123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778 |
- import numpy as np
- import pytest
- import pandas.util._test_decorators as td
- from pandas import (
- Categorical,
- DataFrame,
- DatetimeIndex,
- NaT,
- PeriodIndex,
- Series,
- TimedeltaIndex,
- Timestamp,
- date_range,
- to_datetime,
- )
- import pandas._testing as tm
- from pandas.tests.frame.common import _check_mixed_float
- class TestFillNA:
- def test_fillna_dict_inplace_nonunique_columns(self, using_copy_on_write):
- df = DataFrame(
- {"A": [np.nan] * 3, "B": [NaT, Timestamp(1), NaT], "C": [np.nan, "foo", 2]}
- )
- df.columns = ["A", "A", "A"]
- orig = df[:]
- df.fillna({"A": 2}, inplace=True)
- # The first and third columns can be set inplace, while the second cannot.
- expected = DataFrame(
- {"A": [2.0] * 3, "B": [2, Timestamp(1), 2], "C": [2, "foo", 2]}
- )
- expected.columns = ["A", "A", "A"]
- tm.assert_frame_equal(df, expected)
- # TODO: what's the expected/desired behavior with CoW?
- if not using_copy_on_write:
- assert tm.shares_memory(df.iloc[:, 0], orig.iloc[:, 0])
- assert not tm.shares_memory(df.iloc[:, 1], orig.iloc[:, 1])
- if not using_copy_on_write:
- assert tm.shares_memory(df.iloc[:, 2], orig.iloc[:, 2])
- @td.skip_array_manager_not_yet_implemented
- def test_fillna_on_column_view(self, using_copy_on_write):
- # GH#46149 avoid unnecessary copies
- arr = np.full((40, 50), np.nan)
- df = DataFrame(arr, copy=False)
- # TODO(CoW): This should raise a chained assignment error
- df[0].fillna(-1, inplace=True)
- if using_copy_on_write:
- assert np.isnan(arr[:, 0]).all()
- else:
- assert (arr[:, 0] == -1).all()
- # i.e. we didn't create a new 49-column block
- assert len(df._mgr.arrays) == 1
- assert np.shares_memory(df.values, arr)
- def test_fillna_datetime(self, datetime_frame):
- tf = datetime_frame
- tf.loc[tf.index[:5], "A"] = np.nan
- tf.loc[tf.index[-5:], "A"] = np.nan
- zero_filled = datetime_frame.fillna(0)
- assert (zero_filled.loc[zero_filled.index[:5], "A"] == 0).all()
- padded = datetime_frame.fillna(method="pad")
- assert np.isnan(padded.loc[padded.index[:5], "A"]).all()
- assert (
- padded.loc[padded.index[-5:], "A"] == padded.loc[padded.index[-5], "A"]
- ).all()
- msg = "Must specify a fill 'value' or 'method'"
- with pytest.raises(ValueError, match=msg):
- datetime_frame.fillna()
- msg = "Cannot specify both 'value' and 'method'"
- with pytest.raises(ValueError, match=msg):
- datetime_frame.fillna(5, method="ffill")
- def test_fillna_mixed_type(self, float_string_frame):
- mf = float_string_frame
- mf.loc[mf.index[5:20], "foo"] = np.nan
- mf.loc[mf.index[-10:], "A"] = np.nan
- # TODO: make stronger assertion here, GH 25640
- mf.fillna(value=0)
- mf.fillna(method="pad")
- def test_fillna_mixed_float(self, mixed_float_frame):
- # mixed numeric (but no float16)
- mf = mixed_float_frame.reindex(columns=["A", "B", "D"])
- mf.loc[mf.index[-10:], "A"] = np.nan
- result = mf.fillna(value=0)
- _check_mixed_float(result, dtype={"C": None})
- result = mf.fillna(method="pad")
- _check_mixed_float(result, dtype={"C": None})
- def test_fillna_empty(self):
- # empty frame (GH#2778)
- df = DataFrame(columns=["x"])
- for m in ["pad", "backfill"]:
- df.x.fillna(method=m, inplace=True)
- df.x.fillna(method=m)
- def test_fillna_different_dtype(self):
- # with different dtype (GH#3386)
