123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Series,
- date_range,
- )
- import pandas._testing as tm
- class TestDataFrameRound:
- def test_round(self):
- # GH#2665
- # Test that rounding an empty DataFrame does nothing
- df = DataFrame()
- tm.assert_frame_equal(df, df.round())
- # Here's the test frame we'll be working with
- df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
- # Default round to integer (i.e. decimals=0)
- expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
- tm.assert_frame_equal(df.round(), expected_rounded)
- # Round with an integer
- decimals = 2
- expected_rounded = DataFrame(
- {"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
- )
- tm.assert_frame_equal(df.round(decimals), expected_rounded)
- # This should also work with np.round (since np.round dispatches to
- # df.round)
- tm.assert_frame_equal(np.round(df, decimals), expected_rounded)
- # Round with a list
- round_list = [1, 2]
- msg = "decimals must be an integer, a dict-like or a Series"
- with pytest.raises(TypeError, match=msg):
- df.round(round_list)
- # Round with a dictionary
- expected_rounded = DataFrame(
- {"col1": [1.1, 2.1, 3.1], "col2": [1.23, 2.23, 3.23]}
- )
- round_dict = {"col1": 1, "col2": 2}
- tm.assert_frame_equal(df.round(round_dict), expected_rounded)
- # Incomplete dict
- expected_partially_rounded = DataFrame(
- {"col1": [1.123, 2.123, 3.123], "col2": [1.2, 2.2, 3.2]}
- )
- partial_round_dict = {"col2": 1}
- tm.assert_frame_equal(df.round(partial_round_dict), expected_partially_rounded)
- # Dict with unknown elements
- wrong_round_dict = {"col3": 2, "col2": 1}
- tm.assert_frame_equal(df.round(wrong_round_dict), expected_partially_rounded)
- # float input to `decimals`
- non_int_round_dict = {"col1": 1, "col2": 0.5}
- msg = "Values in decimals must be integers"
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_dict)
- # String input
- non_int_round_dict = {"col1": 1, "col2": "foo"}
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_dict)
- non_int_round_Series = Series(non_int_round_dict)
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_Series)
- # List input
- non_int_round_dict = {"col1": 1, "col2": [1, 2]}
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_dict)
- non_int_round_Series = Series(non_int_round_dict)
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_Series)
- # Non integer Series inputs
- non_int_round_Series = Series(non_int_round_dict)
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_Series)
- non_int_round_Series = Series(non_int_round_dict)
- with pytest.raises(TypeError, match=msg):
- df.round(non_int_round_Series)
- # Negative numbers
- negative_round_dict = {"col1": -1, "col2": -2}
- big_df = df * 100
- expected_neg_rounded = DataFrame(
- {"col1": [110.0, 210, 310], "col2": [100.0, 200, 300]}
- )
- tm.assert_frame_equal(big_df.round(negative_round_dict), expected_neg_rounded)
- # nan in Series round
- nan_round_Series = Series({"col1": np.nan, "col2": 1})
- with pytest.raises(TypeError, match=msg):
- df.round(nan_round_Series)
- # Make sure this doesn't break existing Series.round
- tm.assert_series_equal(df["col1"].round(1), expected_rounded["col1"])
- # named columns
- # GH#11986
- decimals = 2
- expected_rounded = DataFrame(
- {"col1": [1.12, 2.12, 3.12], "col2": [1.23, 2.23, 3.23]}
- )
- df.columns.name = "cols"
- expected_rounded.columns.name = "cols"
- tm.assert_frame_equal(df.round(decimals), expected_rounded)
- # interaction of named columns & series
- tm.assert_series_equal(df["col1"].round(decimals), expected_rounded["col1"])
- tm.assert_series_equal(df.round(decimals)["col1"], expected_rounded["col1"])
- def test_round_numpy(self):
- # GH#12600
- df = DataFrame([[1.53, 1.36], [0.06, 7.01]])
- out = np.round(df, decimals=0)
- expected = DataFrame([[2.0, 1.0], [0.0, 7.0]])
- tm.assert_frame_equal(out, expected)
- msg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.round(df, decimals=0, out=df)
- def test_round_numpy_with_nan(self):
- # See GH#14197
- df = Series([1.53, np.nan, 0.06]).to_frame()
- with tm.assert_produces_warning(None):
- result = df.round()
- expected = Series([2.0, np.nan, 0.0]).to_frame()
- tm.assert_frame_equal(result, expected)
- def test_round_mixed_type(self):
- # GH#11885
- df = DataFrame(
- {
- "col1": [1.1, 2.2, 3.3, 4.4],
- "col2": ["1", "a", "c", "f"],
- "col3": date_range("20111111", periods=4),
- }
- )
- round_0 = DataFrame(
- {
- "col1": [1.0, 2.0, 3.0, 4.0],
- "col2": ["1", "a", "c", "f"],
- "col3": date_range("20111111", periods=4),
- }
- )
- tm.assert_frame_equal(df.round(), round_0)
- tm.assert_frame_equal(df.round(1), df)
- tm.assert_frame_equal(df.round({"col1": 1}), df)
- tm.assert_frame_equal(df.round({"col1": 0}), round_0)
- tm.assert_frame_equal(df.round({"col1": 0, "col2": 1}), round_0)
- tm.assert_frame_equal(df.round({"col3": 1}), df)
- def test_round_with_duplicate_columns(self):
- # GH#11611
- df = DataFrame(
- np.random.random([3, 3]),
- columns=["A", "B", "C"],
- index=["first", "second", "third"],
- )
- dfs = pd.concat((df, df), axis=1)
- rounded = dfs.round()
- tm.assert_index_equal(rounded.index, dfs.index)
- decimals = Series([1, 0, 2], index=["A", "B", "A"])
- msg = "Index of decimals must be unique"
- with pytest.raises(ValueError, match=msg):
- df.round(decimals)
- def test_round_builtin(self):
- # GH#11763
- # Here's the test frame we'll be working with
- df = DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]})
- # Default round to integer (i.e. decimals=0)
- expected_rounded = DataFrame({"col1": [1.0, 2.0, 3.0], "col2": [1.0, 2.0, 3.0]})
- tm.assert_frame_equal(round(df), expected_rounded)
- def test_round_nonunique_categorical(self):
- # See GH#21809
- idx = pd.CategoricalIndex(["low"] * 3 + ["hi"] * 3)
- df = DataFrame(np.random.rand(6, 3), columns=list("abc"))
- expected = df.round(3)
- expected.index = idx
- df_categorical = df.copy().set_index(idx)
- assert df_categorical.shape == (6, 3)
- result = df_categorical.round(3)
- assert result.shape == (6, 3)
- tm.assert_frame_equal(result, expected)
- def test_round_interval_category_columns(self):
- # GH#30063
- columns = pd.CategoricalIndex(pd.interval_range(0, 2))
- df = DataFrame([[0.66, 1.1], [0.3, 0.25]], columns=columns)
- result = df.round()
- expected = DataFrame([[1.0, 1.0], [0.0, 0.0]], columns=columns)
- tm.assert_frame_equal(result, expected)
- def test_round_empty_not_input(self):
- # GH#51032
- df = DataFrame()
- result = df.round()
- tm.assert_frame_equal(df, result)
- assert df is not result
|