123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775 |
- from datetime import datetime
- from itertools import product
- import numpy as np
- import pytest
- from pandas.core.dtypes.common import (
- is_float_dtype,
- is_integer_dtype,
- )
- import pandas as pd
- from pandas import (
- Categorical,
- CategoricalIndex,
- DataFrame,
- Index,
- Interval,
- IntervalIndex,
- MultiIndex,
- RangeIndex,
- Series,
- Timestamp,
- cut,
- date_range,
- )
- import pandas._testing as tm
- @pytest.fixture()
- def multiindex_df():
- levels = [["A", ""], ["B", "b"]]
- return DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
- class TestResetIndex:
- def test_reset_index_empty_rangeindex(self):
- # GH#45230
- df = DataFrame(
- columns=["brand"], dtype=np.int64, index=RangeIndex(0, 0, 1, name="foo")
- )
- df2 = df.set_index([df.index, "brand"])
- result = df2.reset_index([1], drop=True)
- tm.assert_frame_equal(result, df[[]], check_index_type=True)
- def test_set_reset(self):
- idx = Index([2**63, 2**63 + 5, 2**63 + 10], name="foo")
- # set/reset
- df = DataFrame({"A": [0, 1, 2]}, index=idx)
- result = df.reset_index()
- assert result["foo"].dtype == np.dtype("uint64")
- df = result.set_index("foo")
- tm.assert_index_equal(df.index, idx)
- def test_set_index_reset_index_dt64tz(self):
- idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
- # set/reset
- df = DataFrame({"A": [0, 1, 2]}, index=idx)
- result = df.reset_index()
- assert result["foo"].dtype == "datetime64[ns, US/Eastern]"
- df = result.set_index("foo")
- tm.assert_index_equal(df.index, idx)
- def test_reset_index_tz(self, tz_aware_fixture):
- # GH 3950
- # reset_index with single level
- tz = tz_aware_fixture
- idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx")
- df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx)
- expected = DataFrame(
- {
- "idx": [
- datetime(2011, 1, 1),
- datetime(2011, 1, 2),
- datetime(2011, 1, 3),
- datetime(2011, 1, 4),
- datetime(2011, 1, 5),
- ],
- "a": range(5),
- "b": ["A", "B", "C", "D", "E"],
- },
- columns=["idx", "a", "b"],
- )
- expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz))
- tm.assert_frame_equal(df.reset_index(), expected)
- @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
- def test_frame_reset_index_tzaware_index(self, tz):
- dr = date_range("2012-06-02", periods=10, tz=tz)
- df = DataFrame(np.random.randn(len(dr)), dr)
- roundtripped = df.reset_index().set_index("index")
- xp = df.index.tz
- rs = roundtripped.index.tz
- assert xp == rs
- def test_reset_index_with_intervals(self):
- idx = IntervalIndex.from_breaks(np.arange(11), name="x")
- original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]]
- result = original.set_index("x")
- expected = DataFrame({"y": np.arange(10)}, index=idx)
- tm.assert_frame_equal(result, expected)
- result2 = result.reset_index()
- tm.assert_frame_equal(result2, original)
- def test_reset_index(self, float_frame):
- stacked = float_frame.stack()[::2]
- stacked = DataFrame({"foo": stacked, "bar": stacked})
- names = ["first", "second"]
- stacked.index.names = names
- deleveled = stacked.reset_index()
- for i, (lev, level_codes) in enumerate(
- zip(stacked.index.levels, stacked.index.codes)
- ):
- values = lev.take(level_codes)
- name = names[i]
- tm.assert_index_equal(values, Index(deleveled[name]))
