columns=["A"], index=np.arange(10))
- assert dm.values.ndim == 2
- arr = np.random.randn(0)
- dm = DataFrame(arr)
- assert dm.values.ndim == 2
- assert dm.values.ndim == 2
- # no data specified
- dm = DataFrame(columns=["A", "B"], index=np.arange(10))
- assert dm.values.shape == (10, 2)
- dm = DataFrame(columns=["A", "B"])
- assert dm.values.shape == (0, 2)
- dm = DataFrame(index=np.arange(10))
- assert dm.values.shape == (10, 0)
- # can't cast
- mat = np.array(["foo", "bar"], dtype=object).reshape(2, 1)
- msg = "could not convert string to float: 'foo'"
- with pytest.raises(ValueError, match=msg):
- DataFrame(mat, index=[0, 1], columns=[0], dtype=float)
- dm = DataFrame(DataFrame(float_frame._series))
- tm.assert_frame_equal(dm, float_frame)
- # int cast
- dm = DataFrame(
- {"A": np.ones(10, dtype=int), "B": np.ones(10, dtype=np.float64)},
- index=np.arange(10),
- )
- assert len(dm.columns) == 2
- assert dm.values.dtype == np.float64
- def test_constructor_empty_list(self):
- df = DataFrame([], index=[])
- expected = DataFrame(index=[])
- tm.assert_frame_equal(df, expected)
- # GH 9939
- df = DataFrame([], columns=["A", "B"])
- expected = DataFrame({}, columns=["A", "B"])
- tm.assert_frame_equal(df, expected)
- # Empty generator: list(empty_gen()) == []
- def empty_gen():
- yield from ()
- df = DataFrame(empty_gen(), columns=["A", "B"])
- tm.assert_frame_equal(df, expected)
- def test_constructor_list_of_lists(self):
- # GH #484
- df = DataFrame(data=[[1, "a"], [2, "b"]], columns=["num", "str"])
- assert is_integer_dtype(df["num"])
- assert df["str"].dtype == np.object_
- # GH 4851
- # list of 0-dim ndarrays
- expected = DataFrame({0: np.arange(10)})
- data = [np.array(x) for x in range(10)]
- result = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- def test_nested_pandasarray_matches_nested_ndarray(self):
- # GH#43986
- ser = Series([1, 2])
- arr = np.array([None, None], dtype=object)
- arr[0] = ser
- arr[1] = ser * 2
- df = DataFrame(arr)
- expected = DataFrame(pd.array(arr))
- tm.assert_frame_equal(df, expected)
- assert df.shape == (2, 1)
- tm.assert_numpy_array_equal(df[0].values, arr)
- def test_constructor_list_like_data_nested_list_column(self):
- # GH 32173
- arrays = [list("abcd"), list("cdef")]
- result = DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=arrays)
- mi = MultiIndex.from_arrays(arrays)
- expected = DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=mi)
- tm.assert_frame_equal(result, expected)
- def test_constructor_wrong_length_nested_list_column(self):
- # GH 32173
- arrays = [list("abc"), list("cde")]
- msg = "3 columns passed, passed data had 4"
- with pytest.raises(ValueError, match=msg):
- DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=arrays)
- def test_constructor_unequal_length_nested_list_column(self):
- # GH 32173
- arrays = [list("abcd"), list("cde")]
- # exception raised inside MultiIndex constructor
- msg = "all arrays must be same length"
- with pytest.raises(ValueError, match=msg):
- DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=arrays)
- @pytest.mark.parametrize(
- "data",
- [
- [[Timestamp("2021-01-01")]],
- [{"x": Timestamp("2021-01-01")}],
- {"x": [Timestamp("2021-01-01")]},
- {"x": Timestamp("2021-01-01")},
- ],
- )
- def test_constructor_one_element_data_list(self, data):
- # GH#42810
- result = DataFrame(data, index=[0, 1, 2], columns=["x"])
- expected = DataFrame({"x": [Timestamp("2021-01-01")] * 3})
- tm.assert_frame_equal(result, expected)
- def test_constructor_sequence_like(self):
- # GH 3783
- # collections.Sequence like
- class DummyContainer(abc.Sequence):
- def __init__(self, lst) -> None:
- self._lst = lst
- def __getitem__(self, n):
- return self._lst.__getitem__(n)
- def __len__(self) -> int:
- return self._lst.__len__()
- lst_containers = [DummyContainer([1, "a"]), DummyContainer([2, "b"])]
- columns = ["num", "str"]
- result = DataFrame(lst_containers, columns=columns)
- expected = DataFrame([[1, "a"], [2, "b"]], columns=columns)
- tm.assert_frame_equal(result, expected, check_dtype=False)
- def test_constructor_stdlib_array(self):
- # GH 4297
- # support Array
- result = DataFrame({"A": array.array("i", range(10))})
- expected = DataFrame({"A": list(range(10))})
- tm.assert_frame_equal(result, expected, check_dtype=False)
- expected = DataFrame([list(range(10)), list(range(10))])
- result = DataFrame([array.array("i", range(10)), array.array("i", range(10))])
- tm.assert_frame_equal(result, expected, check_dtype=False)
- def test_constructor_range(self):
- # GH26342
- result = DataFrame(range(10))
- expected = DataFrame(list(range(10)))
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_ranges(self):
- result = DataFrame([range(10), range(10)])
- expected = DataFrame([list(range(10)), list(range(10))])
- tm.assert_frame_equal(result, expected)
- def test_constructor_iterable(self):
- # GH 21987
- class Iter:
- def __iter__(self) -> Iterator:
- for i in range(10):
- yield [1, 2, 3]
- expected = DataFrame([[1, 2, 3]] * 10)
- result = DataFrame(Iter())
- tm.assert_frame_equal(result, expected)
- def test_constructor_iterator(self):
- result = DataFrame(iter(range(10)))
- expected = DataFrame(list(range(10)))
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_iterators(self):
- result = DataFrame([iter(range(10)), iter(range(10))])
- expected = DataFrame([list(range(10)), list(range(10))])
- tm.assert_frame_equal(result, expected)
- def test_constructor_generator(self):
- # related #2305
- gen1 = (i for i in range(10))
- gen2 = (i for i in range(10))
- expected = DataFrame([list(range(10)), list(range(10))])
- result = DataFrame([gen1, gen2])
- tm.assert_frame_equal(result, expected)
- gen = ([i, "a"] for i in range(10))
- result = DataFrame(gen)
- expected = DataFrame({0: range(10), 1: "a"})
- tm.assert_frame_equal(result, expected, check_dtype=False)
- def test_constructor_list_of_dicts(self):
- result = DataFrame([{}])
- expected = DataFrame(index=RangeIndex(1), columns=[])
- tm.assert_frame_equal(result, expected)
- def test_constructor_ordered_dict_nested_preserve_order(self):
- # see gh-18166
- nested1 = OrderedDict([("b", 1), ("a", 2)])
- nested2 = OrderedDict([("b", 2), ("a", 5)])
- data = OrderedDict([("col2", nested1), ("col1", nested2)])
- result = DataFrame(data)
- data = {"col2": [1, 2], "col1": [2, 5]}
- expected = DataFrame(data=data, index=["b", "a"])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("dict_type", [dict, OrderedDict])
- def test_constructor_ordered_dict_preserve_order(self, dict_type):
- # see gh-13304
- expected = DataFrame([[2, 1]], columns=["b", "a"])
- data = dict_type()
- data["b"] = [2]
- data["a"] = [1]
- result = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- data = dict_type()
- data["b"] = 2
- data["a"] = 1
- result = DataFrame([data])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("dict_type", [dict, OrderedDict])
- def test_constructor_ordered_dict_conflicting_orders(self, dict_type):
- # the first dict element sets the ordering for the DataFrame,
- # even if there are conflicting orders from subsequent ones
- row_one = dict_type()
- row_one["b"] = 2
- row_one["a"] = 1
- row_two = dict_type()
- row_two["a"] = 1
- row_two["b"] = 2
- row_three = {"b": 2, "a": 1}
- expected = DataFrame([[2, 1], [2, 1]], columns=["b", "a"])
- result = DataFrame([row_one, row_two])
- tm.assert_frame_equal(result, expected)
- expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=["b", "a"])
- result = DataFrame([row_one, row_two, row_three])
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_series_aligned_index(self):
- series = [Series(i, index=["b", "a", "c"], name=str(i)) for i in range(3)]
- result = DataFrame(series)
- expected = DataFrame(
- {"b": [0, 1, 2], "a": [0, 1, 2], "c": [0, 1, 2]},
- columns=["b", "a", "c"],
- index=["0", "1", "2"],
- )
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_derived_dicts(self):
- class CustomDict(dict):
- pass
- d = {"a": 1.5, "b": 3}
- data_custom = [CustomDict(d)]