- df = DataFrame(
- [["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"]]
- )
- result = df.fillna({2: "foo"})
- expected = DataFrame(
- [["a", "a", "foo", "a"], ["b", "b", "foo", "b"], ["c", "c", "foo", "c"]]
- )
- tm.assert_frame_equal(result, expected)
- return_value = df.fillna({2: "foo"}, inplace=True)
- tm.assert_frame_equal(df, expected)
- assert return_value is None
- def test_fillna_limit_and_value(self):
- # limit and value
- df = DataFrame(np.random.randn(10, 3))
- df.iloc[2:7, 0] = np.nan
- df.iloc[3:5, 2] = np.nan
- expected = df.copy()
- expected.iloc[2, 0] = 999
- expected.iloc[3, 2] = 999
- result = df.fillna(999, limit=1)
- tm.assert_frame_equal(result, expected)
- def test_fillna_datelike(self):
- # with datelike
- # GH#6344
- df = DataFrame(
- {
- "Date": [NaT, Timestamp("2014-1-1")],
- "Date2": [Timestamp("2013-1-1"), NaT],
- }
- )
- expected = df.copy()
- expected["Date"] = expected["Date"].fillna(df.loc[df.index[0], "Date2"])
- result = df.fillna(value={"Date": df["Date2"]})
- tm.assert_frame_equal(result, expected)
- def test_fillna_tzaware(self):
- # with timezone
- # GH#15855
- df = DataFrame({"A": [Timestamp("2012-11-11 00:00:00+01:00"), NaT]})
- exp = DataFrame(
- {
- "A": [
- Timestamp("2012-11-11 00:00:00+01:00"),
- Timestamp("2012-11-11 00:00:00+01:00"),
- ]
- }
- )
- tm.assert_frame_equal(df.fillna(method="pad"), exp)
- df = DataFrame({"A": [NaT, Timestamp("2012-11-11 00:00:00+01:00")]})
- exp = DataFrame(
- {
- "A": [
- Timestamp("2012-11-11 00:00:00+01:00"),
- Timestamp("2012-11-11 00:00:00+01:00"),
- ]
- }
- )
- tm.assert_frame_equal(df.fillna(method="bfill"), exp)
- def test_fillna_tzaware_different_column(self):
- # with timezone in another column
- # GH#15522
- df = DataFrame(
- {
- "A": date_range("20130101", periods=4, tz="US/Eastern"),
- "B": [1, 2, np.nan, np.nan],
- }
- )
- result = df.fillna(method="pad")
- expected = DataFrame(
- {
- "A": date_range("20130101", periods=4, tz="US/Eastern"),
- "B": [1.0, 2.0, 2.0, 2.0],
- }
- )
- tm.assert_frame_equal(result, expected)
- def test_na_actions_categorical(self):
- cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
- vals = ["a", "b", np.nan, "d"]
- df = DataFrame({"cats": cat, "vals": vals})
- cat2 = Categorical([1, 2, 3, 3], categories=[1, 2, 3])
- vals2 = ["a", "b", "b", "d"]
- df_exp_fill = DataFrame({"cats": cat2, "vals": vals2})
- cat3 = Categorical([1, 2, 3], categories=[1, 2, 3])
- vals3 = ["a", "b", np.nan]
- df_exp_drop_cats = DataFrame({"cats": cat3, "vals": vals3})
- cat4 = Categorical([1, 2], categories=[1, 2, 3])
- vals4 = ["a", "b"]
- df_exp_drop_all = DataFrame({"cats": cat4, "vals": vals4})
- # fillna
- res = df.fillna(value={"cats": 3, "vals": "b"})
- tm.assert_frame_equal(res, df_exp_fill)
- msg = "Cannot setitem on a Categorical with a new category"
- with pytest.raises(TypeError, match=msg):
- df.fillna(value={"cats": 4, "vals": "c"})
- res = df.fillna(method="pad")
- tm.assert_frame_equal(res, df_exp_fill)
- # dropna
- res = df.dropna(subset=["cats"])
- tm.assert_frame_equal(res, df_exp_drop_cats)
- res = df.dropna()
- tm.assert_frame_equal(res, df_exp_drop_all)
- # make sure that fillna takes missing values into account
- c = Categorical([np.nan, "b", np.nan], categories=["a", "b"])
- df = DataFrame({"cats": c, "vals": [1, 2, 3]})