- stacked.index.names = [None, None]
- deleveled2 = stacked.reset_index()
- tm.assert_series_equal(
- deleveled["first"], deleveled2["level_0"], check_names=False
- )
- tm.assert_series_equal(
- deleveled["second"], deleveled2["level_1"], check_names=False
- )
- # default name assigned
- rdf = float_frame.reset_index()
- exp = Series(float_frame.index.values, name="index")
- tm.assert_series_equal(rdf["index"], exp)
- # default name assigned, corner case
- df = float_frame.copy()
- df["index"] = "foo"
- rdf = df.reset_index()
- exp = Series(float_frame.index.values, name="level_0")
- tm.assert_series_equal(rdf["level_0"], exp)
- # but this is ok
- float_frame.index.name = "index"
- deleveled = float_frame.reset_index()
- tm.assert_series_equal(deleveled["index"], Series(float_frame.index))
- tm.assert_index_equal(deleveled.index, Index(range(len(deleveled))), exact=True)
- # preserve column names
- float_frame.columns.name = "columns"
- reset = float_frame.reset_index()
- assert reset.columns.name == "columns"
- # only remove certain columns
- df = float_frame.reset_index().set_index(["index", "A", "B"])
- rs = df.reset_index(["A", "B"])
- tm.assert_frame_equal(rs, float_frame)
- rs = df.reset_index(["index", "A", "B"])
- tm.assert_frame_equal(rs, float_frame.reset_index())
- rs = df.reset_index(["index", "A", "B"])
- tm.assert_frame_equal(rs, float_frame.reset_index())
- rs = df.reset_index("A")
- xp = float_frame.reset_index().set_index(["index", "B"])
- tm.assert_frame_equal(rs, xp)
- # test resetting in place
- df = float_frame.copy()
- reset = float_frame.reset_index()
- return_value = df.reset_index(inplace=True)
- assert return_value is None
- tm.assert_frame_equal(df, reset)
- df = float_frame.reset_index().set_index(["index", "A", "B"])
- rs = df.reset_index("A", drop=True)
- xp = float_frame.copy()
- del xp["A"]
- xp = xp.set_index(["B"], append=True)
- tm.assert_frame_equal(rs, xp)
- def test_reset_index_name(self):
- df = DataFrame(
- [[1, 2, 3, 4], [5, 6, 7, 8]],
- columns=["A", "B", "C", "D"],
- index=Index(range(2), name="x"),
- )
- assert df.reset_index().index.name is None
- assert df.reset_index(drop=True).index.name is None
- return_value = df.reset_index(inplace=True)
- assert return_value is None
- assert df.index.name is None
- @pytest.mark.parametrize("levels", [["A", "B"], [0, 1]])
- def test_reset_index_level(self, levels):
- df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"])
- # With MultiIndex
- result = df.set_index(["A", "B"]).reset_index(level=levels[0])
- tm.assert_frame_equal(result, df.set_index("B"))
- result = df.set_index(["A", "B"]).reset_index(level=levels[:1])
- tm.assert_frame_equal(result, df.set_index("B"))
- result = df.set_index(["A", "B"]).reset_index(level=levels)
- tm.assert_frame_equal(result, df)
- result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True)
- tm.assert_frame_equal(result, df[["C", "D"]])
- # With single-level Index (GH 16263)
- result = df.set_index("A").reset_index(level=levels[0])
- tm.assert_frame_equal(result, df)
- result = df.set_index("A").reset_index(level=levels[:1])
- tm.assert_frame_equal(result, df)
- result = df.set_index(["A"]).reset_index(level=levels[0], drop=True)
- tm.assert_frame_equal(result, df[["B", "C", "D"]])