- data = [d]
- result_custom = DataFrame(data_custom)
- result = DataFrame(data)
- tm.assert_frame_equal(result, result_custom)
- def test_constructor_ragged(self):
- data = {"A": np.random.randn(10), "B": np.random.randn(8)}
- with pytest.raises(ValueError, match="All arrays must be of the same length"):
- DataFrame(data)
- def test_constructor_scalar(self):
- idx = Index(range(3))
- df = DataFrame({"a": 0}, index=idx)
- expected = DataFrame({"a": [0, 0, 0]}, index=idx)
- tm.assert_frame_equal(df, expected, check_dtype=False)
- def test_constructor_Series_copy_bug(self, float_frame):
- df = DataFrame(float_frame["A"], index=float_frame.index, columns=["A"])
- df.copy()
- def test_constructor_mixed_dict_and_Series(self):
- data = {}
- data["A"] = {"foo": 1, "bar": 2, "baz": 3}
- data["B"] = Series([4, 3, 2, 1], index=["bar", "qux", "baz", "foo"])
- result = DataFrame(data)
- assert result.index.is_monotonic_increasing
- # ordering ambiguous, raise exception
- with pytest.raises(ValueError, match="ambiguous ordering"):
- DataFrame({"A": ["a", "b"], "B": {"a": "a", "b": "b"}})
- # this is OK though
- result = DataFrame({"A": ["a", "b"], "B": Series(["a", "b"], index=["a", "b"])})
- expected = DataFrame({"A": ["a", "b"], "B": ["a", "b"]}, index=["a", "b"])
- tm.assert_frame_equal(result, expected)
- def test_constructor_mixed_type_rows(self):
- # Issue 25075
- data = [[1, 2], (3, 4)]
- result = DataFrame(data)
- expected = DataFrame([[1, 2], [3, 4]])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "tuples,lists",
- [
- ((), []),
- ((()), []),
- (((), ()), [(), ()]),
- (((), ()), [[], []]),
- (([], []), [[], []]),
- (([1], [2]), [[1], [2]]), # GH 32776
- (([1, 2, 3], [4, 5, 6]), [[1, 2, 3], [4, 5, 6]]),
- ],
- )
- def test_constructor_tuple(self, tuples, lists):
- # GH 25691
- result = DataFrame(tuples)
- expected = DataFrame(lists)
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_tuples(self):
- result = DataFrame({"A": [(1, 2), (3, 4)]})
- expected = DataFrame({"A": Series([(1, 2), (3, 4)])})
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_namedtuples(self):
- # GH11181
- named_tuple = namedtuple("Pandas", list("ab"))
- tuples = [named_tuple(1, 3), named_tuple(2, 4)]
- expected = DataFrame({"a": [1, 2], "b": [3, 4]})
- result = DataFrame(tuples)
- tm.assert_frame_equal(result, expected)
- # with columns
- expected = DataFrame({"y": [1, 2], "z": [3, 4]})
- result = DataFrame(tuples, columns=["y", "z"])
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_dataclasses(self):
- # GH21910
- Point = make_dataclass("Point", [("x", int), ("y", int)])
- data = [Point(0, 3), Point(1, 3)]
- expected = DataFrame({"x": [0, 1], "y": [3, 3]})
- result = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_dataclasses_with_varying_types(self):
- # GH21910
- # varying types
- Point = make_dataclass("Point", [("x", int), ("y", int)])
- HLine = make_dataclass("HLine", [("x0", int), ("x1", int), ("y", int)])
- data = [Point(0, 3), HLine(1, 3, 3)]
- expected = DataFrame(
- {"x": [0, np.nan], "y": [3, 3], "x0": [np.nan, 1], "x1": [np.nan, 3]}
- )
- result = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_of_dataclasses_error_thrown(self):
- # GH21910
- Point = make_dataclass("Point", [("x", int), ("y", int)])
- # expect TypeError
- msg = "asdict() should be called on dataclass instances"
- with pytest.raises(TypeError, match=re.escape(msg)):
- DataFrame([Point(0, 0), {"x": 1, "y": 0}])
- def test_constructor_list_of_dict_order(self):
- # GH10056
- data = [
- {"First": 1, "Second": 4, "Third": 7, "Fourth": 10},
- {"Second": 5, "First": 2, "Fourth": 11, "Third": 8},
- {"Second": 6, "First": 3, "Fourth": 12, "Third": 9, "YYY": 14, "XXX": 13},
- ]
- expected = DataFrame(
- {
- "First": [1, 2, 3],
- "Second": [4, 5, 6],
- "Third": [7, 8, 9],
- "Fourth": [10, 11, 12],
- "YYY": [None, None, 14],
- "XXX": [None, None, 13],
- }
- )
- result = DataFrame(data)
- tm.assert_frame_equal(result, expected)
- def test_constructor_Series_named(self):
- a = Series([1, 2, 3], index=["a", "b", "c"], name="x")
- df = DataFrame(a)
- assert df.columns[0] == "x"
- tm.assert_index_equal(df.index, a.index)
- # ndarray like
- arr = np.random.randn(10)
- s = Series(arr, name="x")
- df = DataFrame(s)
- expected = DataFrame({"x": s})
- tm.assert_frame_equal(df, expected)
- s = Series(arr, index=range(3, 13))
- df = DataFrame(s)
- expected = DataFrame({0: s})
- tm.assert_frame_equal(df, expected)
- msg = r"Shape of passed values is \(10, 1\), indices imply \(10, 2\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(s, columns=[1, 2])
- # #2234
- a = Series([], name="x", dtype=object)
- df = DataFrame(a)
- assert df.columns[0] == "x"
- # series with name and w/o
- s1 = Series(arr, name="x")
- df = DataFrame([s1, arr]).T
- expected = DataFrame({"x": s1, "Unnamed 0": arr}, columns=["x", "Unnamed 0"])
- tm.assert_frame_equal(df, expected)
- # this is a bit non-intuitive here; the series collapse down to arrays
- df = DataFrame([arr, s1]).T
- expected = DataFrame({1: s1, 0: arr}, columns=[0, 1])
- tm.assert_frame_equal(df, expected)
- def test_constructor_Series_named_and_columns(self):
- # GH 9232 validation
- s0 = Series(range(5), name=0)
- s1 = Series(range(5), name=1)
- # matching name and column gives standard frame
- tm.assert_frame_equal(DataFrame(s0, columns=[0]), s0.to_frame())
- tm.assert_frame_equal(DataFrame(s1, columns=[1]), s1.to_frame())
- # non-matching produces empty frame
- assert DataFrame(s0, columns=[1]).empty
- assert DataFrame(s1, columns=[0]).empty
- def test_constructor_Series_differently_indexed(self):
- # name
- s1 = Series([1, 2, 3], index=["a", "b", "c"], name="x")
- # no name
- s2 = Series([1, 2, 3], index=["a", "b", "c"])
- other_index = Index(["a", "b"])
- df1 = DataFrame(s1, index=other_index)
- exp1 = DataFrame(s1.reindex(other_index))
- assert df1.columns[0] == "x"
- tm.assert_frame_equal(df1, exp1)
- df2 = DataFrame(s2, index=other_index)
- exp2 = DataFrame(s2.reindex(other_index))
- assert df2.columns[0] == 0
- tm.assert_index_equal(df2.index, other_index)
- tm.assert_frame_equal(df2, exp2)
- @pytest.mark.parametrize(
- "name_in1,name_in2,name_in3,name_out",
- [
- ("idx", "idx", "idx", "idx"),
- ("idx", "idx", None, None),
- ("idx", None, None, None),
- ("idx1", "idx2", None, None),
- ("idx1", "idx1", "idx2", None),
- ("idx1", "idx2", "idx3", None),
- (None, None, None, None),
- ],
- )
- def test_constructor_index_names(self, name_in1, name_in2, name_in3, name_out):
- # GH13475
- indices = [
- Index(["a", "b", "c"], name=name_in1),
- Index(["b", "c", "d"], name=name_in2),
- Index(["c", "d", "e"], name=name_in3),
- ]
- series = {
- c: Series([0, 1, 2], index=i) for i, c in zip(indices, ["x", "y", "z"])
- }
- result = DataFrame(series)
- exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out)
- expected = DataFrame(
- {
- "x": [0, 1, 2, np.nan, np.nan],
- "y": [np.nan, 0, 1, 2, np.nan],
- "z": [np.nan, np.nan, 0, 1, 2],
- },
- index=exp_ind,
- )
- tm.assert_frame_equal(result, expected)
- def test_constructor_manager_resize(self, float_frame):
- index = list(float_frame.index[:5])
- columns = list(float_frame.columns[:3])
- result = DataFrame(float_frame._mgr, index=index, columns=columns)
- tm.assert_index_equal(result.index, Index(index))
- tm.assert_index_equal(result.columns, Index(columns))
- def test_constructor_mix_series_nonseries(self, float_frame):
- df = DataFrame(
- {"A": float_frame["A"], "B": list(float_frame["B"])}, columns=["A", "B"]
- )
- tm.assert_frame_equal(df, float_frame.loc[:, ["A", "B"]])
- msg = "does not match index length"
- with pytest.raises(ValueError, match=msg):
- DataFrame({"A": float_frame["A"], "B": list(float_frame["B"])[:-2]})
- def test_constructor_miscast_na_int_dtype(self):
- msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
- with pytest.raises(IntCastingNaNError, match=msg):
- DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64)
- def test_constructor_column_duplicates(self):
- # it works! #2079
