12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256 |
- from datetime import (
- datetime,
- timedelta,
- )
- import inspect
- import numpy as np
- import pytest
- from pandas._libs.tslibs.timezones import dateutil_gettz as gettz
- import pandas.util._test_decorators as td
- import pandas as pd
- from pandas import (
- Categorical,
- CategoricalIndex,
- DataFrame,
- Index,
- MultiIndex,
- Series,
- date_range,
- isna,
- )
- import pandas._testing as tm
- from pandas.api.types import CategoricalDtype as CDT
- import pandas.core.common as com
- class TestReindexSetIndex:
- # Tests that check both reindex and set_index
- def test_dti_set_index_reindex_datetimeindex(self):
- # GH#6631
- df = DataFrame(np.random.random(6))
- idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern")
- idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo")
- df = df.set_index(idx1)
- tm.assert_index_equal(df.index, idx1)
- df = df.reindex(idx2)
- tm.assert_index_equal(df.index, idx2)
- def test_dti_set_index_reindex_freq_with_tz(self):
- # GH#11314 with tz
- index = date_range(
- datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern"
- )
- df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index)
- new_index = date_range(
- datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern"
- )
- result = df.set_index(new_index)
- assert result.index.freq == index.freq
- def test_set_reset_index_intervalindex(self):
- df = DataFrame({"A": range(10)})
- ser = pd.cut(df.A, 5)
- df["B"] = ser
- df = df.set_index("B")
- df = df.reset_index()
- def test_setitem_reset_index_dtypes(self):
- # GH 22060
- df = DataFrame(columns=["a", "b", "c"]).astype(
- {"a": "datetime64[ns]", "b": np.int64, "c": np.float64}
- )
- df1 = df.set_index(["a"])
- df1["d"] = []
- result = df1.reset_index()
- expected = DataFrame(columns=["a", "b", "c", "d"], index=range(0)).astype(
- {"a": "datetime64[ns]", "b": np.int64, "c": np.float64, "d": np.float64}
- )
- tm.assert_frame_equal(result, expected)
- df2 = df.set_index(["a", "b"])
- df2["d"] = []
- result = df2.reset_index()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "timezone, year, month, day, hour",
- [["America/Chicago", 2013, 11, 3, 1], ["America/Santiago", 2021, 4, 3, 23]],
- )
- def test_reindex_timestamp_with_fold(self, timezone, year, month, day, hour):
- # see gh-40817
- test_timezone = gettz(timezone)
- transition_1 = pd.Timestamp(
- year=year,
- month=month,
- day=day,
- hour=hour,
- minute=0,
- fold=0,
- tzinfo=test_timezone,
- )
- transition_2 = pd.Timestamp(
- year=year,
- month=month,
- day=day,
- hour=hour,
- minute=0,
- fold=1,
- tzinfo=test_timezone,
- )
- df = (
- DataFrame({"index": [transition_1, transition_2], "vals": ["a", "b"]})
- .set_index("index")
- .reindex(["1", "2"])
- )
- tm.assert_frame_equal(
- df,
- DataFrame({"index": ["1", "2"], "vals": [None, None]}).set_index("index"),
- )
- class TestDataFrameSelectReindex:
- # These are specific reindex-based tests; other indexing tests should go in
- # test_indexing
- def test_reindex_copies(self):
- # based on asv time_reindex_axis1
- N = 10
- df = DataFrame(np.random.randn(N * 10, N))
- cols = np.arange(N)
- np.random.shuffle(cols)
- result = df.reindex(columns=cols, copy=True)
- assert not np.shares_memory(result[0]._values, df[0]._values)
- # pass both columns and index
- result2 = df.reindex(columns=cols, index=df.index, copy=True)
- assert not np.shares_memory(result2[0]._values, df[0]._values)
- def test_reindex_copies_ea(self, using_copy_on_write):
- # https://github.com/pandas-dev/pandas/pull/51197
- # also ensure to honor copy keyword for ExtensionDtypes
- N = 10
- df = DataFrame(np.random.randn(N * 10, N), dtype="Float64")
- cols = np.arange(N)
- np.random.shuffle(cols)
- result = df.reindex(columns=cols, copy=True)
- if using_copy_on_write:
- assert np.shares_memory(result[0].array._data, df[0].array._data)
- else:
- assert not np.shares_memory(result[0].array._data, df[0].array._data)
- # pass both columns and index
- result2 = df.reindex(columns=cols, index=df.index, copy=True)
- if using_copy_on_write:
- assert np.shares_memory(result2[0].array._data, df[0].array._data)
- else:
- assert not np.shares_memory(result2[0].array._data, df[0].array._data)
- @td.skip_array_manager_not_yet_implemented
- def test_reindex_date_fill_value(self):
- # passing date to dt64 is deprecated; enforced in 2.0 to cast to object
- arr = date_range("2016-01-01", periods=6).values.reshape(3, 2)
- df = DataFrame(arr, columns=["A", "B"], index=range(3))
- ts = df.iloc[0, 0]
- fv = ts.date()
- res = df.reindex(index=range(4), columns=["A", "B", "C"], fill_value=fv)