- @pytest.mark.parametrize("idx_lev", [["A", "B"], ["A"]])
- def test_reset_index_level_missing(self, idx_lev):
- # Missing levels - for both MultiIndex and single-level Index:
- df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"])
- with pytest.raises(KeyError, match=r"(L|l)evel \(?E\)?"):
- df.set_index(idx_lev).reset_index(level=["A", "E"])
- with pytest.raises(IndexError, match="Too many levels"):
- df.set_index(idx_lev).reset_index(level=[0, 1, 2])
- def test_reset_index_right_dtype(self):
- time = np.arange(0.0, 10, np.sqrt(2) / 2)
- s1 = Series(
- (9.81 * time**2) / 2, index=Index(time, name="time"), name="speed"
- )
- df = DataFrame(s1)
- reset = s1.reset_index()
- assert reset["time"].dtype == np.float64
- reset = df.reset_index()
- assert reset["time"].dtype == np.float64
- def test_reset_index_multiindex_col(self):
- vals = np.random.randn(3, 3).astype(object)
- idx = ["x", "y", "z"]
- full = np.hstack(([[x] for x in idx], vals))
- df = DataFrame(
- vals,
- Index(idx, name="a"),
- columns=[["b", "b", "c"], ["mean", "median", "mean"]],
- )
- rs = df.reset_index()
- xp = DataFrame(
- full, columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]]
- )
- tm.assert_frame_equal(rs, xp)
- rs = df.reset_index(col_fill=None)
- xp = DataFrame(
- full, columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]]
- )
- tm.assert_frame_equal(rs, xp)
- rs = df.reset_index(col_level=1, col_fill="blah")
- xp = DataFrame(
- full, columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]]
- )
- tm.assert_frame_equal(rs, xp)
- df = DataFrame(
- vals,
- MultiIndex.from_arrays([[0, 1, 2], ["x", "y", "z"]], names=["d", "a"]),
- columns=[["b", "b", "c"], ["mean", "median", "mean"]],
- )
- rs = df.reset_index("a")
- xp = DataFrame(
- full,
- Index([0, 1, 2], name="d"),
- columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]],
- )
- tm.assert_frame_equal(rs, xp)
- rs = df.reset_index("a", col_fill=None)
- xp = DataFrame(
- full,
- Index(range(3), name="d"),
- columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]],
- )
- tm.assert_frame_equal(rs, xp)
- rs = df.reset_index("a", col_fill="blah", col_level=1)
- xp = DataFrame(
- full,
- Index(range(3), name="d"),
- columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]],
- )
- tm.assert_frame_equal(rs, xp)
- def test_reset_index_multiindex_nan(self):
- # GH#6322, testing reset_index on MultiIndexes
- # when we have a nan or all nan
- df = DataFrame(
- {"A": ["a", "b", "c"], "B": [0, 1, np.nan], "C": np.random.rand(3)}
- )
- rs = df.set_index(["A", "B"]).reset_index()
- tm.assert_frame_equal(rs, df)
- df = DataFrame(
- {"A": [np.nan, "b", "c"], "B": [0, 1, 2], "C": np.random.rand(3)}
- )
- rs = df.set_index(["A", "B"]).reset_index()
- tm.assert_frame_equal(rs, df)
- df = DataFrame({"A": ["a", "b", "c"], "B": [0, 1, 2], "C": [np.nan, 1.1, 2.2]})
- rs = df.set_index(["A", "B"]).reset_index()
- tm.assert_frame_equal(rs, df)
- df = DataFrame(
- {
- "A": ["a", "b", "c"],
- "B": [np.nan, np.nan, np.nan],
- "C": np.random.rand(3),
- }
- )
- rs = df.set_index(["A", "B"]).reset_index()
- tm.assert_frame_equal(rs, df)
- @pytest.mark.parametrize(
- "name",
- [
- None,
- "foo",
- 2,
- 3.0,
- pd.Timedelta(6),
- Timestamp("2012-12-30", tz="UTC"),
- "2012-12-31",
- ],
- )