- cat_exp = Categorical(["a", "b", "a"], categories=["a", "b"])
- df_exp = DataFrame({"cats": cat_exp, "vals": [1, 2, 3]})
- res = df.fillna("a")
- tm.assert_frame_equal(res, df_exp)
- def test_fillna_categorical_nan(self):
- # GH#14021
- # np.nan should always be a valid filler
- cat = Categorical([np.nan, 2, np.nan])
- val = Categorical([np.nan, np.nan, np.nan])
- df = DataFrame({"cats": cat, "vals": val})
- # GH#32950 df.median() is poorly behaved because there is no
- # Categorical.median
- median = Series({"cats": 2.0, "vals": np.nan})
- res = df.fillna(median)
- v_exp = [np.nan, np.nan, np.nan]
- df_exp = DataFrame({"cats": [2, 2, 2], "vals": v_exp}, dtype="category")
- tm.assert_frame_equal(res, df_exp)
- result = df.cats.fillna(np.nan)
- tm.assert_series_equal(result, df.cats)
- result = df.vals.fillna(np.nan)
- tm.assert_series_equal(result, df.vals)
- idx = DatetimeIndex(
- ["2011-01-01 09:00", "2016-01-01 23:45", "2011-01-01 09:00", NaT, NaT]
- )
- df = DataFrame({"a": Categorical(idx)})
- tm.assert_frame_equal(df.fillna(value=NaT), df)
- idx = PeriodIndex(["2011-01", "2011-01", "2011-01", NaT, NaT], freq="M")
- df = DataFrame({"a": Categorical(idx)})
- tm.assert_frame_equal(df.fillna(value=NaT), df)
- idx = TimedeltaIndex(["1 days", "2 days", "1 days", NaT, NaT])
- df = DataFrame({"a": Categorical(idx)})
- tm.assert_frame_equal(df.fillna(value=NaT), df)
- def test_fillna_downcast(self):
- # GH#15277
- # infer int64 from float64
- df = DataFrame({"a": [1.0, np.nan]})
- result = df.fillna(0, downcast="infer")
- expected = DataFrame({"a": [1, 0]})
- tm.assert_frame_equal(result, expected)
- # infer int64 from float64 when fillna value is a dict
- df = DataFrame({"a": [1.0, np.nan]})
- result = df.fillna({"a": 0}, downcast="infer")
- expected = DataFrame({"a": [1, 0]})
- tm.assert_frame_equal(result, expected)
- def test_fillna_downcast_false(self, frame_or_series):
- # GH#45603 preserve object dtype with downcast=False
- obj = frame_or_series([1, 2, 3], dtype="object")
- result = obj.fillna("", downcast=False)
- tm.assert_equal(result, obj)
- def test_fillna_downcast_noop(self, frame_or_series):
- # GH#45423
- # Two relevant paths:
- # 1) not _can_hold_na (e.g. integer)
- # 2) _can_hold_na + noop + not can_hold_element
- obj = frame_or_series([1, 2, 3], dtype=np.int64)
- res = obj.fillna("foo", downcast=np.dtype(np.int32))
- expected = obj.astype(np.int32)
- tm.assert_equal(res, expected)
- obj2 = obj.astype(np.float64)
- res2 = obj2.fillna("foo", downcast="infer")
- expected2 = obj # get back int64
- tm.assert_equal(res2, expected2)
- res3 = obj2.fillna("foo", downcast=np.dtype(np.int32))
- tm.assert_equal(res3, expected)
- @pytest.mark.parametrize("columns", [["A", "A", "B"], ["A", "A"]])
- def test_fillna_dictlike_value_duplicate_colnames(self, columns):
- # GH#43476
- df = DataFrame(np.nan, index=[0, 1], columns=columns)
- with tm.assert_produces_warning(None):
- result = df.fillna({"A": 0})
- expected = df.copy()
- expected["A"] = 0.0
- tm.assert_frame_equal(result, expected)
- def test_fillna_dtype_conversion(self):
- # make sure that fillna on an empty frame works
- df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
- result = df.dtypes
- expected = Series([np.dtype("object")] * 5, index=[1, 2, 3, 4, 5])
- tm.assert_series_equal(result, expected)
- result = df.fillna(1)
- expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
- tm.assert_frame_equal(result, expected)
- # empty block
- df = DataFrame(index=range(3), columns=["A", "B"], dtype="float64")
- result = df.fillna("nan")
- expected = DataFrame("nan", index=range(3), columns=["A", "B"])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("val", ["", 1, np.nan, 1.0])
- def test_fillna_dtype_conversion_equiv_replace(self, val):
- df = DataFrame({"A": [1, np.nan], "B": [1.0, 2.0]})
- expected = df.replace(np.nan, val)
- result = df.fillna(val)
- tm.assert_frame_equal(result, expected)
- def test_fillna_datetime_columns(self):
- # GH#7095
- df = DataFrame(
- {
- "A": [-1, -2, np.nan],
- "B": date_range("20130101", periods=3),
- "C": ["foo", "bar", None],
- "D": ["foo2", "bar2", None],
- },
- index=date_range("20130110", periods=3),
- )
- result = df.fillna("?")
- expected = DataFrame(
- {
- "A": [-1, -2, "?"],
- "B": date_range("20130101", periods=3),
- "C": ["foo", "bar", "?"],
- "D": ["foo2", "bar2", "?"],
- },
- index=date_range("20130110", periods=3),
- )
- tm.assert_frame_equal(result, expected)
- df = DataFrame(
- {
- "A": [-1, -2, np.nan],
- "B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), NaT],
- "C": ["foo", "bar", None],
- "D": ["foo2", "bar2", None],
- },
- index=date_range("20130110", periods=3),
- )
- result = df.fillna("?")
- expected = DataFrame(
- {
- "A": [-1, -2, "?"],
- "B": [Timestamp("2013-01-01"), Timestamp("2013-01-02"), "?"],
- "C": ["foo", "bar", "?"],
- "D": ["foo2", "bar2", "?"],
- },
- index=date_range("20130110", periods=3),
- )
- tm.assert_frame_equal(result, expected)
- def test_ffill(self, datetime_frame):
- datetime_frame.loc[datetime_frame.index[:5], "A"] = np.nan
- datetime_frame.loc[datetime_frame.index[-5:], "A"] = np.nan
- tm.assert_frame_equal(
- datetime_frame.ffill(), datetime_frame.fillna(method="ffill")
- )
- def test_bfill(self, datetime_frame):
- datetime_frame.loc[datetime_frame.index[:5], "A"] = np.nan
- datetime_frame.loc[datetime_frame.index[-5:], "A"] = np.nan
- tm.assert_frame_equal(
- datetime_frame.bfill(), datetime_frame.fillna(method="bfill")
- )
- def test_frame_pad_backfill_limit(self):
- index = np.arange(10)
- df = DataFrame(np.random.randn(10, 4), index=index)
- result = df[:2].reindex(index, method="pad", limit=5)
- expected = df[:2].reindex(index).fillna(method="pad")
- expected.iloc[-3:] = np.nan
- tm.assert_frame_equal(result, expected)
- result = df[-2:].reindex(index, method="backfill", limit=5)
- expected = df[-2:].reindex(index).fillna(method="backfill")
- expected.iloc[:3] = np.nan
- tm.assert_frame_equal(result, expected)
- def test_frame_fillna_limit(self):
- index = np.arange(10)
- df = DataFrame(np.random.randn(10, 4), index=index)
- result = df[:2].reindex(index)
- result = result.fillna(method="pad", limit=5)
- expected = df[:2].reindex(index).fillna(method="pad")
- expected.iloc[-3:] = np.nan
- tm.assert_frame_equal(result, expected)
- result = df[-2:].reindex(index)
- result = result.fillna(method="backfill", limit=5)
- expected = df[-2:].reindex(index).fillna(method="backfill")
- expected.iloc[:3] = np.nan
- tm.assert_frame_equal(result, expected)
- def test_fillna_skip_certain_blocks(self):
- # don't try to fill boolean, int blocks
- df = DataFrame(np.random.randn(10, 4).astype(int))
- # it works!