- expected = DataFrame(
- {"A": df["A"].tolist() + [fv], "B": df["B"].tolist() + [fv], "C": [fv] * 4},
- dtype=object,
- )
- tm.assert_frame_equal(res, expected)
- # only reindexing rows
- res = df.reindex(index=range(4), fill_value=fv)
- tm.assert_frame_equal(res, expected[["A", "B"]])
- # same with a datetime-castable str
- res = df.reindex(
- index=range(4), columns=["A", "B", "C"], fill_value="2016-01-01"
- )
- expected = DataFrame(
- {"A": df["A"].tolist() + [ts], "B": df["B"].tolist() + [ts], "C": [ts] * 4},
- )
- tm.assert_frame_equal(res, expected)
- def test_reindex_with_multi_index(self):
- # https://github.com/pandas-dev/pandas/issues/29896
- # tests for reindexing a multi-indexed DataFrame with a new MultiIndex
- #
- # confirms that we can reindex a multi-indexed DataFrame with a new
- # MultiIndex object correctly when using no filling, backfilling, and
- # padding
- #
- # The DataFrame, `df`, used in this test is:
- # c
- # a b
- # -1 0 A
- # 1 B
- # 2 C
- # 3 D
- # 4 E
- # 5 F
- # 6 G
- # 0 0 A
- # 1 B
- # 2 C
- # 3 D
- # 4 E
- # 5 F
- # 6 G
- # 1 0 A
- # 1 B
- # 2 C
- # 3 D
- # 4 E
- # 5 F
- # 6 G
- #
- # and the other MultiIndex, `new_multi_index`, is:
- # 0: 0 0.5
- # 1: 2.0
- # 2: 5.0
- # 3: 5.8
- df = DataFrame(
- {
- "a": [-1] * 7 + [0] * 7 + [1] * 7,
- "b": list(range(7)) * 3,
- "c": ["A", "B", "C", "D", "E", "F", "G"] * 3,
- }
- ).set_index(["a", "b"])
- new_index = [0.5, 2.0, 5.0, 5.8]
- new_multi_index = MultiIndex.from_product([[0], new_index], names=["a", "b"])
- # reindexing w/o a `method` value
- reindexed = df.reindex(new_multi_index)
- expected = DataFrame(
- {"a": [0] * 4, "b": new_index, "c": [np.nan, "C", "F", np.nan]}
- ).set_index(["a", "b"])
- tm.assert_frame_equal(expected, reindexed)
- # reindexing with backfilling
- expected = DataFrame(
- {"a": [0] * 4, "b": new_index, "c": ["B", "C", "F", "G"]}
- ).set_index(["a", "b"])
- reindexed_with_backfilling = df.reindex(new_multi_index, method="bfill")
- tm.assert_frame_equal(expected, reindexed_with_backfilling)
- reindexed_with_backfilling = df.reindex(new_multi_index, method="backfill")
- tm.assert_frame_equal(expected, reindexed_with_backfilling)
- # reindexing with padding
- expected = DataFrame(
- {"a": [0] * 4, "b": new_index, "c": ["A", "C", "F", "F"]}
- ).set_index(["a", "b"])
- reindexed_with_padding = df.reindex(new_multi_index, method="pad")
- tm.assert_frame_equal(expected, reindexed_with_padding)
- reindexed_with_padding = df.reindex(new_multi_index, method="ffill")
- tm.assert_frame_equal(expected, reindexed_with_padding)
- @pytest.mark.parametrize(
- "method,expected_values",
- [
- ("nearest", [0, 1, 1, 2]),
- ("pad", [np.nan, 0, 1, 1]),
- ("backfill", [0, 1, 2, 2]),
- ],
- )
- def test_reindex_methods(self, method, expected_values):
- df = DataFrame({"x": list(range(5))})
- target = np.array([-0.1, 0.9, 1.1, 1.5])
- expected = DataFrame({"x": expected_values}, index=target)
- actual = df.reindex(target, method=method)
- tm.assert_frame_equal(expected, actual)
- actual = df.reindex(target, method=method, tolerance=1)
- tm.assert_frame_equal(expected, actual)
- actual = df.reindex(target, method=method, tolerance=[1, 1, 1, 1])
- tm.assert_frame_equal(expected, actual)
- e2 = expected[::-1]
- actual = df.reindex(target[::-1], method=method)
- tm.assert_frame_equal(e2, actual)
- new_order = [3, 0, 2, 1]
- e2 = expected.iloc[new_order]
- actual = df.reindex(target[new_order], method=method)
- tm.assert_frame_equal(e2, actual)
- switched_method = (
- "pad" if method == "backfill" else "backfill" if method == "pad" else method
- )
- actual = df[::-1].reindex(target, method=switched_method)
- tm.assert_frame_equal(expected, actual)
- def test_reindex_methods_nearest_special(self):
- df = DataFrame({"x": list(range(5))})
- target = np.array([-0.1, 0.9, 1.1, 1.5])
- expected = DataFrame({"x": [0, 1, 1, np.nan]}, index=target)
- actual = df.reindex(target, method="nearest", tolerance=0.2)
- tm.assert_frame_equal(expected, actual)
- expected = DataFrame({"x": [0, np.nan, 1, np.nan]}, index=target)
- actual = df.reindex(target, method="nearest", tolerance=[0.5, 0.01, 0.4, 0.1])
- tm.assert_frame_equal(expected, actual)
- def test_reindex_nearest_tz(self, tz_aware_fixture):
- # GH26683
- tz = tz_aware_fixture
- idx = date_range("2019-01-01", periods=5, tz=tz)
- df = DataFrame({"x": list(range(5))}, index=idx)
- expected = df.head(3)
- actual = df.reindex(idx[:3], method="nearest")
- tm.assert_frame_equal(expected, actual)
- def test_reindex_nearest_tz_empty_frame(self):
- # https://github.com/pandas-dev/pandas/issues/31964