- df = DataFrame([[8, 5]], columns=["a", "a"])
- edf = DataFrame([[8, 5]])
- edf.columns = ["a", "a"]
- tm.assert_frame_equal(df, edf)
- idf = DataFrame.from_records([(8, 5)], columns=["a", "a"])
- tm.assert_frame_equal(idf, edf)
- def test_constructor_empty_with_string_dtype(self):
- # GH 9428
- expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object)
- df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str)
- tm.assert_frame_equal(df, expected)
- df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_)
- tm.assert_frame_equal(df, expected)
- df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_)
- tm.assert_frame_equal(df, expected)
- df = DataFrame(index=[0, 1], columns=[0, 1], dtype="U5")
- tm.assert_frame_equal(df, expected)
- def test_constructor_empty_with_string_extension(self, nullable_string_dtype):
- # GH 34915
- expected = DataFrame(columns=["c1"], dtype=nullable_string_dtype)
- df = DataFrame(columns=["c1"], dtype=nullable_string_dtype)
- tm.assert_frame_equal(df, expected)
- def test_constructor_single_value(self):
- # expecting single value upcasting here
- df = DataFrame(0.0, index=[1, 2, 3], columns=["a", "b", "c"])
- tm.assert_frame_equal(
- df, DataFrame(np.zeros(df.shape).astype("float64"), df.index, df.columns)
- )
- df = DataFrame(0, index=[1, 2, 3], columns=["a", "b", "c"])
- tm.assert_frame_equal(
- df, DataFrame(np.zeros(df.shape).astype("int64"), df.index, df.columns)
- )
- df = DataFrame("a", index=[1, 2], columns=["a", "c"])
- tm.assert_frame_equal(
- df,
- DataFrame(
- np.array([["a", "a"], ["a", "a"]], dtype=object),
- index=[1, 2],
- columns=["a", "c"],
- ),
- )
- msg = "DataFrame constructor not properly called!"
- with pytest.raises(ValueError, match=msg):
- DataFrame("a", [1, 2])
- with pytest.raises(ValueError, match=msg):
- DataFrame("a", columns=["a", "c"])
- msg = "incompatible data and dtype"
- with pytest.raises(TypeError, match=msg):
- DataFrame("a", [1, 2], ["a", "c"], float)
- def test_constructor_with_datetimes(self):
- intname = np.dtype(np.int_).name
- floatname = np.dtype(np.float_).name
- datetime64name = np.dtype("M8[ns]").name
- objectname = np.dtype(np.object_).name
- # single item
- df = DataFrame(
- {
- "A": 1,
- "B": "foo",
- "C": "bar",
- "D": Timestamp("20010101"),
- "E": datetime(2001, 1, 2, 0, 0),
- },
- index=np.arange(10),
- )
- result = df.dtypes
- expected = Series(
- [np.dtype("int64")]
- + [np.dtype(objectname)] * 2
- + [np.dtype(datetime64name)] * 2,
- index=list("ABCDE"),
- )
- tm.assert_series_equal(result, expected)
- # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0
- # ndarray with a dtype specified)
- df = DataFrame(
- {
- "a": 1.0,
- "b": 2,
- "c": "foo",
- floatname: np.array(1.0, dtype=floatname),
- intname: np.array(1, dtype=intname),
- },
- index=np.arange(10),
- )
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")]
- + [np.dtype("int64")]
- + [np.dtype("object")]
- + [np.dtype("float64")]
- + [np.dtype(intname)],
- index=["a", "b", "c", floatname, intname],
- )
- tm.assert_series_equal(result, expected)
- # check with ndarray construction ndim>0
- df = DataFrame(
- {
- "a": 1.0,
- "b": 2,
- "c": "foo",
- floatname: np.array([1.0] * 10, dtype=floatname),
- intname: np.array([1] * 10, dtype=intname),
- },
- index=np.arange(10),
- )
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")]
- + [np.dtype("int64")]
- + [np.dtype("object")]
- + [np.dtype("float64")]
- + [np.dtype(intname)],
- index=["a", "b", "c", floatname, intname],
- )
- tm.assert_series_equal(result, expected)
- def test_constructor_with_datetimes1(self):
- # GH 2809
- ind = date_range(start="2000-01-01", freq="D", periods=10)
- datetimes = [ts.to_pydatetime() for ts in ind]
- datetime_s = Series(datetimes)
- assert datetime_s.dtype == "M8[ns]"
- def test_constructor_with_datetimes2(self):
- # GH 2810
- ind = date_range(start="2000-01-01", freq="D", periods=10)
- datetimes = [ts.to_pydatetime() for ts in ind]
- dates = [ts.date() for ts in ind]
- df = DataFrame(datetimes, columns=["datetimes"])
- df["dates"] = dates
- result = df.dtypes
- expected = Series(
- [np.dtype("datetime64[ns]"), np.dtype("object")],
- index=["datetimes", "dates"],
- )
- tm.assert_series_equal(result, expected)
- def test_constructor_with_datetimes3(self):
- # GH 7594
- # don't coerce tz-aware
- tz = pytz.timezone("US/Eastern")
- dt = tz.localize(datetime(2012, 1, 1))
- df = DataFrame({"End Date": dt}, index=[0])
- assert df.iat[0, 0] == dt
- tm.assert_series_equal(
- df.dtypes, Series({"End Date": "datetime64[ns, US/Eastern]"})
- )
- df = DataFrame([{"End Date": dt}])
- assert df.iat[0, 0] == dt
- tm.assert_series_equal(
- df.dtypes, Series({"End Date": "datetime64[ns, US/Eastern]"})
- )
- def test_constructor_with_datetimes4(self):
- # tz-aware (UTC and other tz's)
- # GH 8411
- dr = date_range("20130101", periods=3)
- df = DataFrame({"value": dr})
- assert df.iat[0, 0].tz is None
- dr = date_range("20130101", periods=3, tz="UTC")
- df = DataFrame({"value": dr})
- assert str(df.iat[0, 0].tz) == "UTC"
- dr = date_range("20130101", periods=3, tz="US/Eastern")
- df = DataFrame({"value": dr})
- assert str(df.iat[0, 0].tz) == "US/Eastern"
- def test_constructor_with_datetimes5(self):
- # GH 7822
- # preserver an index with a tz on dict construction
- i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern")
- expected = DataFrame({"a": i.to_series().reset_index(drop=True)})
- df = DataFrame()
- df["a"] = i
- tm.assert_frame_equal(df, expected)
- df = DataFrame({"a": i})
- tm.assert_frame_equal(df, expected)
- def test_constructor_with_datetimes6(self):
- # multiples
- i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern")
- i_no_tz = date_range("1/1/2011", periods=5, freq="10s")
- df = DataFrame({"a": i, "b": i_no_tz})
- expected = DataFrame({"a": i.to_series().reset_index(drop=True), "b": i_no_tz})
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "arr",
- [
- np.array([None, None, None, None, datetime.now(), None]),
- np.array([None, None, datetime.now(), None]),
- [[np.datetime64("NaT")], [None]],
- [[np.datetime64("NaT")], [pd.NaT]],
- [[None], [np.datetime64("NaT")]],
- [[None], [pd.NaT]],
- [[pd.NaT], [np.datetime64("NaT")]],
- [[pd.NaT], [None]],
- ],
- )
- def test_constructor_datetimes_with_nulls(self, arr):
- # gh-15869, GH#11220
- result = DataFrame(arr).dtypes
- expected = Series([np.dtype("datetime64[ns]")])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("order", ["K", "A", "C", "F"])
- @pytest.mark.parametrize(
- "unit",
- ["M", "D", "h", "m", "s", "ms", "us", "ns"],
- )
- def test_constructor_datetimes_non_ns(self, order, unit):
- dtype = f"datetime64[{unit}]"
- na = np.array(
- [
- ["2015-01-01", "2015-01-02", "2015-01-03"],
- ["2017-01-01", "2017-01-02", "2017-02-03"],
- ],
- dtype=dtype,
- order=order,
- )
- df = DataFrame(na)
- expected = DataFrame(na.astype("M8[ns]"))
- if unit in ["M", "D", "h", "m"]:
- with pytest.raises(TypeError, match="Cannot cast"):
- expected.astype(dtype)
- # instead the constructor casts to the closest supported reso, i.e. "s"
- expected = expected.astype("datetime64[s]")
- else:
- expected = expected.astype(dtype=dtype)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("order", ["K", "A", "C", "F"])
- @pytest.mark.parametrize(
- "unit",
- [
- "D",
- "h",
- "m",
- "s",
- "ms",
- "us",
- "ns",
- ],
- )
- def test_constructor_timedelta_non_ns(self, order, unit):
- dtype = f"timedelta64[{unit}]"
- na = np.array(
- [
- [np.timedelta64(1, "D"), np.timedelta64(2, "D")],
- [np.timedelta64(4, "D"), np.timedelta64(5, "D")],
- ],
- dtype=dtype,
- order=order,
- )
- df = DataFrame(na)
- if unit in ["D", "h", "m"]:
- # we get the nearest supported unit, i.e. "s"
- exp_unit = "s"
- else:
- exp_unit = unit
- exp_dtype = np.dtype(f"m8[{exp_unit}]")
- expected = DataFrame(
- [
- [Timedelta(1, "D"), Timedelta(2, "D")],
- [Timedelta(4, "D"), Timedelta(5, "D")],
- ],
- dtype=exp_dtype,
- )
- # TODO(2.0): ideally we should get the same 'expected' without passing
- # dtype=exp_dtype.