- def test_reset_index_with_datetimeindex_cols(self, name):
- # GH#5818
- df = DataFrame(
- [[1, 2], [3, 4]],
- columns=date_range("1/1/2013", "1/2/2013"),
- index=["A", "B"],
- )
- df.index.name = name
- result = df.reset_index()
- item = name if name is not None else "index"
- columns = Index([item, datetime(2013, 1, 1), datetime(2013, 1, 2)])
- if isinstance(item, str) and item == "2012-12-31":
- columns = columns.astype("datetime64[ns]")
- else:
- assert columns.dtype == object
- expected = DataFrame(
- [["A", 1, 2], ["B", 3, 4]],
- columns=columns,
- )
- tm.assert_frame_equal(result, expected)
- def test_reset_index_range(self):
- # GH#12071
- df = DataFrame([[0, 0], [1, 1]], columns=["A", "B"], index=RangeIndex(stop=2))
- result = df.reset_index()
- assert isinstance(result.index, RangeIndex)
- expected = DataFrame(
- [[0, 0, 0], [1, 1, 1]],
- columns=["index", "A", "B"],
- index=RangeIndex(stop=2),
- )
- tm.assert_frame_equal(result, expected)
- def test_reset_index_multiindex_columns(self, multiindex_df):
- result = multiindex_df[["B"]].rename_axis("A").reset_index()
- tm.assert_frame_equal(result, multiindex_df)
- # GH#16120: already existing column
- msg = r"cannot insert \('A', ''\), already exists"
- with pytest.raises(ValueError, match=msg):
- multiindex_df.rename_axis("A").reset_index()
- # GH#16164: multiindex (tuple) full key
- result = multiindex_df.set_index([("A", "")]).reset_index()
- tm.assert_frame_equal(result, multiindex_df)
- # with additional (unnamed) index level
- idx_col = DataFrame(
- [[0], [1]], columns=MultiIndex.from_tuples([("level_0", "")])
- )
- expected = pd.concat([idx_col, multiindex_df[[("B", "b"), ("A", "")]]], axis=1)
- result = multiindex_df.set_index([("B", "b")], append=True).reset_index()
- tm.assert_frame_equal(result, expected)
- # with index name which is a too long tuple...
- msg = "Item must have length equal to number of levels."
- with pytest.raises(ValueError, match=msg):
- multiindex_df.rename_axis([("C", "c", "i")]).reset_index()
- # or too short...
- levels = [["A", "a", ""], ["B", "b", "i"]]
- df2 = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
- idx_col = DataFrame(
- [[0], [1]], columns=MultiIndex.from_tuples([("C", "c", "ii")])
- )
- expected = pd.concat([idx_col, df2], axis=1)
- result = df2.rename_axis([("C", "c")]).reset_index(col_fill="ii")
- tm.assert_frame_equal(result, expected)
- # ... which is incompatible with col_fill=None
- with pytest.raises(
- ValueError,
- match=(
- "col_fill=None is incompatible with "
- r"incomplete column name \('C', 'c'\)"
- ),
- ):
- df2.rename_axis([("C", "c")]).reset_index(col_fill=None)
- # with col_level != 0
- result = df2.rename_axis([("c", "ii")]).reset_index(col_level=1, col_fill="C")
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("flag", [False, True])
- @pytest.mark.parametrize("allow_duplicates", [False, True])
- def test_reset_index_duplicate_columns_allow(
- self, multiindex_df, flag, allow_duplicates
- ):
- # GH#44755 reset_index with duplicate column labels
- df = multiindex_df.rename_axis("A")
- df = df.set_flags(allows_duplicate_labels=flag)
- if flag and allow_duplicates:
- result = df.reset_index(allow_duplicates=allow_duplicates)
- levels = [["A", ""], ["A", ""], ["B", "b"]]
- expected = DataFrame(
- [[0, 0, 2], [1, 1, 3]], columns=MultiIndex.from_tuples(levels)