- dti = pd.DatetimeIndex(["2016-06-26 14:27:26+00:00"])
- df = DataFrame(index=pd.DatetimeIndex(["2016-07-04 14:00:59+00:00"]))
- expected = DataFrame(index=dti)
- result = df.reindex(dti, method="nearest")
- tm.assert_frame_equal(result, expected)
- def test_reindex_frame_add_nat(self):
- rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s")
- df = DataFrame({"A": np.random.randn(len(rng)), "B": rng})
- result = df.reindex(range(15))
- assert np.issubdtype(result["B"].dtype, np.dtype("M8[ns]"))
- mask = com.isna(result)["B"]
- assert mask[-5:].all()
- assert not mask[:-5].any()
- @pytest.mark.parametrize(
- "method, exp_values",
- [("ffill", [0, 1, 2, 3]), ("bfill", [1.0, 2.0, 3.0, np.nan])],
- )
- def test_reindex_frame_tz_ffill_bfill(self, frame_or_series, method, exp_values):
- # GH#38566
- obj = frame_or_series(
- [0, 1, 2, 3],
- index=date_range("2020-01-01 00:00:00", periods=4, freq="H", tz="UTC"),
- )
- new_index = date_range("2020-01-01 00:01:00", periods=4, freq="H", tz="UTC")
- result = obj.reindex(new_index, method=method, tolerance=pd.Timedelta("1 hour"))
- expected = frame_or_series(exp_values, index=new_index)
- tm.assert_equal(result, expected)
- def test_reindex_limit(self):
- # GH 28631
- data = [["A", "A", "A"], ["B", "B", "B"], ["C", "C", "C"], ["D", "D", "D"]]
- exp_data = [
- ["A", "A", "A"],
- ["B", "B", "B"],
- ["C", "C", "C"],
- ["D", "D", "D"],
- ["D", "D", "D"],
- [np.nan, np.nan, np.nan],
- ]
- df = DataFrame(data)
- result = df.reindex([0, 1, 2, 3, 4, 5], method="ffill", limit=1)
- expected = DataFrame(exp_data)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "idx, check_index_type",
- [
- [["C", "B", "A"], True],
- [["F", "C", "A", "D"], True],
- [["A"], True],
- [["A", "B", "C"], True],
- [["C", "A", "B"], True],
- [["C", "B"], True],
- [["C", "A"], True],
- [["A", "B"], True],
- [["B", "A", "C"], True],
- # reindex by these causes different MultiIndex levels
- [["D", "F"], False],
- [["A", "C", "B"], False],
- ],
- )
- def test_reindex_level_verify_first_level(self, idx, check_index_type):
- df = DataFrame(
- {
- "jim": list("B" * 4 + "A" * 2 + "C" * 3),
- "joe": list("abcdeabcd")[::-1],
- "jolie": [10, 20, 30] * 3,
- "joline": np.random.randint(0, 1000, 9),
- }
- )
- icol = ["jim", "joe", "jolie"]
- def f(val):
- return np.nonzero((df["jim"] == val).to_numpy())[0]
- i = np.concatenate(list(map(f, idx)))
- left = df.set_index(icol).reindex(idx, level="jim")
- right = df.iloc[i].set_index(icol)
- tm.assert_frame_equal(left, right, check_index_type=check_index_type)
- @pytest.mark.parametrize(
- "idx",
- [
- ("mid",),
- ("mid", "btm"),
- ("mid", "btm", "top"),
- ("mid",),
- ("mid", "top"),
- ("mid", "top", "btm"),
- ("btm",),
- ("btm", "mid"),
- ("btm", "mid", "top"),
- ("btm",),
- ("btm", "top"),
- ("btm", "top", "mid"),
- ("top",),
- ("top", "mid"),
- ("top", "mid", "btm"),
- ("top",),
- ("top", "btm"),
- ("top", "btm", "mid"),
- ],
- )
- def test_reindex_level_verify_first_level_repeats(self, idx):
- df = DataFrame(
- {
- "jim": ["mid"] * 5 + ["btm"] * 8 + ["top"] * 7,
- "joe": ["3rd"] * 2
- + ["1st"] * 3
- + ["2nd"] * 3
- + ["1st"] * 2
- + ["3rd"] * 3
- + ["1st"] * 2
- + ["3rd"] * 3
- + ["2nd"] * 2,
- # this needs to be jointly unique with jim and joe or
- # reindexing will fail ~1.5% of the time, this works
- # out to needing unique groups of same size as joe
- "jolie": np.concatenate(
- [
- np.random.choice(1000, x, replace=False)
- for x in [2, 3, 3, 2, 3, 2, 3, 2]
- ]
- ),
- "joline": np.random.randn(20).round(3) * 10,
- }
- )
- icol = ["jim", "joe", "jolie"]
- def f(val):
- return np.nonzero((df["jim"] == val).to_numpy())[0]
- i = np.concatenate(list(map(f, idx)))
- left = df.set_index(icol).reindex(idx, level="jim")
- right = df.iloc[i].set_index(icol)
- tm.assert_frame_equal(left, right)
- @pytest.mark.parametrize(
- "idx, indexer",
- [
- [
- ["1st", "2nd", "3rd"],
- [2, 3, 4, 0, 1, 8, 9, 5, 6, 7, 10, 11, 12, 13, 14, 18, 19, 15, 16, 17],
- ],
- [
- ["3rd", "2nd", "1st"],
- [0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 13, 14],
- ],
- [["2nd", "3rd"], [0, 1, 5, 6, 7, 10, 11, 12, 18, 19, 15, 16, 17]],
- [["3rd", "1st"], [0, 1, 2, 3, 4, 10, 11, 12, 8, 9, 15, 16, 17, 13, 14]],
- ],
- )
- def test_reindex_level_verify_repeats(self, idx, indexer):
- df = DataFrame(
- {
- "jim": ["mid"] * 5 + ["btm"] * 8 + ["top"] * 7,
- "joe": ["3rd"] * 2
- + ["1st"] * 3
- + ["2nd"] * 3
- + ["1st"] * 2
- + ["3rd"] * 3
- + ["1st"] * 2
- + ["3rd"] * 3
- + ["2nd"] * 2,
- # this needs to be jointly unique with jim and joe or
- # reindexing will fail ~1.5% of the time, this works