- tm.assert_frame_equal(df, expected)
- def test_constructor_for_list_with_dtypes(self):
- # test list of lists/ndarrays
- df = DataFrame([np.arange(5) for x in range(5)])
- result = df.dtypes
- expected = Series([np.dtype("int")] * 5)
- tm.assert_series_equal(result, expected)
- df = DataFrame([np.array(np.arange(5), dtype="int32") for x in range(5)])
- result = df.dtypes
- expected = Series([np.dtype("int32")] * 5)
- tm.assert_series_equal(result, expected)
- # overflow issue? (we always expected int64 upcasting here)
- df = DataFrame({"a": [2**31, 2**31 + 1]})
- assert df.dtypes.iloc[0] == np.dtype("int64")
- # GH #2751 (construction with no index specified), make sure we cast to
- # platform values
- df = DataFrame([1, 2])
- assert df.dtypes.iloc[0] == np.dtype("int64")
- df = DataFrame([1.0, 2.0])
- assert df.dtypes.iloc[0] == np.dtype("float64")
- df = DataFrame({"a": [1, 2]})
- assert df.dtypes.iloc[0] == np.dtype("int64")
- df = DataFrame({"a": [1.0, 2.0]})
- assert df.dtypes.iloc[0] == np.dtype("float64")
- df = DataFrame({"a": 1}, index=range(3))
- assert df.dtypes.iloc[0] == np.dtype("int64")
- df = DataFrame({"a": 1.0}, index=range(3))
- assert df.dtypes.iloc[0] == np.dtype("float64")
- # with object list
- df = DataFrame(
- {
- "a": [1, 2, 4, 7],
- "b": [1.2, 2.3, 5.1, 6.3],
- "c": list("abcd"),
- "d": [datetime(2000, 1, 1) for i in range(4)],
- "e": [1.0, 2, 4.0, 7],
- }
- )
- result = df.dtypes
- expected = Series(
- [
- np.dtype("int64"),
- np.dtype("float64"),
- np.dtype("object"),
- np.dtype("datetime64[ns]"),
- np.dtype("float64"),
- ],
- index=list("abcde"),
- )
- tm.assert_series_equal(result, expected)
- def test_constructor_frame_copy(self, float_frame):
- cop = DataFrame(float_frame, copy=True)
- cop["A"] = 5
- assert (cop["A"] == 5).all()
- assert not (float_frame["A"] == 5).all()
- def test_constructor_frame_shallow_copy(self, float_frame):
- # constructing a DataFrame from DataFrame with copy=False should still
- # give a "shallow" copy (share data, not attributes)
- # https://github.com/pandas-dev/pandas/issues/49523
- orig = float_frame.copy()
- cop = DataFrame(float_frame)
- assert cop._mgr is not float_frame._mgr
- # Overwriting index of copy doesn't change original
- cop.index = np.arange(len(cop))
- tm.assert_frame_equal(float_frame, orig)
- def test_constructor_ndarray_copy(
- self, float_frame, using_array_manager, using_copy_on_write
- ):
- if not using_array_manager:
- arr = float_frame.values.copy()
- df = DataFrame(arr)
- arr[5] = 5
- if using_copy_on_write:
- assert not (df.values[5] == 5).all()
- else:
- assert (df.values[5] == 5).all()
- df = DataFrame(arr, copy=True)
- arr[6] = 6
- assert not (df.values[6] == 6).all()
- else:
- arr = float_frame.values.copy()
- # default: copy to ensure contiguous arrays
- df = DataFrame(arr)
- assert df._mgr.arrays[0].flags.c_contiguous
- arr[0, 0] = 100
- assert df.iloc[0, 0] != 100
- # manually specify copy=False
- df = DataFrame(arr, copy=False)
- assert not df._mgr.arrays[0].flags.c_contiguous
- arr[0, 0] = 1000
- assert df.iloc[0, 0] == 1000
- def test_constructor_series_copy(self, float_frame):
- series = float_frame._series
- df = DataFrame({"A": series["A"]}, copy=True)
- # TODO can be replaced with `df.loc[:, "A"] = 5` after deprecation about
- # inplace mutation is enforced
- df.loc[df.index[0] : df.index[-1], "A"] = 5
- assert not (series["A"] == 5).all()
- @pytest.mark.parametrize(
- "df",
- [
- DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]),
- DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]),
- DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]),
- DataFrame(
- [[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]
- ),
- DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]),
- ],
- )
- def test_constructor_with_nas(self, df):
- # GH 5016
- # na's in indices
- # GH 21428 (non-unique columns)
- for i in range(len(df.columns)):
- df.iloc[:, i]
- indexer = np.arange(len(df.columns))[isna(df.columns)]
- # No NaN found -> error
- if len(indexer) == 0:
- with pytest.raises(KeyError, match="^nan$"):
- df.loc[:, np.nan]
- # single nan should result in Series
- elif len(indexer) == 1:
- tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan])
- # multiple nans should result in DataFrame
- else:
- tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan])
- def test_constructor_lists_to_object_dtype(self):
- # from #1074
- d = DataFrame({"a": [np.nan, False]})
- assert d["a"].dtype == np.object_
- assert not d["a"][1]
- def test_constructor_ndarray_categorical_dtype(self):
- cat = Categorical(["A", "B", "C"])
- arr = np.array(cat).reshape(-1, 1)
- arr = np.broadcast_to(arr, (3, 4))
- result = DataFrame(arr, dtype=cat.dtype)
- expected = DataFrame({0: cat, 1: cat, 2: cat, 3: cat})
- tm.assert_frame_equal(result, expected)
- def test_constructor_categorical(self):
- # GH8626
- # dict creation
- df = DataFrame({"A": list("abc")}, dtype="category")
- expected = Series(list("abc"), dtype="category", name="A")
- tm.assert_series_equal(df["A"], expected)
- # to_frame
- s = Series(list("abc"), dtype="category")
- result = s.to_frame()
- expected = Series(list("abc"), dtype="category", name=0)
- tm.assert_series_equal(result[0], expected)
- result = s.to_frame(name="foo")
- expected = Series(list("abc"), dtype="category", name="foo")
- tm.assert_series_equal(result["foo"], expected)
- # list-like creation
- df = DataFrame(list("abc"), dtype="category")
- expected = Series(list("abc"), dtype="category", name=0)
- tm.assert_series_equal(df[0], expected)
- def test_construct_from_1item_list_of_categorical(self):
- # pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove
- # Categorical special case
- # ndim != 1
- cat = Categorical(list("abc"))
- df = DataFrame([cat])
- expected = DataFrame([cat.astype(object)])
- tm.assert_frame_equal(df, expected)
- def test_construct_from_list_of_categoricals(self):
- # pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove
- # Categorical special case
- df = DataFrame([Categorical(list("abc")), Categorical(list("abd"))])
- expected = DataFrame([["a", "b", "c"], ["a", "b", "d"]])
- tm.assert_frame_equal(df, expected)
- def test_from_nested_listlike_mixed_types(self):
- # pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove
- # Categorical special case
- # mixed
- df = DataFrame([Categorical(list("abc")), list("def")])
- expected = DataFrame([["a", "b", "c"], ["d", "e", "f"]])
- tm.assert_frame_equal(df, expected)
- def test_construct_from_listlikes_mismatched_lengths(self):
- df = DataFrame([Categorical(list("abc")), Categorical(list("abdefg"))])
- expected = DataFrame([list("abc"), list("abdefg")])
- tm.assert_frame_equal(df, expected)
- def test_constructor_categorical_series(self):
- items = [1, 2, 3, 1]
- exp = Series(items).astype("category")
- res = Series(items, dtype="category")
- tm.assert_series_equal(res, exp)
- items = ["a", "b", "c", "a"]
- exp = Series(items).astype("category")
- res = Series(items, dtype="category")
- tm.assert_series_equal(res, exp)
- # insert into frame with different index
- # GH 8076
- index = date_range("20000101", periods=3)
- expected = Series(
- Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"])
- )
- expected.index = index
- expected = DataFrame({"x": expected})
- df = DataFrame({"x": Series(["a", "b", "c"], dtype="category")}, index=index)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "dtype",
- tm.ALL_NUMERIC_DTYPES
- + tm.DATETIME64_DTYPES
- + tm.TIMEDELTA64_DTYPES
- + tm.BOOL_DTYPES,
- )
- def test_check_dtype_empty_numeric_column(self, dtype):
- # GH24386: Ensure dtypes are set correctly for an empty DataFrame.