- )
- tm.assert_frame_equal(result, expected)
- else:
- if not flag and allow_duplicates:
- msg = (
- "Cannot specify 'allow_duplicates=True' when "
- "'self.flags.allows_duplicate_labels' is False"
- )
- else:
- msg = r"cannot insert \('A', ''\), already exists"
- with pytest.raises(ValueError, match=msg):
- df.reset_index(allow_duplicates=allow_duplicates)
- @pytest.mark.parametrize("flag", [False, True])
- def test_reset_index_duplicate_columns_default(self, multiindex_df, flag):
- df = multiindex_df.rename_axis("A")
- df = df.set_flags(allows_duplicate_labels=flag)
- msg = r"cannot insert \('A', ''\), already exists"
- with pytest.raises(ValueError, match=msg):
- df.reset_index()
- @pytest.mark.parametrize("allow_duplicates", ["bad value"])
- def test_reset_index_allow_duplicates_check(self, multiindex_df, allow_duplicates):
- with pytest.raises(ValueError, match="expected type bool"):
- multiindex_df.reset_index(allow_duplicates=allow_duplicates)
- def test_reset_index_datetime(self, tz_naive_fixture):
- # GH#3950
- tz = tz_naive_fixture
- idx1 = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx1")
- idx2 = Index(range(5), name="idx2", dtype="int64")
- idx = MultiIndex.from_arrays([idx1, idx2])
- df = DataFrame(
- {"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
- index=idx,
- )
- expected = DataFrame(
- {
- "idx1": [
- datetime(2011, 1, 1),
- datetime(2011, 1, 2),
- datetime(2011, 1, 3),
- datetime(2011, 1, 4),
- datetime(2011, 1, 5),
- ],
- "idx2": np.arange(5, dtype="int64"),
- "a": np.arange(5, dtype="int64"),
- "b": ["A", "B", "C", "D", "E"],
- },
- columns=["idx1", "idx2", "a", "b"],
- )
- expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
- tm.assert_frame_equal(df.reset_index(), expected)
- idx3 = date_range(
- "1/1/2012", periods=5, freq="MS", tz="Europe/Paris", name="idx3"
- )
- idx = MultiIndex.from_arrays([idx1, idx2, idx3])
- df = DataFrame(
- {"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
- index=idx,
- )
- expected = DataFrame(
- {
- "idx1": [
- datetime(2011, 1, 1),
- datetime(2011, 1, 2),
- datetime(2011, 1, 3),
- datetime(2011, 1, 4),
- datetime(2011, 1, 5),
- ],
- "idx2": np.arange(5, dtype="int64"),
- "idx3": [
- datetime(2012, 1, 1),
- datetime(2012, 2, 1),
- datetime(2012, 3, 1),
- datetime(2012, 4, 1),
- datetime(2012, 5, 1),
- ],
- "a": np.arange(5, dtype="int64"),
- "b": ["A", "B", "C", "D", "E"],
- },
- columns=["idx1", "idx2", "idx3", "a", "b"],
- )
- expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
- expected["idx3"] = expected["idx3"].apply(
- lambda d: Timestamp(d, tz="Europe/Paris")
- )
- tm.assert_frame_equal(df.reset_index(), expected)
- # GH#7793
- idx = MultiIndex.from_product(
- [["a", "b"], date_range("20130101", periods=3, tz=tz)]
- )
- df = DataFrame(
- np.arange(6, dtype="int64").reshape(6, 1), columns=["a"], index=idx
- )
- expected = DataFrame(
- {
- "level_0": "a a a b b b".split(),
- "level_1": [
- datetime(2013, 1, 1),
- datetime(2013, 1, 2),
- datetime(2013, 1, 3),
- ]
- * 2,
- "a": np.arange(6, dtype="int64"),
- },
- columns=["level_0", "level_1", "a"],
- )
- expected["level_1"] = expected["level_1"].apply(lambda d: Timestamp(d, tz=tz))
- result = df.reset_index()
- tm.assert_frame_equal(result, expected)
- def test_reset_index_period(self):