- # out to needing unique groups of same size as joe
- "jolie": np.concatenate(
- [
- np.random.choice(1000, x, replace=False)
- for x in [2, 3, 3, 2, 3, 2, 3, 2]
- ]
- ),
- "joline": np.random.randn(20).round(3) * 10,
- }
- )
- icol = ["jim", "joe", "jolie"]
- left = df.set_index(icol).reindex(idx, level="joe")
- right = df.iloc[indexer].set_index(icol)
- tm.assert_frame_equal(left, right)
- @pytest.mark.parametrize(
- "idx, indexer, check_index_type",
- [
- [list("abcde"), [3, 2, 1, 0, 5, 4, 8, 7, 6], True],
- [list("abcd"), [3, 2, 1, 0, 5, 8, 7, 6], True],
- [list("abc"), [3, 2, 1, 8, 7, 6], True],
- [list("eca"), [1, 3, 4, 6, 8], True],
- [list("edc"), [0, 1, 4, 5, 6], True],
- [list("eadbc"), [3, 0, 2, 1, 4, 5, 8, 7, 6], True],
- [list("edwq"), [0, 4, 5], True],
- [list("wq"), [], False],
- ],
- )
- def test_reindex_level_verify(self, idx, indexer, check_index_type):
- df = DataFrame(
- {
- "jim": list("B" * 4 + "A" * 2 + "C" * 3),
- "joe": list("abcdeabcd")[::-1],
- "jolie": [10, 20, 30] * 3,
- "joline": np.random.randint(0, 1000, 9),
- }
- )
- icol = ["jim", "joe", "jolie"]
- left = df.set_index(icol).reindex(idx, level="joe")
- right = df.iloc[indexer].set_index(icol)
- tm.assert_frame_equal(left, right, check_index_type=check_index_type)
- def test_non_monotonic_reindex_methods(self):
- dr = date_range("2013-08-01", periods=6, freq="B")
- data = np.random.randn(6, 1)
- df = DataFrame(data, index=dr, columns=list("A"))
- df_rev = DataFrame(data, index=dr[[3, 4, 5] + [0, 1, 2]], columns=list("A"))
- # index is not monotonic increasing or decreasing
- msg = "index must be monotonic increasing or decreasing"
- with pytest.raises(ValueError, match=msg):
- df_rev.reindex(df.index, method="pad")
- with pytest.raises(ValueError, match=msg):
- df_rev.reindex(df.index, method="ffill")
- with pytest.raises(ValueError, match=msg):
- df_rev.reindex(df.index, method="bfill")
- with pytest.raises(ValueError, match=msg):
- df_rev.reindex(df.index, method="nearest")
- def test_reindex_sparse(self):
- # https://github.com/pandas-dev/pandas/issues/35286
- df = DataFrame(
- {"A": [0, 1], "B": pd.array([0, 1], dtype=pd.SparseDtype("int64", 0))}
- )
- result = df.reindex([0, 2])
- expected = DataFrame(
- {
- "A": [0.0, np.nan],
- "B": pd.array([0.0, np.nan], dtype=pd.SparseDtype("float64", 0.0)),
- },
- index=[0, 2],
- )
- tm.assert_frame_equal(result, expected)
- def test_reindex(self, float_frame):
- datetime_series = tm.makeTimeSeries(nper=30)
- newFrame = float_frame.reindex(datetime_series.index)
- for col in newFrame.columns:
- for idx, val in newFrame[col].items():
- if idx in float_frame.index:
- if np.isnan(val):
- assert np.isnan(float_frame[col][idx])
- else:
- assert val == float_frame[col][idx]
- else:
- assert np.isnan(val)
- for col, series in newFrame.items():
- assert tm.equalContents(series.index, newFrame.index)
- emptyFrame = float_frame.reindex(Index([]))
- assert len(emptyFrame.index) == 0
- # Cython code should be unit-tested directly
- nonContigFrame = float_frame.reindex(datetime_series.index[::2])
- for col in nonContigFrame.columns:
- for idx, val in nonContigFrame[col].items():
- if idx in float_frame.index:
- if np.isnan(val):
- assert np.isnan(float_frame[col][idx])
- else:
- assert val == float_frame[col][idx]
- else:
- assert np.isnan(val)
- for col, series in nonContigFrame.items():
- assert tm.equalContents(series.index, nonContigFrame.index)
- # corner cases
- # Same index, copies values but not index if copy=False
- newFrame = float_frame.reindex(float_frame.index, copy=False)
- assert newFrame.index is float_frame.index
- # length zero
- newFrame = float_frame.reindex([])
- assert newFrame.empty
- assert len(newFrame.columns) == len(float_frame.columns)
- # length zero with columns reindexed with non-empty index
- newFrame = float_frame.reindex([])
- newFrame = newFrame.reindex(float_frame.index)
- assert len(newFrame.index) == len(float_frame.index)
- assert len(newFrame.columns) == len(float_frame.columns)
- # pass non-Index
- newFrame = float_frame.reindex(list(datetime_series.index))
- expected = datetime_series.index._with_freq(None)
- tm.assert_index_equal(newFrame.index, expected)
- # copy with no axes
- result = float_frame.reindex()
- tm.assert_frame_equal(result, float_frame)
- assert result is not float_frame
- def test_reindex_nan(self):
- df = DataFrame(
- [[1, 2], [3, 5], [7, 11], [9, 23]],
- index=[2, np.nan, 1, 5],
- columns=["joe", "jim"],
- )
- i, j = [np.nan, 5, 5, np.nan, 1, 2, np.nan], [1, 3, 3, 1, 2, 0, 1]
- tm.assert_frame_equal(df.reindex(i), df.iloc[j])