- # Empty DataFrame is generated via dictionary data with non-overlapping columns.
- data = DataFrame({"a": [1, 2]}, columns=["b"], dtype=dtype)
- assert data.b.dtype == dtype
- @pytest.mark.parametrize(
- "dtype", tm.STRING_DTYPES + tm.BYTES_DTYPES + tm.OBJECT_DTYPES
- )
- def test_check_dtype_empty_string_column(self, request, dtype, using_array_manager):
- # GH24386: Ensure dtypes are set correctly for an empty DataFrame.
- # Empty DataFrame is generated via dictionary data with non-overlapping columns.
- data = DataFrame({"a": [1, 2]}, columns=["b"], dtype=dtype)
- if using_array_manager and dtype in tm.BYTES_DTYPES:
- # TODO(ArrayManager) astype to bytes dtypes does not yet give object dtype
- td.mark_array_manager_not_yet_implemented(request)
- assert data.b.dtype.name == "object"
- def test_to_frame_with_falsey_names(self):
- # GH 16114
- result = Series(name=0, dtype=object).to_frame().dtypes
- expected = Series({0: object})
- tm.assert_series_equal(result, expected)
- result = DataFrame(Series(name=0, dtype=object)).dtypes
- tm.assert_series_equal(result, expected)
- @pytest.mark.arm_slow
- @pytest.mark.parametrize("dtype", [None, "uint8", "category"])
- def test_constructor_range_dtype(self, dtype):
- expected = DataFrame({"A": [0, 1, 2, 3, 4]}, dtype=dtype or "int64")
- # GH 26342
- result = DataFrame(range(5), columns=["A"], dtype=dtype)
- tm.assert_frame_equal(result, expected)
- # GH 16804
- result = DataFrame({"A": range(5)}, dtype=dtype)
- tm.assert_frame_equal(result, expected)
- def test_frame_from_list_subclass(self):
- # GH21226
- class List(list):
- pass
- expected = DataFrame([[1, 2, 3], [4, 5, 6]])
- result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])]))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "extension_arr",
- [
- Categorical(list("aabbc")),
- SparseArray([1, np.nan, np.nan, np.nan]),
- IntervalArray([Interval(0, 1), Interval(1, 5)]),
- PeriodArray(pd.period_range(start="1/1/2017", end="1/1/2018", freq="M")),
- ],
- )
- def test_constructor_with_extension_array(self, extension_arr):
- # GH11363
- expected = DataFrame(Series(extension_arr))
- result = DataFrame(extension_arr)
- tm.assert_frame_equal(result, expected)
- def test_datetime_date_tuple_columns_from_dict(self):
- # GH 10863
- v = date.today()
- tup = v, v
- result = DataFrame({tup: Series(range(3), index=range(3))}, columns=[tup])
- expected = DataFrame([0, 1, 2], columns=Index(Series([tup])))
- tm.assert_frame_equal(result, expected)
- def test_construct_with_two_categoricalindex_series(self):
- # GH 14600
- s1 = Series([39, 6, 4], index=CategoricalIndex(["female", "male", "unknown"]))
- s2 = Series(
- [2, 152, 2, 242, 150],
- index=CategoricalIndex(["f", "female", "m", "male", "unknown"]),
- )
- result = DataFrame([s1, s2])
- expected = DataFrame(
- np.array([[39, 6, 4, np.nan, np.nan], [152.0, 242.0, 150.0, 2.0, 2.0]]),
- columns=["female", "male", "unknown", "f", "m"],
- )
- tm.assert_frame_equal(result, expected)
- def test_constructor_series_nonexact_categoricalindex(self):
- # GH 42424
- ser = Series(range(0, 100))
- ser1 = cut(ser, 10).value_counts().head(5)
- ser2 = cut(ser, 10).value_counts().tail(5)
- result = DataFrame({"1": ser1, "2": ser2})
- index = CategoricalIndex(
- [
- Interval(-0.099, 9.9, closed="right"),
- Interval(9.9, 19.8, closed="right"),
- Interval(19.8, 29.7, closed="right"),
- Interval(29.7, 39.6, closed="right"),
- Interval(39.6, 49.5, closed="right"),
- Interval(49.5, 59.4, closed="right"),
- Interval(59.4, 69.3, closed="right"),
- Interval(69.3, 79.2, closed="right"),
- Interval(79.2, 89.1, closed="right"),
- Interval(89.1, 99, closed="right"),
- ],
- ordered=True,
- )
- expected = DataFrame(
- {"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index
- )
- tm.assert_frame_equal(expected, result)
- def test_from_M8_structured(self):
- dates = [(datetime(2012, 9, 9, 0, 0), datetime(2012, 9, 8, 15, 10))]
- arr = np.array(dates, dtype=[("Date", "M8[us]"), ("Forecasting", "M8[us]")])
- df = DataFrame(arr)
- assert df["Date"][0] == dates[0][0]
- assert df["Forecasting"][0] == dates[0][1]
- s = Series(arr["Date"])
- assert isinstance(s[0], Timestamp)
- assert s[0] == dates[0][0]
- def test_from_datetime_subclass(self):
- # GH21142 Verify whether Datetime subclasses are also of dtype datetime
- class DatetimeSubclass(datetime):
- pass
- data = DataFrame({"datetime": [DatetimeSubclass(2020, 1, 1, 1, 1)]})
- assert data.datetime.dtype == "datetime64[ns]"
- def test_with_mismatched_index_length_raises(self):
- # GH#33437
- dti = date_range("2016-01-01", periods=3, tz="US/Pacific")
- msg = "Shape of passed values|Passed arrays should have the same length"
- with pytest.raises(ValueError, match=msg):
- DataFrame(dti, index=range(4))
- def test_frame_ctor_datetime64_column(self):
- rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s")
- dates = np.asarray(rng)
- df = DataFrame({"A": np.random.randn(len(rng)), "B": dates})
- assert np.issubdtype(df["B"].dtype, np.dtype("M8[ns]"))
- def test_dataframe_constructor_infer_multiindex(self):
- index_lists = [["a", "a", "b", "b"], ["x", "y", "x", "y"]]
- multi = DataFrame(
- np.random.randn(4, 4),
- index=[np.array(x) for x in index_lists],
- )
- assert isinstance(multi.index, MultiIndex)
- assert not isinstance(multi.columns, MultiIndex)
- multi = DataFrame(np.random.randn(4, 4), columns=index_lists)
- assert isinstance(multi.columns, MultiIndex)
- @pytest.mark.parametrize(
- "input_vals",
- [
- ([1, 2]),
- (["1", "2"]),
- (list(date_range("1/1/2011", periods=2, freq="H"))),
- (list(date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))),
- ([Interval(left=0, right=5)]),
- ],
- )
- def test_constructor_list_str(self, input_vals, string_dtype):
- # GH#16605
- # Ensure that data elements are converted to strings when
- # dtype is str, 'str', or 'U'
- result = DataFrame({"A": input_vals}, dtype=string_dtype)
- expected = DataFrame({"A": input_vals}).astype({"A": string_dtype})
- tm.assert_frame_equal(result, expected)
- def test_constructor_list_str_na(self, string_dtype):
- result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype)
- expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("copy", [False, True])
- def test_dict_nocopy(
- self,
- request,
- copy,
- any_numeric_ea_dtype,
- any_numpy_dtype,
- using_array_manager,
- using_copy_on_write,
- ):
- if (
- using_array_manager
- and not copy
- and any_numpy_dtype not in tm.STRING_DTYPES + tm.BYTES_DTYPES
- ):
- # TODO(ArrayManager) properly honor copy keyword for dict input
- td.mark_array_manager_not_yet_implemented(request)
- a = np.array([1, 2], dtype=any_numpy_dtype)
- b = np.array([3, 4], dtype=any_numpy_dtype)
- if b.dtype.kind in ["S", "U"]:
- # These get cast, making the checks below more cumbersome
- return
- c = pd.array([1, 2], dtype=any_numeric_ea_dtype)
- c_orig = c.copy()
- df = DataFrame({"a": a, "b": b, "c": c}, copy=copy)
- def get_base(obj):
- if isinstance(obj, np.ndarray):
- return obj.base
- elif isinstance(obj.dtype, np.dtype):
- # i.e. DatetimeArray, TimedeltaArray
- return obj._ndarray.base
- else:
- raise TypeError
- def check_views(c_only: bool = False):
- # written to work for either BlockManager or ArrayManager
- # Check that the underlying data behind df["c"] is still `c`
- # after setting with iloc. Since we don't know which entry in
- # df._mgr.arrays corresponds to df["c"], we just check that exactly
- # one of these arrays is `c`. GH#38939
- assert sum(x is c for x in df._mgr.arrays) == 1
- if c_only:
- # If we ever stop consolidating in setitem_with_indexer,
- # this will become unnecessary.