- df.fillna(np.nan)
- @pytest.mark.parametrize("type", [int, float])
- def test_fillna_positive_limit(self, type):
- df = DataFrame(np.random.randn(10, 4)).astype(type)
- msg = "Limit must be greater than 0"
- with pytest.raises(ValueError, match=msg):
- df.fillna(0, limit=-5)
- @pytest.mark.parametrize("type", [int, float])
- def test_fillna_integer_limit(self, type):
- df = DataFrame(np.random.randn(10, 4)).astype(type)
- msg = "Limit must be an integer"
- with pytest.raises(ValueError, match=msg):
- df.fillna(0, limit=0.5)
- def test_fillna_inplace(self):
- df = DataFrame(np.random.randn(10, 4))
- df.loc[:4, 1] = np.nan
- df.loc[-4:, 3] = np.nan
- expected = df.fillna(value=0)
- assert expected is not df
- df.fillna(value=0, inplace=True)
- tm.assert_frame_equal(df, expected)
- expected = df.fillna(value={0: 0}, inplace=True)
- assert expected is None
- df.loc[:4, 1] = np.nan
- df.loc[-4:, 3] = np.nan
- expected = df.fillna(method="ffill")
- assert expected is not df
- df.fillna(method="ffill", inplace=True)
- tm.assert_frame_equal(df, expected)
- def test_fillna_dict_series(self):
- df = DataFrame(
- {
- "a": [np.nan, 1, 2, np.nan, np.nan],
- "b": [1, 2, 3, np.nan, np.nan],
- "c": [np.nan, 1, 2, 3, 4],
- }
- )
- result = df.fillna({"a": 0, "b": 5})
- expected = df.copy()
- expected["a"] = expected["a"].fillna(0)
- expected["b"] = expected["b"].fillna(5)
- tm.assert_frame_equal(result, expected)
- # it works
- result = df.fillna({"a": 0, "b": 5, "d": 7})
- # Series treated same as dict
- result = df.fillna(df.max())
- expected = df.fillna(df.max().to_dict())
- tm.assert_frame_equal(result, expected)
- # disable this for now
- with pytest.raises(NotImplementedError, match="column by column"):
- df.fillna(df.max(1), axis=1)
- def test_fillna_dataframe(self):
- # GH#8377
- df = DataFrame(
- {
- "a": [np.nan, 1, 2, np.nan, np.nan],
- "b": [1, 2, 3, np.nan, np.nan],
- "c": [np.nan, 1, 2, 3, 4],
- },
- index=list("VWXYZ"),
- )
- # df2 may have different index and columns
- df2 = DataFrame(
- {
- "a": [np.nan, 10, 20, 30, 40],
- "b": [50, 60, 70, 80, 90],
- "foo": ["bar"] * 5,
- },
- index=list("VWXuZ"),
- )
- result = df.fillna(df2)
- # only those columns and indices which are shared get filled
- expected = DataFrame(
- {
- "a": [np.nan, 1, 2, np.nan, 40],
- "b": [1, 2, 3, np.nan, 90],
- "c": [np.nan, 1, 2, 3, 4],
- },
- index=list("VWXYZ"),
- )
- tm.assert_frame_equal(result, expected)
- def test_fillna_columns(self):
- arr = np.random.randn(10, 10)
- arr[:, ::2] = np.nan
- df = DataFrame(arr)
- result = df.fillna(method="ffill", axis=1)
- expected = df.T.fillna(method="pad").T
- tm.assert_frame_equal(result, expected)
- df.insert(6, "foo", 5)
- result = df.fillna(method="ffill", axis=1)
- expected = df.astype(float).fillna(method="ffill", axis=1)
- tm.assert_frame_equal(result, expected)
- def test_fillna_invalid_method(self, float_frame):