- df.index = df.index.astype("object")
- tm.assert_frame_equal(df.reindex(i), df.iloc[j], check_index_type=False)
- # GH10388
- df = DataFrame(
- {
- "other": ["a", "b", np.nan, "c"],
- "date": ["2015-03-22", np.nan, "2012-01-08", np.nan],
- "amount": [2, 3, 4, 5],
- }
- )
- df["date"] = pd.to_datetime(df.date)
- df["delta"] = (pd.to_datetime("2015-06-18") - df["date"]).shift(1)
- left = df.set_index(["delta", "other", "date"]).reset_index()
- right = df.reindex(columns=["delta", "other", "date", "amount"])
- tm.assert_frame_equal(left, right)
- def test_reindex_name_remains(self):
- s = Series(np.random.rand(10))
- df = DataFrame(s, index=np.arange(len(s)))
- i = Series(np.arange(10), name="iname")
- df = df.reindex(i)
- assert df.index.name == "iname"
- df = df.reindex(Index(np.arange(10), name="tmpname"))
- assert df.index.name == "tmpname"
- s = Series(np.random.rand(10))
- df = DataFrame(s.T, index=np.arange(len(s)))
- i = Series(np.arange(10), name="iname")
- df = df.reindex(columns=i)
- assert df.columns.name == "iname"
- def test_reindex_int(self, int_frame):
- smaller = int_frame.reindex(int_frame.index[::2])
- assert smaller["A"].dtype == np.int64
- bigger = smaller.reindex(int_frame.index)
- assert bigger["A"].dtype == np.float64
- smaller = int_frame.reindex(columns=["A", "B"])
- assert smaller["A"].dtype == np.int64
- def test_reindex_columns(self, float_frame):
- new_frame = float_frame.reindex(columns=["A", "B", "E"])
- tm.assert_series_equal(new_frame["B"], float_frame["B"])
- assert np.isnan(new_frame["E"]).all()
- assert "C" not in new_frame
- # Length zero
- new_frame = float_frame.reindex(columns=[])
- assert new_frame.empty
- def test_reindex_columns_method(self):
- # GH 14992, reindexing over columns ignored method
- df = DataFrame(
- data=[[11, 12, 13], [21, 22, 23], [31, 32, 33]],
- index=[1, 2, 4],
- columns=[1, 2, 4],
- dtype=float,
- )
- # default method
- result = df.reindex(columns=range(6))
- expected = DataFrame(
- data=[
- [np.nan, 11, 12, np.nan, 13, np.nan],
- [np.nan, 21, 22, np.nan, 23, np.nan],
- [np.nan, 31, 32, np.nan, 33, np.nan],
- ],
- index=[1, 2, 4],
- columns=range(6),
- dtype=float,
- )
- tm.assert_frame_equal(result, expected)
- # method='ffill'
- result = df.reindex(columns=range(6), method="ffill")
- expected = DataFrame(
- data=[
- [np.nan, 11, 12, 12, 13, 13],
- [np.nan, 21, 22, 22, 23, 23],
- [np.nan, 31, 32, 32, 33, 33],
- ],
- index=[1, 2, 4],
- columns=range(6),
- dtype=float,
- )
- tm.assert_frame_equal(result, expected)
- # method='bfill'
- result = df.reindex(columns=range(6), method="bfill")
- expected = DataFrame(
- data=[
- [11, 11, 12, 13, 13, np.nan],
- [21, 21, 22, 23, 23, np.nan],
- [31, 31, 32, 33, 33, np.nan],
- ],
- index=[1, 2, 4],
- columns=range(6),
- dtype=float,
- )
- tm.assert_frame_equal(result, expected)
- def test_reindex_axes(self):
- # GH 3317, reindexing by both axes loses freq of the index
- df = DataFrame(
- np.ones((3, 3)),
- index=[datetime(2012, 1, 1), datetime(2012, 1, 2), datetime(2012, 1, 3)],
- columns=["a", "b", "c"],
- )
- time_freq = date_range("2012-01-01", "2012-01-03", freq="d")
- some_cols = ["a", "b"]
- index_freq = df.reindex(index=time_freq).index.freq
- both_freq = df.reindex(index=time_freq, columns=some_cols).index.freq
- seq_freq = df.reindex(index=time_freq).reindex(columns=some_cols).index.freq
- assert index_freq == both_freq
- assert index_freq == seq_freq
- def test_reindex_fill_value(self):
- df = DataFrame(np.random.randn(10, 4))
- # axis=0
- result = df.reindex(list(range(15)))
- assert np.isnan(result.values[-5:]).all()
- result = df.reindex(range(15), fill_value=0)
- expected = df.reindex(range(15)).fillna(0)
- tm.assert_frame_equal(result, expected)
- # axis=1
- result = df.reindex(columns=range(5), fill_value=0.0)
- expected = df.copy()
- expected[4] = 0.0
- tm.assert_frame_equal(result, expected)
- result = df.reindex(columns=range(5), fill_value=0)
- expected = df.copy()
- expected[4] = 0
- tm.assert_frame_equal(result, expected)
- result = df.reindex(columns=range(5), fill_value="foo")
- expected = df.copy()
- expected[4] = "foo"
- tm.assert_frame_equal(result, expected)
- # other dtypes
- df["foo"] = "foo"
- result = df.reindex(range(15), fill_value=0)
- expected = df.reindex(range(15)).fillna(0)
- tm.assert_frame_equal(result, expected)
- def test_reindex_uint_dtypes_fill_value(self, any_unsigned_int_numpy_dtype):
- # GH#48184
- df = DataFrame({"a": [1, 2], "b": [1, 2]}, dtype=any_unsigned_int_numpy_dtype)
- result = df.reindex(columns=list("abcd"), index=[0, 1, 2, 3], fill_value=10)
- expected = DataFrame(