- return
- assert (
- sum(
- get_base(x) is a
- for x in df._mgr.arrays
- if isinstance(x.dtype, np.dtype)
- )
- == 1
- )
- assert (
- sum(
- get_base(x) is b
- for x in df._mgr.arrays
- if isinstance(x.dtype, np.dtype)
- )
- == 1
- )
- if not copy:
- # constructor preserves views
- check_views()
- # TODO: most of the rest of this test belongs in indexing tests
- df.iloc[0, 0] = 0
- df.iloc[0, 1] = 0
- if not copy:
- check_views(True)
- # FIXME(GH#35417): until GH#35417, iloc.setitem into EA values does not preserve
- # view, so we have to check in the other direction
- df.iloc[:, 2] = pd.array([45, 46], dtype=c.dtype)
- assert df.dtypes.iloc[2] == c.dtype
- if not copy and not using_copy_on_write:
- check_views(True)
- if copy:
- if a.dtype.kind == "M":
- assert a[0] == a.dtype.type(1, "ns")
- assert b[0] == b.dtype.type(3, "ns")
- else:
- assert a[0] == a.dtype.type(1)
- assert b[0] == b.dtype.type(3)
- # FIXME(GH#35417): enable after GH#35417
- assert c[0] == c_orig[0] # i.e. df.iloc[0, 2]=45 did *not* update c
- elif not using_copy_on_write:
- # TODO: we can call check_views if we stop consolidating
- # in setitem_with_indexer
- assert c[0] == 45 # i.e. df.iloc[0, 2]=45 *did* update c
- # TODO: we can check b[0] == 0 if we stop consolidating in
- # setitem_with_indexer (except for datetimelike?)
- def test_from_series_with_name_with_columns(self):
- # GH 7893
- result = DataFrame(Series(1, name="foo"), columns=["bar"])
- expected = DataFrame(columns=["bar"])
- tm.assert_frame_equal(result, expected)
- def test_nested_list_columns(self):
- # GH 14467
- result = DataFrame(
- [[1, 2, 3], [4, 5, 6]], columns=[["A", "A", "A"], ["a", "b", "c"]]
- )
- expected = DataFrame(
- [[1, 2, 3], [4, 5, 6]],
- columns=MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("A", "c")]),
- )
- tm.assert_frame_equal(result, expected)
- def test_from_2d_object_array_of_periods_or_intervals(self):
- # Period analogue to GH#26825
- pi = pd.period_range("2016-04-05", periods=3)
- data = pi._data.astype(object).reshape(1, -1)
- df = DataFrame(data)
- assert df.shape == (1, 3)
- assert (df.dtypes == pi.dtype).all()
- assert (df == pi).all().all()
- ii = pd.IntervalIndex.from_breaks([3, 4, 5, 6])
- data2 = ii._data.astype(object).reshape(1, -1)
- df2 = DataFrame(data2)
- assert df2.shape == (1, 3)
- assert (df2.dtypes == ii.dtype).all()
- assert (df2 == ii).all().all()
- # mixed
- data3 = np.r_[data, data2, data, data2].T
- df3 = DataFrame(data3)
- expected = DataFrame({0: pi, 1: ii, 2: pi, 3: ii})
- tm.assert_frame_equal(df3, expected)
- @pytest.mark.parametrize(
- "col_a, col_b",
- [
- ([[1], [2]], np.array([[1], [2]])),
- (np.array([[1], [2]]), [[1], [2]]),
- (np.array([[1], [2]]), np.array([[1], [2]])),
- ],
- )
- def test_error_from_2darray(self, col_a, col_b):
- msg = "Per-column arrays must each be 1-dimensional"
- with pytest.raises(ValueError, match=msg):
- DataFrame({"a": col_a, "b": col_b})
- def test_from_dict_with_missing_copy_false(self):
- # GH#45369 filled columns should not be views of one another
- df = DataFrame(index=[1, 2, 3], columns=["a", "b", "c"], copy=False)
- assert not np.shares_memory(df["a"]._values, df["b"]._values)
- df.iloc[0, 0] = 0
- expected = DataFrame(
- {
- "a": [0, np.nan, np.nan],
- "b": [np.nan, np.nan, np.nan],
- "c": [np.nan, np.nan, np.nan],
- },
- index=[1, 2, 3],
- dtype=object,
- )
- tm.assert_frame_equal(df, expected)
- def test_construction_empty_array_multi_column_raises(self):
- # GH#46822
- msg = "Empty data passed with indices specified."
- with pytest.raises(ValueError, match=msg):
- DataFrame(data=np.array([]), columns=["a", "b"])
- class TestDataFrameConstructorIndexInference:
- def test_frame_from_dict_of_series_overlapping_monthly_period_indexes(self):
- rng1 = pd.period_range("1/1/1999", "1/1/2012", freq="M")
- s1 = Series(np.random.randn(len(rng1)), rng1)
- rng2 = pd.period_range("1/1/1980", "12/1/2001", freq="M")
- s2 = Series(np.random.randn(len(rng2)), rng2)
- df = DataFrame({"s1": s1, "s2": s2})
- exp = pd.period_range("1/1/1980", "1/1/2012", freq="M")
- tm.assert_index_equal(df.index, exp)
- def test_frame_from_dict_with_mixed_tzaware_indexes(self):
- # GH#44091
- dti = date_range("2016-01-01", periods=3)
- ser1 = Series(range(3), index=dti)
- ser2 = Series(range(3), index=dti.tz_localize("UTC"))
- ser3 = Series(range(3), index=dti.tz_localize("US/Central"))
- ser4 = Series(range(3))
- # no tz-naive, but we do have mixed tzs and a non-DTI
- df1 = DataFrame({"A": ser2, "B": ser3, "C": ser4})
- exp_index = Index(
- list(ser2.index) + list(ser3.index) + list(ser4.index), dtype=object
- )
- tm.assert_index_equal(df1.index, exp_index)
- df2 = DataFrame({"A": ser2, "C": ser4, "B": ser3})
- exp_index3 = Index(
- list(ser2.index) + list(ser4.index) + list(ser3.index), dtype=object
- )
- tm.assert_index_equal(df2.index, exp_index3)
- df3 = DataFrame({"B": ser3, "A": ser2, "C": ser4})
- exp_index3 = Index(
- list(ser3.index) + list(ser2.index) + list(ser4.index), dtype=object
- )
- tm.assert_index_equal(df3.index, exp_index3)
- df4 = DataFrame({"C": ser4, "B": ser3, "A": ser2})
- exp_index4 = Index(
- list(ser4.index) + list(ser3.index) + list(ser2.index), dtype=object
- )
- tm.assert_index_equal(df4.index, exp_index4)
- # TODO: not clear if these raising is desired (no extant tests),
- # but this is de facto behavior 2021-12-22
- msg = "Cannot join tz-naive with tz-aware DatetimeIndex"
- with pytest.raises(TypeError, match=msg):
- DataFrame({"A": ser2, "B": ser3, "C": ser4, "D": ser1})
- with pytest.raises(TypeError, match=msg):
- DataFrame({"A": ser2, "B": ser3, "D": ser1})
- with pytest.raises(TypeError, match=msg):
- DataFrame({"D": ser1, "A": ser2, "B": ser3})
- @pytest.mark.parametrize(
- "key_val, col_vals, col_type",
- [
- ["3", ["3", "4"], "utf8"],
- [3, [3, 4], "int8"],
- ],
- )
- def test_dict_data_arrow_column_expansion(self, key_val, col_vals, col_type):
- # GH 53617
- pa = pytest.importorskip("pyarrow")
- cols = pd.arrays.ArrowExtensionArray(
- pa.array(col_vals, type=pa.dictionary(pa.int8(), getattr(pa, col_type)()))
- )
- result = DataFrame({key_val: [1, 2]}, columns=cols)
- expected = DataFrame([[1, np.nan], [2, np.nan]], columns=cols)
- expected.iloc[:, 1] = expected.iloc[:, 1].astype(object)
- tm.assert_frame_equal(result, expected)
- class TestDataFrameConstructorWithDtypeCoercion:
- def test_floating_values_integer_dtype(self):
- # GH#40110 make DataFrame behavior with arraylike floating data and
- # inty dtype match Series behavior
- arr = np.random.randn(10, 5)
- # GH#49599 in 2.0 we raise instead of either
- # a) silently ignoring dtype and returningfloat (the old Series behavior) or
- # b) rounding (the old DataFrame behavior)
- msg = "Trying to coerce float values to integers"
- with pytest.raises(ValueError, match=msg):
- DataFrame(arr, dtype="i8")
- df = DataFrame(arr.round(), dtype="i8")
- assert (df.dtypes == "i8").all()
- # with NaNs, we go through a different path with a different warning
- arr[0, 0] = np.nan
- msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
- with pytest.raises(IntCastingNaNError, match=msg):
- DataFrame(arr, dtype="i8")
- with pytest.raises(IntCastingNaNError, match=msg):
- Series(arr[0], dtype="i8")
- # The future (raising) behavior matches what we would get via astype:
- msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
- with pytest.raises(IntCastingNaNError, match=msg):
- DataFrame(arr).astype("i8")
- with pytest.raises(IntCastingNaNError, match=msg):
- Series(arr[0]).astype("i8")
- class TestDataFrameConstructorWithDatetimeTZ:
- @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
- def test_construction_preserves_tzaware_dtypes(self, tz):
- # after GH#7822
- # these retain the timezones on dict construction
- dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
- dr_tz = dr.tz_localize(tz)
- df = DataFrame({"A": "foo", "B": dr_tz}, index=dr)
- tz_expected = DatetimeTZDtype("ns", dr_tz.tzinfo)
- assert df["B"].dtype == tz_expected
- # GH#2810 (with timezones)
- datetimes_naive = [ts.to_pydatetime() for ts in dr]
- datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz]
- df = DataFrame({"dr": dr})
- df["dr_tz"] = dr_tz
- df["datetimes_naive"] = datetimes_naive
- df["datetimes_with_tz"] = datetimes_with_tz
- result = df.dtypes
- expected = Series(
- [
- np.dtype("datetime64[ns]"),
- DatetimeTZDtype(tz=tz),
- np.dtype("datetime64[ns]"),
- DatetimeTZDtype(tz=tz),
- ],
- index=["dr", "dr_tz", "datetimes_naive", "datetimes_with_tz"],
- )
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("pydt", [True, False])
- def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture, pydt):
- # GH#25843, GH#41555, GH#33401
- tz = tz_aware_fixture
- ts = Timestamp("2019", tz=tz)
- if pydt:
- ts = ts.to_pydatetime()
- msg = (
- "Cannot convert timezone-aware data to timezone-naive dtype. "
- r"Use pd.Series\(values\).dt.tz_localize\(None\) instead."
- )
- with pytest.raises(ValueError, match=msg):
- DataFrame({0: [ts]}, dtype="datetime64[ns]")
- msg2 = "Cannot unbox tzaware Timestamp to tznaive dtype"
- with pytest.raises(TypeError, match=msg2):
- DataFrame({0: ts}, index=[0], dtype="datetime64[ns]")
- with pytest.raises(ValueError, match=msg):
- DataFrame([ts], dtype="datetime64[ns]")
- with pytest.raises(ValueError, match=msg):
- DataFrame(np.array([ts], dtype=object), dtype="datetime64[ns]")
- with pytest.raises(TypeError, match=msg2):
- DataFrame(ts, index=[0], columns=[0], dtype="datetime64[ns]")
- with pytest.raises(ValueError, match=msg):
- DataFrame([Series([ts])], dtype="datetime64[ns]")
- with pytest.raises(ValueError, match=msg):
- DataFrame([[ts]], columns=[0], dtype="datetime64[ns]")
- def test_from_dict(self):
- # 8260
- # support datetime64 with tz
- idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
- dr = date_range("20130110", periods=3)
- # construction
- df = DataFrame({"A": idx, "B": dr})
- assert df["A"].dtype, "M8[ns, US/Eastern"
- assert df["A"].name == "A"
- tm.assert_series_equal(df["A"], Series(idx, name="A"))
- tm.assert_series_equal(df["B"], Series(dr, name="B"))
- def test_from_index(self):
- # from index
- idx2 = date_range("20130101", periods=3, tz="US/Eastern", name="foo")
- df2 = DataFrame(idx2)
- tm.assert_series_equal(df2["foo"], Series(idx2, name="foo"))
- df2 = DataFrame(Series(idx2))
- tm.assert_series_equal(df2["foo"], Series(idx2, name="foo"))
- idx2 = date_range("20130101", periods=3, tz="US/Eastern")
- df2 = DataFrame(idx2)
- tm.assert_series_equal(df2[0], Series(idx2, name=0))
- df2 = DataFrame(Series(idx2))
- tm.assert_series_equal(df2[0], Series(idx2, name=0))
- def test_frame_dict_constructor_datetime64_1680(self):
- dr = date_range("1/1/2012", periods=10)
- s = Series(dr, index=dr)
- # it works!
- DataFrame({"a": "foo", "b": s}, index=dr)
- DataFrame({"a": "foo", "b": s.values}, index=dr)
- def test_frame_datetime64_mixed_index_ctor_1681(self):
- dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
- ts = Series(dr)
- # it works!
- d = DataFrame({"A": "foo", "B": ts}, index=dr)
- assert d["B"].isna().all()
- def test_frame_timeseries_column(self):
- # GH19157
- dr = date_range(start="20130101T10:00:00", periods=3, freq="T", tz="US/Eastern")
- result = DataFrame(dr, columns=["timestamps"])
- expected = DataFrame(
- {
- "timestamps": [
- Timestamp("20130101T10:00:00", tz="US/Eastern"),
- Timestamp("20130101T10:01:00", tz="US/Eastern"),
- Timestamp("20130101T10:02:00", tz="US/Eastern"),
- ]
- }
- )
- tm.assert_frame_equal(result, expected)
- def test_nested_dict_construction(self):
- # GH22227
- columns = ["Nevada", "Ohio"]
- pop = {
- "Nevada": {2001: 2.4, 2002: 2.9},
- "Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6},
- }
- result = DataFrame(pop, index=[2001, 2002, 2003], columns=columns)
- expected = DataFrame(
- [(2.4, 1.7), (2.9, 3.6), (np.nan, np.nan)],
- columns=columns,
- index=Index([2001, 2002, 2003]),
- )
- tm.assert_frame_equal(result, expected)
- def test_from_tzaware_object_array(self):
- # GH#26825 2D object array of tzaware timestamps should not raise
- dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
- data = dti._data.astype(object).reshape(1, -1)
- df = DataFrame(data)
- assert df.shape == (1, 3)
- assert (df.dtypes == dti.dtype).all()
- assert (df == dti).all().all()
- def test_from_tzaware_mixed_object_array(self):
- # GH#26825
- arr = np.array(
- [
- [
- Timestamp("2013-01-01 00:00:00"),
- Timestamp("2013-01-02 00:00:00"),
- Timestamp("2013-01-03 00:00:00"),
- ],
- [
- Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"),
- pd.NaT,
- Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"),
- ],
- [
- Timestamp("2013-01-01 00:00:00+0100", tz="CET"),
- pd.NaT,
- Timestamp("2013-01-03 00:00:00+0100", tz="CET"),
- ],
- ],
- dtype=object,
- ).T
- res = DataFrame(arr, columns=["A", "B", "C"])
- expected_dtypes = [
- "datetime64[ns]",
- "datetime64[ns, US/Eastern]",
- "datetime64[ns, CET]",
- ]
- assert (res.dtypes == expected_dtypes).all()
- def test_from_2d_ndarray_with_dtype(self):
- # GH#12513
- array_dim2 = np.arange(10).reshape((5, 2))
- df = DataFrame(array_dim2, dtype="datetime64[ns, UTC]")
- expected = DataFrame(array_dim2).astype("datetime64[ns, UTC]")
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("typ", [set, frozenset])
- def test_construction_from_set_raises(self, typ):
- # https://github.com/pandas-dev/pandas/issues/32582
- values = typ({1, 2, 3})
- msg = f"'{typ.__name__}' type is unordered"
- with pytest.raises(TypeError, match=msg):
- DataFrame({"a": values})
- with pytest.raises(TypeError, match=msg):
- Series(values)
- def test_construction_from_ndarray_datetimelike(self):
- # ensure the underlying arrays are properly wrapped as EA when
- # constructed from 2D ndarray
- arr = np.arange(0, 12, dtype="datetime64[ns]").reshape(4, 3)
- df = DataFrame(arr)
- assert all(isinstance(arr, DatetimeArray) for arr in df._mgr.arrays)
- def test_construction_from_ndarray_with_eadtype_mismatched_columns(self):
- arr = np.random.randn(10, 2)
- dtype = pd.array([2.0]).dtype
- msg = r"len\(arrays\) must match len\(columns\)"
- with pytest.raises(ValueError, match=msg):
- DataFrame(arr, columns=["foo"], dtype=dtype)
- arr2 = pd.array([2.0, 3.0, 4.0])
- with pytest.raises(ValueError, match=msg):
- DataFrame(arr2, columns=["foo", "bar"])
- def test_columns_indexes_raise_on_sets(self):
- # GH 47215
- data = [[1, 2, 3], [4, 5, 6]]
- with pytest.raises(ValueError, match="index cannot be a set"):
- DataFrame(data, index={"a", "b"})
- with pytest.raises(ValueError, match="columns cannot be a set"):
- DataFrame(data, columns={"a", "b", "c"})
- def get1(obj): # TODO: make a helper in tm?