- with pytest.raises(ValueError, match="ffil"):
- float_frame.fillna(method="ffil")
- def test_fillna_invalid_value(self, float_frame):
- # list
- msg = '"value" parameter must be a scalar or dict, but you passed a "{}"'
- with pytest.raises(TypeError, match=msg.format("list")):
- float_frame.fillna([1, 2])
- # tuple
- with pytest.raises(TypeError, match=msg.format("tuple")):
- float_frame.fillna((1, 2))
- # frame with series
- msg = (
- '"value" parameter must be a scalar, dict or Series, but you '
- 'passed a "DataFrame"'
- )
- with pytest.raises(TypeError, match=msg):
- float_frame.iloc[:, 0].fillna(float_frame)
- def test_fillna_col_reordering(self):
- cols = ["COL." + str(i) for i in range(5, 0, -1)]
- data = np.random.rand(20, 5)
- df = DataFrame(index=range(20), columns=cols, data=data)
- filled = df.fillna(method="ffill")
- assert df.columns.tolist() == filled.columns.tolist()
- def test_fill_corner(self, float_frame, float_string_frame):
- mf = float_string_frame
- mf.loc[mf.index[5:20], "foo"] = np.nan
- mf.loc[mf.index[-10:], "A"] = np.nan
- filled = float_string_frame.fillna(value=0)
- assert (filled.loc[filled.index[5:20], "foo"] == 0).all()
- del float_string_frame["foo"]
- empty_float = float_frame.reindex(columns=[])
- # TODO(wesm): unused?
- result = empty_float.fillna(value=0) # noqa
- def test_fillna_downcast_dict(self):
- # GH#40809
- df = DataFrame({"col1": [1, np.nan]})
- result = df.fillna({"col1": 2}, downcast={"col1": "int64"})
- expected = DataFrame({"col1": [1, 2]})
- tm.assert_frame_equal(result, expected)
- def test_fillna_with_columns_and_limit(self):
- # GH40989
- df = DataFrame(
- [
- [np.nan, 2, np.nan, 0],
- [3, 4, np.nan, 1],
- [np.nan, np.nan, np.nan, 5],
- [np.nan, 3, np.nan, 4],
- ],
- columns=list("ABCD"),
- )
- result = df.fillna(axis=1, value=100, limit=1)
- result2 = df.fillna(axis=1, value=100, limit=2)
- expected = DataFrame(
- {
- "A": Series([100, 3, 100, 100], dtype="float64"),
- "B": [2, 4, np.nan, 3],
- "C": [np.nan, 100, np.nan, np.nan],
- "D": Series([0, 1, 5, 4], dtype="float64"),
- },
- index=[0, 1, 2, 3],
- )
- expected2 = DataFrame(
- {
- "A": Series([100, 3, 100, 100], dtype="float64"),
- "B": Series([2, 4, 100, 3], dtype="float64"),
- "C": [100, 100, np.nan, 100],
- "D": Series([0, 1, 5, 4], dtype="float64"),
- },
- index=[0, 1, 2, 3],
- )
- tm.assert_frame_equal(result, expected)
- tm.assert_frame_equal(result2, expected2)
- def test_fillna_datetime_inplace(self):
- # GH#48863
- df = DataFrame(
- {
- "date1": to_datetime(["2018-05-30", None]),
- "date2": to_datetime(["2018-09-30", None]),
- }
- )
- expected = df.copy()
- df.fillna(np.nan, inplace=True)
- tm.assert_frame_equal(df, expected)
- def test_fillna_inplace_with_columns_limit_and_value(self):
- # GH40989
- df = DataFrame(
- [
- [np.nan, 2, np.nan, 0],
- [3, 4, np.nan, 1],