- {"a": [1, 2, 10, 10], "b": [1, 2, 10, 10], "c": 10, "d": 10},
- dtype=any_unsigned_int_numpy_dtype,
- )
- tm.assert_frame_equal(result, expected)
- def test_reindex_single_column_ea_index_and_columns(self, any_numeric_ea_dtype):
- # GH#48190
- df = DataFrame({"a": [1, 2]}, dtype=any_numeric_ea_dtype)
- result = df.reindex(columns=list("ab"), index=[0, 1, 2], fill_value=10)
- expected = DataFrame(
- {"a": Series([1, 2, 10], dtype=any_numeric_ea_dtype), "b": 10}
- )
- tm.assert_frame_equal(result, expected)
- def test_reindex_dups(self):
- # GH4746, reindex on duplicate index error messages
- arr = np.random.randn(10)
- df = DataFrame(arr, index=[1, 2, 3, 4, 5, 1, 2, 3, 4, 5])
- # set index is ok
- result = df.copy()
- result.index = list(range(len(df)))
- expected = DataFrame(arr, index=list(range(len(df))))
- tm.assert_frame_equal(result, expected)
- # reindex fails
- msg = "cannot reindex on an axis with duplicate labels"
- with pytest.raises(ValueError, match=msg):
- df.reindex(index=list(range(len(df))))
- def test_reindex_with_duplicate_columns(self):
- # reindex is invalid!
- df = DataFrame(
- [[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "a", "a"]
- )
- msg = "cannot reindex on an axis with duplicate labels"
- with pytest.raises(ValueError, match=msg):
- df.reindex(columns=["bar"])
- with pytest.raises(ValueError, match=msg):
- df.reindex(columns=["bar", "foo"])
- def test_reindex_axis_style(self):
- # https://github.com/pandas-dev/pandas/issues/12392
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- expected = DataFrame(
- {"A": [1, 2, np.nan], "B": [4, 5, np.nan]}, index=[0, 1, 3]
- )
- result = df.reindex([0, 1, 3])
- tm.assert_frame_equal(result, expected)
- result = df.reindex([0, 1, 3], axis=0)
- tm.assert_frame_equal(result, expected)
- result = df.reindex([0, 1, 3], axis="index")
- tm.assert_frame_equal(result, expected)
- def test_reindex_positional_raises(self):
- # https://github.com/pandas-dev/pandas/issues/12392
- # Enforced in 2.0
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- msg = r"reindex\(\) takes from 1 to 2 positional arguments but 3 were given"
- with pytest.raises(TypeError, match=msg):
- df.reindex([0, 1], ["A", "B", "C"])
- def test_reindex_axis_style_raises(self):
- # https://github.com/pandas-dev/pandas/issues/12392
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex([0, 1], columns=["A"], axis=1)
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex([0, 1], columns=["A"], axis="index")
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex(index=[0, 1], axis="index")
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex(index=[0, 1], axis="columns")
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex(columns=[0, 1], axis="columns")
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex(index=[0, 1], columns=[0, 1], axis="columns")
- with pytest.raises(TypeError, match="Cannot specify all"):
- df.reindex(labels=[0, 1], index=[0], columns=["A"])
- # Mixing styles
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex(index=[0, 1], axis="index")
- with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
- df.reindex(index=[0, 1], axis="columns")
- # Duplicates
- with pytest.raises(TypeError, match="multiple values"):
- df.reindex([0, 1], labels=[0, 1])
- def test_reindex_single_named_indexer(self):
- # https://github.com/pandas-dev/pandas/issues/12392
- df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]})
- result = df.reindex([0, 1], columns=["A"])
- expected = DataFrame({"A": [1, 2]})
- tm.assert_frame_equal(result, expected)
- def test_reindex_api_equivalence(self):
- # https://github.com/pandas-dev/pandas/issues/12392
- # equivalence of the labels/axis and index/columns API's
- df = DataFrame(
- [[1, 2, 3], [3, 4, 5], [5, 6, 7]],
- index=["a", "b", "c"],
- columns=["d", "e", "f"],
- )
- res1 = df.reindex(["b", "a"])
- res2 = df.reindex(index=["b", "a"])
- res3 = df.reindex(labels=["b", "a"])
- res4 = df.reindex(labels=["b", "a"], axis=0)
- res5 = df.reindex(["b", "a"], axis=0)
- for res in [res2, res3, res4, res5]:
- tm.assert_frame_equal(res1, res)
- res1 = df.reindex(columns=["e", "d"])
- res2 = df.reindex(["e", "d"], axis=1)
- res3 = df.reindex(labels=["e", "d"], axis=1)
- for res in [res2, res3]:
- tm.assert_frame_equal(res1, res)
- res1 = df.reindex(index=["b", "a"], columns=["e", "d"])
- res2 = df.reindex(columns=["e", "d"], index=["b", "a"])
- res3 = df.reindex(labels=["b", "a"], axis=0).reindex(labels=["e", "d"], axis=1)
- for res in [res2, res3]:
- tm.assert_frame_equal(res1, res)
- def test_reindex_boolean(self):
- frame = DataFrame(