- # GH#7746
- idx = MultiIndex.from_product(
- [pd.period_range("20130101", periods=3, freq="M"), list("abc")],
- names=["month", "feature"],
- )
- df = DataFrame(
- np.arange(9, dtype="int64").reshape(-1, 1), index=idx, columns=["a"]
- )
- expected = DataFrame(
- {
- "month": (
- [pd.Period("2013-01", freq="M")] * 3
- + [pd.Period("2013-02", freq="M")] * 3
- + [pd.Period("2013-03", freq="M")] * 3
- ),
- "feature": ["a", "b", "c"] * 3,
- "a": np.arange(9, dtype="int64"),
- },
- columns=["month", "feature", "a"],
- )
- result = df.reset_index()
- tm.assert_frame_equal(result, expected)
- def test_reset_index_delevel_infer_dtype(self):
- tuples = list(product(["foo", "bar"], [10, 20], [1.0, 1.1]))
- index = MultiIndex.from_tuples(tuples, names=["prm0", "prm1", "prm2"])
- df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"], index=index)
- deleveled = df.reset_index()
- assert is_integer_dtype(deleveled["prm1"])
- assert is_float_dtype(deleveled["prm2"])
- def test_reset_index_with_drop(
- self, multiindex_year_month_day_dataframe_random_data
- ):
- ymd = multiindex_year_month_day_dataframe_random_data
- deleveled = ymd.reset_index(drop=True)
- assert len(deleveled.columns) == len(ymd.columns)
- assert deleveled.index.name == ymd.index.name
- @pytest.mark.parametrize(
- "ix_data, exp_data",
- [
- (
- [(pd.NaT, 1), (pd.NaT, 2)],
- {"a": [pd.NaT, pd.NaT], "b": [1, 2], "x": [11, 12]},
- ),
- (
- [(pd.NaT, 1), (Timestamp("2020-01-01"), 2)],
- {"a": [pd.NaT, Timestamp("2020-01-01")], "b": [1, 2], "x": [11, 12]},
- ),
- (
- [(pd.NaT, 1), (pd.Timedelta(123, "d"), 2)],
- {"a": [pd.NaT, pd.Timedelta(123, "d")], "b": [1, 2], "x": [11, 12]},
- ),
- ],
- )
- def test_reset_index_nat_multiindex(self, ix_data, exp_data):
- # GH#36541: that reset_index() does not raise ValueError
- ix = MultiIndex.from_tuples(ix_data, names=["a", "b"])
- result = DataFrame({"x": [11, 12]}, index=ix)
- result = result.reset_index()
- expected = DataFrame(exp_data)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "codes", ([[0, 0, 1, 1], [0, 1, 0, 1]], [[0, 0, -1, 1], [0, 1, 0, 1]])
- )
- def test_rest_index_multiindex_categorical_with_missing_values(self, codes):
- # GH#24206
- index = MultiIndex(
- [CategoricalIndex(["A", "B"]), CategoricalIndex(["a", "b"])], codes
- )
- data = {"col": range(len(index))}
- df = DataFrame(data=data, index=index)
- expected = DataFrame(
- {
- "level_0": Categorical.from_codes(codes[0], categories=["A", "B"]),
- "level_1": Categorical.from_codes(codes[1], categories=["a", "b"]),
- "col": range(4),
- }
- )
- res = df.reset_index()
- tm.assert_frame_equal(res, expected)
- # roundtrip
- res = expected.set_index(["level_0", "level_1"]).reset_index()
- tm.assert_frame_equal(res, expected)
- @pytest.mark.parametrize(
- "array, dtype",
- [
- (["a", "b"], object),
- (
- pd.period_range("12-1-2000", periods=2, freq="Q-DEC"),
- pd.PeriodDtype(freq="Q-DEC"),
- ),
- ],
- )
- def test_reset_index_dtypes_on_empty_frame_with_multiindex(array, dtype):
- # GH 19602 - Preserve dtype on empty DataFrame with MultiIndex
- idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], array])
- result = DataFrame(index=idx)[:0].reset_index().dtypes
- expected = Series({"level_0": np.int64, "level_1": np.float64, "level_2": dtype})
- tm.assert_series_equal(result, expected)