- [np.nan, np.nan, np.nan, 5],
- [np.nan, 3, np.nan, 4],
- ],
- columns=list("ABCD"),
- )
- expected = df.fillna(axis=1, value=100, limit=1)
- assert expected is not df
- df.fillna(axis=1, value=100, limit=1, inplace=True)
- tm.assert_frame_equal(df, expected)
- @td.skip_array_manager_invalid_test
- @pytest.mark.parametrize("val", [-1, {"x": -1, "y": -1}])
- def test_inplace_dict_update_view(self, val, using_copy_on_write):
- # GH#47188
- df = DataFrame({"x": [np.nan, 2], "y": [np.nan, 2]})
- df_orig = df.copy()
- result_view = df[:]
- df.fillna(val, inplace=True)
- expected = DataFrame({"x": [-1, 2.0], "y": [-1.0, 2]})
- tm.assert_frame_equal(df, expected)
- if using_copy_on_write:
- tm.assert_frame_equal(result_view, df_orig)
- else:
- tm.assert_frame_equal(result_view, expected)
- def test_single_block_df_with_horizontal_axis(self):
- # GH 47713
- df = DataFrame(
- {
- "col1": [5, 0, np.nan, 10, np.nan],
- "col2": [7, np.nan, np.nan, 5, 3],
- "col3": [12, np.nan, 1, 2, 0],
- "col4": [np.nan, 1, 1, np.nan, 18],
- }
- )
- result = df.fillna(50, limit=1, axis=1)
- expected = DataFrame(
- [
- [5.0, 7.0, 12.0, 50.0],
- [0.0, 50.0, np.nan, 1.0],
- [50.0, np.nan, 1.0, 1.0],
- [10.0, 5.0, 2.0, 50.0],
- [50.0, 3.0, 0.0, 18.0],
- ],
- columns=["col1", "col2", "col3", "col4"],
- )
- tm.assert_frame_equal(result, expected)
- def test_fillna_with_multi_index_frame(self):
- # GH 47649
- pdf = DataFrame(
- {
- ("x", "a"): [np.nan, 2.0, 3.0],
- ("x", "b"): [1.0, 2.0, np.nan],
- ("y", "c"): [1.0, 2.0, np.nan],
- }
- )
- expected = DataFrame(
- {
- ("x", "a"): [-1.0, 2.0, 3.0],
- ("x", "b"): [1.0, 2.0, -1.0],
- ("y", "c"): [1.0, 2.0, np.nan],
- }
- )
- tm.assert_frame_equal(pdf.fillna({"x": -1}), expected)
- tm.assert_frame_equal(pdf.fillna({"x": -1, ("x", "b"): -2}), expected)
- expected = DataFrame(
- {
- ("x", "a"): [-1.0, 2.0, 3.0],
- ("x", "b"): [1.0, 2.0, -2.0],
- ("y", "c"): [1.0, 2.0, np.nan],
- }
- )
- tm.assert_frame_equal(pdf.fillna({("x", "b"): -2, "x": -1}), expected)
- def test_fillna_nonconsolidated_frame():
- # https://github.com/pandas-dev/pandas/issues/36495
- df = DataFrame(
- [
- [1, 1, 1, 1.0],
- [2, 2, 2, 2.0],
- [3, 3, 3, 3.0],
- ],
- columns=["i1", "i2", "i3", "f1"],
- )
- df_nonconsol = df.pivot(index="i1", columns="i2")
- result = df_nonconsol.fillna(0)
- assert result.isna().sum().sum() == 0
- def test_fillna_nones_inplace():
- # GH 48480
- df = DataFrame(
- [[None, None], [None, None]],
- columns=["A", "B"],
- )
- with tm.assert_produces_warning(False):
- df.fillna(value={"A": 1, "B": 2}, inplace=True)
- expected = DataFrame([[1, 2], [1, 2]], columns=["A", "B"])
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("func", ["pad", "backfill"])
- def test_pad_backfill_deprecated(func):
- # GH#33396
- df = DataFrame({"a": [1, 2, 3]})
- with tm.assert_produces_warning(FutureWarning):
- getattr(df, func)()
|