- np.ones((10, 2), dtype=bool), index=np.arange(0, 20, 2), columns=[0, 2]
- )
- reindexed = frame.reindex(np.arange(10))
- assert reindexed.values.dtype == np.object_
- assert isna(reindexed[0][1])
- reindexed = frame.reindex(columns=range(3))
- assert reindexed.values.dtype == np.object_
- assert isna(reindexed[1]).all()
- def test_reindex_objects(self, float_string_frame):
- reindexed = float_string_frame.reindex(columns=["foo", "A", "B"])
- assert "foo" in reindexed
- reindexed = float_string_frame.reindex(columns=["A", "B"])
- assert "foo" not in reindexed
- def test_reindex_corner(self, int_frame):
- index = Index(["a", "b", "c"])
- dm = DataFrame({}).reindex(index=[1, 2, 3])
- reindexed = dm.reindex(columns=index)
- tm.assert_index_equal(reindexed.columns, index)
- # ints are weird
- smaller = int_frame.reindex(columns=["A", "B", "E"])
- assert smaller["E"].dtype == np.float64
- def test_reindex_with_nans(self):
- df = DataFrame(
- [[1, 2], [3, 4], [np.nan, np.nan], [7, 8], [9, 10]],
- columns=["a", "b"],
- index=[100.0, 101.0, np.nan, 102.0, 103.0],
- )
- result = df.reindex(index=[101.0, 102.0, 103.0])
- expected = df.iloc[[1, 3, 4]]
- tm.assert_frame_equal(result, expected)
- result = df.reindex(index=[103.0])
- expected = df.iloc[[4]]
- tm.assert_frame_equal(result, expected)
- result = df.reindex(index=[101.0])
- expected = df.iloc[[1]]
- tm.assert_frame_equal(result, expected)
- def test_reindex_multi(self):
- df = DataFrame(np.random.randn(3, 3))
- result = df.reindex(index=range(4), columns=range(4))
- expected = df.reindex(list(range(4))).reindex(columns=range(4))
- tm.assert_frame_equal(result, expected)
- df = DataFrame(np.random.randint(0, 10, (3, 3)))
- result = df.reindex(index=range(4), columns=range(4))
- expected = df.reindex(list(range(4))).reindex(columns=range(4))
- tm.assert_frame_equal(result, expected)
- df = DataFrame(np.random.randint(0, 10, (3, 3)))
- result = df.reindex(index=range(2), columns=range(2))
- expected = df.reindex(range(2)).reindex(columns=range(2))
- tm.assert_frame_equal(result, expected)
- df = DataFrame(np.random.randn(5, 3) + 1j, columns=["a", "b", "c"])
- result = df.reindex(index=[0, 1], columns=["a", "b"])
- expected = df.reindex([0, 1]).reindex(columns=["a", "b"])
- tm.assert_frame_equal(result, expected)
- def test_reindex_multi_categorical_time(self):
- # https://github.com/pandas-dev/pandas/issues/21390
- midx = MultiIndex.from_product(
- [
- Categorical(["a", "b", "c"]),
- Categorical(date_range("2012-01-01", periods=3, freq="H")),
- ]
- )
- df = DataFrame({"a": range(len(midx))}, index=midx)
- df2 = df.iloc[[0, 1, 2, 3, 4, 5, 6, 8]]
- result = df2.reindex(midx)
- expected = DataFrame({"a": [0, 1, 2, 3, 4, 5, 6, np.nan, 8]}, index=midx)
- tm.assert_frame_equal(result, expected)
- def test_reindex_with_categoricalindex(self):
- df = DataFrame(
- {
- "A": np.arange(3, dtype="int64"),
- },
- index=CategoricalIndex(list("abc"), dtype=CDT(list("cabe")), name="B"),
- )
- # reindexing
- # convert to a regular index
- result = df.reindex(["a", "b", "e"])
- expected = DataFrame({"A": [0, 1, np.nan], "B": Series(list("abe"))}).set_index(
- "B"
- )
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(["a", "b"])
- expected = DataFrame({"A": [0, 1], "B": Series(list("ab"))}).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(["e"])
- expected = DataFrame({"A": [np.nan], "B": Series(["e"])}).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(["d"])
- expected = DataFrame({"A": [np.nan], "B": Series(["d"])}).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- # since we are actually reindexing with a Categorical
- # then return a Categorical
- cats = list("cabe")
- result = df.reindex(Categorical(["a", "e"], categories=cats))
- expected = DataFrame(
- {"A": [0, np.nan], "B": Series(list("ae")).astype(CDT(cats))}
- ).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(Categorical(["a"], categories=cats))
- expected = DataFrame(
- {"A": [0], "B": Series(list("a")).astype(CDT(cats))}
- ).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(["a", "b", "e"])
- expected = DataFrame({"A": [0, 1, np.nan], "B": Series(list("abe"))}).set_index(
- "B"
- )
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(["a", "b"])
- expected = DataFrame({"A": [0, 1], "B": Series(list("ab"))}).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(["e"])
- expected = DataFrame({"A": [np.nan], "B": Series(["e"])}).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- # give back the type of categorical that we received
- result = df.reindex(Categorical(["a", "e"], categories=cats, ordered=True))