- def test_reset_index_empty_frame_with_datetime64_multiindex():
- # https://github.com/pandas-dev/pandas/issues/35606
- idx = MultiIndex(
- levels=[[Timestamp("2020-07-20 00:00:00")], [3, 4]],
- codes=[[], []],
- names=["a", "b"],
- )
- df = DataFrame(index=idx, columns=["c", "d"])
- result = df.reset_index()
- expected = DataFrame(
- columns=list("abcd"), index=RangeIndex(start=0, stop=0, step=1)
- )
- expected["a"] = expected["a"].astype("datetime64[ns]")
- expected["b"] = expected["b"].astype("int64")
- tm.assert_frame_equal(result, expected)
- def test_reset_index_empty_frame_with_datetime64_multiindex_from_groupby():
- # https://github.com/pandas-dev/pandas/issues/35657
- df = DataFrame({"c1": [10.0], "c2": ["a"], "c3": pd.to_datetime("2020-01-01")})
- df = df.head(0).groupby(["c2", "c3"])[["c1"]].sum()
- result = df.reset_index()
- expected = DataFrame(
- columns=["c2", "c3", "c1"], index=RangeIndex(start=0, stop=0, step=1)
- )
- expected["c3"] = expected["c3"].astype("datetime64[ns]")
- expected["c1"] = expected["c1"].astype("float64")
- tm.assert_frame_equal(result, expected)
- def test_reset_index_multiindex_nat():
- # GH 11479
- idx = range(3)
- tstamp = date_range("2015-07-01", freq="D", periods=3)
- df = DataFrame({"id": idx, "tstamp": tstamp, "a": list("abc")})
- df.loc[2, "tstamp"] = pd.NaT
- result = df.set_index(["id", "tstamp"]).reset_index("id")
- expected = DataFrame(
- {"id": range(3), "a": list("abc")},
- index=pd.DatetimeIndex(["2015-07-01", "2015-07-02", "NaT"], name="tstamp"),
- )
- tm.assert_frame_equal(result, expected)
- def test_reset_index_interval_columns_object_cast():
- # GH 19136
- df = DataFrame(
- np.eye(2), index=Index([1, 2], name="Year"), columns=cut([1, 2], [0, 1, 2])
- )
- result = df.reset_index()
- expected = DataFrame(
- [[1, 1.0, 0.0], [2, 0.0, 1.0]],
- columns=Index(["Year", Interval(0, 1), Interval(1, 2)]),
- )
- tm.assert_frame_equal(result, expected)
- def test_reset_index_rename(float_frame):
- # GH 6878
- result = float_frame.reset_index(names="new_name")
- expected = Series(float_frame.index.values, name="new_name")
- tm.assert_series_equal(result["new_name"], expected)
- result = float_frame.reset_index(names=123)
- expected = Series(float_frame.index.values, name=123)
- tm.assert_series_equal(result[123], expected)
- def test_reset_index_rename_multiindex(float_frame):
- # GH 6878
- stacked_df = float_frame.stack()[::2]
- stacked_df = DataFrame({"foo": stacked_df, "bar": stacked_df})
- names = ["first", "second"]
- stacked_df.index.names = names
- result = stacked_df.reset_index()
- expected = stacked_df.reset_index(names=["new_first", "new_second"])
- tm.assert_series_equal(result["first"], expected["new_first"], check_names=False)
- tm.assert_series_equal(result["second"], expected["new_second"], check_names=False)
- def test_errorreset_index_rename(float_frame):
- # GH 6878
- stacked_df = float_frame.stack()[::2]
- stacked_df = DataFrame({"first": stacked_df, "second": stacked_df})
- with pytest.raises(
- ValueError, match="Index names must be str or 1-dimensional list"
- ):
- stacked_df.reset_index(names={"first": "new_first", "second": "new_second"})
- with pytest.raises(IndexError, match="list index out of range"):
- stacked_df.reset_index(names=["new_first"])
|