- if isinstance(obj, Series):
- return obj.iloc[0]
- else:
- return obj.iloc[0, 0]
- class TestFromScalar:
- @pytest.fixture(params=[list, dict, None])
- def box(self, request):
- return request.param
- @pytest.fixture
- def constructor(self, frame_or_series, box):
- extra = {"index": range(2)}
- if frame_or_series is DataFrame:
- extra["columns"] = ["A"]
- if box is None:
- return functools.partial(frame_or_series, **extra)
- elif box is dict:
- if frame_or_series is Series:
- return lambda x, **kwargs: frame_or_series(
- {0: x, 1: x}, **extra, **kwargs
- )
- else:
- return lambda x, **kwargs: frame_or_series({"A": x}, **extra, **kwargs)
- else:
- if frame_or_series is Series:
- return lambda x, **kwargs: frame_or_series([x, x], **extra, **kwargs)
- else:
- return lambda x, **kwargs: frame_or_series(
- {"A": [x, x]}, **extra, **kwargs
- )
- @pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
- def test_from_nat_scalar(self, dtype, constructor):
- obj = constructor(pd.NaT, dtype=dtype)
- assert np.all(obj.dtypes == dtype)
- assert np.all(obj.isna())
- def test_from_timedelta_scalar_preserves_nanos(self, constructor):
- td = Timedelta(1)
- obj = constructor(td, dtype="m8[ns]")
- assert get1(obj) == td
- def test_from_timestamp_scalar_preserves_nanos(self, constructor, fixed_now_ts):
- ts = fixed_now_ts + Timedelta(1)
- obj = constructor(ts, dtype="M8[ns]")
- assert get1(obj) == ts
- def test_from_timedelta64_scalar_object(self, constructor):
- td = Timedelta(1)
- td64 = td.to_timedelta64()
- obj = constructor(td64, dtype=object)
- assert isinstance(get1(obj), np.timedelta64)
- @pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64])
- def test_from_scalar_datetimelike_mismatched(self, constructor, cls):
- scalar = cls("NaT", "ns")
- dtype = {np.datetime64: "m8[ns]", np.timedelta64: "M8[ns]"}[cls]
- if cls is np.datetime64:
- msg1 = r"dtype datetime64\[ns\] cannot be converted to timedelta64\[ns\]"
- else:
- msg1 = r"dtype timedelta64\[ns\] cannot be converted to datetime64\[ns\]"
- msg = "|".join(["Cannot cast", msg1])
- with pytest.raises(TypeError, match=msg):
- constructor(scalar, dtype=dtype)
- scalar = cls(4, "ns")
- with pytest.raises(TypeError, match=msg):
- constructor(scalar, dtype=dtype)
- @pytest.mark.xfail(
- reason="Timestamp constructor has been updated to cast dt64 to non-nano, "
- "but DatetimeArray._from_sequence has not"
- )
- @pytest.mark.parametrize("cls", [datetime, np.datetime64])
- def test_from_out_of_bounds_ns_datetime(self, constructor, cls):
- # scalar that won't fit in nanosecond dt64, but will fit in microsecond
- scalar = datetime(9999, 1, 1)
- exp_dtype = "M8[us]" # pydatetime objects default to this reso
- if cls is np.datetime64:
- scalar = np.datetime64(scalar, "D")
- exp_dtype = "M8[s]" # closest reso to input
- result = constructor(scalar)
- item = get1(result)
- dtype = result.dtype if isinstance(result, Series) else result.dtypes.iloc[0]
- assert type(item) is Timestamp
- assert item.asm8.dtype == exp_dtype
- assert dtype == exp_dtype
- def test_out_of_s_bounds_datetime64(self, constructor):
- scalar = np.datetime64(np.iinfo(np.int64).max, "D")
- result = constructor(scalar)
- item = get1(result)
- assert type(item) is np.datetime64
- dtype = result.dtype if isinstance(result, Series) else result.dtypes.iloc[0]
- assert dtype == object
- @pytest.mark.xfail(
- reason="TimedeltaArray constructor has been updated to cast td64 to non-nano, "
- "but TimedeltaArray._from_sequence has not"
- )
- @pytest.mark.parametrize("cls", [timedelta, np.timedelta64])
- def test_from_out_of_bounds_ns_timedelta(self, constructor, cls):
- # scalar that won't fit in nanosecond td64, but will fit in microsecond
- scalar = datetime(9999, 1, 1) - datetime(1970, 1, 1)
- exp_dtype = "m8[us]" # smallest reso that fits
- if cls is np.timedelta64:
- scalar = np.timedelta64(scalar, "D")
- exp_dtype = "m8[s]" # closest reso to input
- result = constructor(scalar)
- item = get1(result)
- dtype = result.dtype if isinstance(result, Series) else result.dtypes.iloc[0]
- assert type(item) is Timedelta
- assert item.asm8.dtype == exp_dtype
- assert dtype == exp_dtype
- @pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64])
- def test_out_of_s_bounds_timedelta64(self, constructor, cls):
- scalar = cls(np.iinfo(np.int64).max, "D")
- result = constructor(scalar)
- item = get1(result)
- assert type(item) is cls
- dtype = result.dtype if isinstance(result, Series) else result.dtypes.iloc[0]
- assert dtype == object
- def test_tzaware_data_tznaive_dtype(self, constructor, box, frame_or_series):
- tz = "US/Eastern"
- ts = Timestamp("2019", tz=tz)
- if box is None or (frame_or_series is DataFrame and box is dict):
- msg = "Cannot unbox tzaware Timestamp to tznaive dtype"
- err = TypeError
- else:
- msg = (
- "Cannot convert timezone-aware data to timezone-naive dtype. "
- r"Use pd.Series\(values\).dt.tz_localize\(None\) instead."
- )
- err = ValueError
- with pytest.raises(err, match=msg):
- constructor(ts, dtype="M8[ns]")
- # TODO: better location for this test?
- class TestAllowNonNano:
- # Until 2.0, we do not preserve non-nano dt64/td64 when passed as ndarray,
- # but do preserve it when passed as DTA/TDA
- @pytest.fixture(params=[True, False])
- def as_td(self, request):
- return request.param
- @pytest.fixture
- def arr(self, as_td):
- values = np.arange(5).astype(np.int64).view("M8[s]")
- if as_td:
- values = values - values[0]
- return TimedeltaArray._simple_new(values, dtype=values.dtype)
- else:
- return DatetimeArray._simple_new(values, dtype=values.dtype)
- def test_index_allow_non_nano(self, arr):
- idx = Index(arr)
- assert idx.dtype == arr.dtype
- def test_dti_tdi_allow_non_nano(self, arr, as_td):
- if as_td:
- idx = pd.TimedeltaIndex(arr)
- else:
- idx = DatetimeIndex(arr)
- assert idx.dtype == arr.dtype
- def test_series_allow_non_nano(self, arr):
- ser = Series(arr)
- assert ser.dtype == arr.dtype
- def test_frame_allow_non_nano(self, arr):
- df = DataFrame(arr)
- assert df.dtypes[0] == arr.dtype
- def test_frame_from_dict_allow_non_nano(self, arr):
- df = DataFrame({0: arr})
- assert df.dtypes[0] == arr.dtype
|