- expected = DataFrame(
- {"A": [0, np.nan], "B": Series(list("ae")).astype(CDT(cats, ordered=True))}
- ).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- result = df.reindex(Categorical(["a", "d"], categories=["a", "d"]))
- expected = DataFrame(
- {"A": [0, np.nan], "B": Series(list("ad")).astype(CDT(["a", "d"]))}
- ).set_index("B")
- tm.assert_frame_equal(result, expected, check_index_type=True)
- df2 = DataFrame(
- {
- "A": np.arange(6, dtype="int64"),
- },
- index=CategoricalIndex(list("aabbca"), dtype=CDT(list("cabe")), name="B"),
- )
- # passed duplicate indexers are not allowed
- msg = "cannot reindex on an axis with duplicate labels"
- with pytest.raises(ValueError, match=msg):
- df2.reindex(["a", "b"])
- # args NotImplemented ATM
- msg = r"argument {} is not implemented for CategoricalIndex\.reindex"
- with pytest.raises(NotImplementedError, match=msg.format("method")):
- df.reindex(["a"], method="ffill")
- with pytest.raises(NotImplementedError, match=msg.format("level")):
- df.reindex(["a"], level=1)
- with pytest.raises(NotImplementedError, match=msg.format("limit")):
- df.reindex(["a"], limit=2)
- def test_reindex_signature(self):
- sig = inspect.signature(DataFrame.reindex)
- parameters = set(sig.parameters)
- assert parameters == {
- "self",
- "labels",
- "index",
- "columns",
- "axis",
- "limit",
- "copy",
- "level",
- "method",
- "fill_value",
- "tolerance",
- }
- def test_reindex_multiindex_ffill_added_rows(self):
- # GH#23693
- # reindex added rows with nan values even when fill method was specified
- mi = MultiIndex.from_tuples([("a", "b"), ("d", "e")])
- df = DataFrame([[0, 7], [3, 4]], index=mi, columns=["x", "y"])
- mi2 = MultiIndex.from_tuples([("a", "b"), ("d", "e"), ("h", "i")])
- result = df.reindex(mi2, axis=0, method="ffill")
- expected = DataFrame([[0, 7], [3, 4], [3, 4]], index=mi2, columns=["x", "y"])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "kwargs",
- [
- {"method": "pad", "tolerance": timedelta(seconds=9)},
- {"method": "backfill", "tolerance": timedelta(seconds=9)},
- {"method": "nearest"},
- {"method": None},
- ],
- )
- def test_reindex_empty_frame(self, kwargs):
- # GH#27315
- idx = date_range(start="2020", freq="30s", periods=3)
- df = DataFrame([], index=Index([], name="time"), columns=["a"])
- result = df.reindex(idx, **kwargs)
- expected = DataFrame({"a": [pd.NA] * 3}, index=idx)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "src_idx",
- [
- Index([]),
- CategoricalIndex([]),
- ],
- )
- @pytest.mark.parametrize(
- "cat_idx",
- [
- # No duplicates
- Index([]),
- CategoricalIndex([]),
- Index(["A", "B"]),
- CategoricalIndex(["A", "B"]),
- # Duplicates: GH#38906
- Index(["A", "A"]),
- CategoricalIndex(["A", "A"]),
- ],
- )
- def test_reindex_empty(self, src_idx, cat_idx):
- df = DataFrame(columns=src_idx, index=["K"], dtype="f8")
- result = df.reindex(columns=cat_idx)
- expected = DataFrame(index=["K"], columns=cat_idx, dtype="f8")
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("dtype", ["m8[ns]", "M8[ns]"])
- def test_reindex_datetimelike_to_object(self, dtype):
- # GH#39755 dont cast dt64/td64 to ints
- mi = MultiIndex.from_product([list("ABCDE"), range(2)])
- dti = date_range("2016-01-01", periods=10)
- fv = np.timedelta64("NaT", "ns")
- if dtype == "m8[ns]":
- dti = dti - dti[0]
- fv = np.datetime64("NaT", "ns")
- ser = Series(dti, index=mi)
- ser[::3] = pd.NaT
- df = ser.unstack()
- index = df.index.append(Index([1]))
- columns = df.columns.append(Index(["foo"]))
- res = df.reindex(index=index, columns=columns, fill_value=fv)
- expected = DataFrame(
- {
- 0: df[0].tolist() + [fv],
- 1: df[1].tolist() + [fv],
- "foo": np.array(["NaT"] * 6, dtype=fv.dtype),
- },
- index=index,
- )
- assert (res.dtypes[[0, 1]] == object).all()
- assert res.iloc[0, 0] is pd.NaT
- assert res.iloc[-1, 0] is fv
- assert res.iloc[-1, 1] is fv
- tm.assert_frame_equal(res, expected)
- @pytest.mark.parametrize(
- "index_df,index_res,index_exp",
- [
- (
- CategoricalIndex([], categories=["A"]),
- Index(["A"]),
- Index(["A"]),
- ),
- (
- CategoricalIndex([], categories=["A"]),
- Index(["B"]),
- Index(["B"]),
- ),
- (
- CategoricalIndex([], categories=["A"]),
- CategoricalIndex(["A"]),
- CategoricalIndex(["A"]),
- ),
- (
- CategoricalIndex([], categories=["A"]),
- CategoricalIndex(["B"]),
- CategoricalIndex(["B"]),
- ),
- ],
- )
- def test_reindex_not_category(self, index_df, index_res, index_exp):
- # GH#28690
- df = DataFrame(index=index_df)
- result = df.reindex(index=index_res)
- expected = DataFrame(index=index_exp)
- tm.assert_frame_equal(result, expected)
|