123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- import datetime
- import dateutil
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Series,
- )
- import pandas._testing as tm
- class TestDataFrameMissingData:
- def test_dropEmptyRows(self, float_frame):
- N = len(float_frame.index)
- mat = np.random.randn(N)
- mat[:5] = np.nan
- frame = DataFrame({"foo": mat}, index=float_frame.index)
- original = Series(mat, index=float_frame.index, name="foo")
- expected = original.dropna()
- inplace_frame1, inplace_frame2 = frame.copy(), frame.copy()
- smaller_frame = frame.dropna(how="all")
- # check that original was preserved
- tm.assert_series_equal(frame["foo"], original)
- return_value = inplace_frame1.dropna(how="all", inplace=True)
- tm.assert_series_equal(smaller_frame["foo"], expected)
- tm.assert_series_equal(inplace_frame1["foo"], expected)
- assert return_value is None
- smaller_frame = frame.dropna(how="all", subset=["foo"])
- return_value = inplace_frame2.dropna(how="all", subset=["foo"], inplace=True)
- tm.assert_series_equal(smaller_frame["foo"], expected)
- tm.assert_series_equal(inplace_frame2["foo"], expected)
- assert return_value is None
- def test_dropIncompleteRows(self, float_frame):
- N = len(float_frame.index)
- mat = np.random.randn(N)
- mat[:5] = np.nan
- frame = DataFrame({"foo": mat}, index=float_frame.index)
- frame["bar"] = 5
- original = Series(mat, index=float_frame.index, name="foo")
- inp_frame1, inp_frame2 = frame.copy(), frame.copy()
- smaller_frame = frame.dropna()
- tm.assert_series_equal(frame["foo"], original)
- return_value = inp_frame1.dropna(inplace=True)
- exp = Series(mat[5:], index=float_frame.index[5:], name="foo")
- tm.assert_series_equal(smaller_frame["foo"], exp)
- tm.assert_series_equal(inp_frame1["foo"], exp)
- assert return_value is None
- samesize_frame = frame.dropna(subset=["bar"])
- tm.assert_series_equal(frame["foo"], original)
- assert (frame["bar"] == 5).all()
- return_value = inp_frame2.dropna(subset=["bar"], inplace=True)
- tm.assert_index_equal(samesize_frame.index, float_frame.index)
- tm.assert_index_equal(inp_frame2.index, float_frame.index)
- assert return_value is None
- def test_dropna(self):
- df = DataFrame(np.random.randn(6, 4))
- df.iloc[:2, 2] = np.nan
- dropped = df.dropna(axis=1)
- expected = df.loc[:, [0, 1, 3]]
- inp = df.copy()
- return_value = inp.dropna(axis=1, inplace=True)
- tm.assert_frame_equal(dropped, expected)
- tm.assert_frame_equal(inp, expected)
- assert return_value is None
- dropped = df.dropna(axis=0)
- expected = df.loc[list(range(2, 6))]
- inp = df.copy()
- return_value = inp.dropna(axis=0, inplace=True)
- tm.assert_frame_equal(dropped, expected)
- tm.assert_frame_equal(inp, expected)
- assert return_value is None
- # threshold
- dropped = df.dropna(axis=1, thresh=5)
- expected = df.loc[:, [0, 1, 3]]
- inp = df.copy()
- return_value = inp.dropna(axis=1, thresh=5, inplace=True)
- tm.assert_frame_equal(dropped, expected)
- tm.assert_frame_equal(inp, expected)
- assert return_value is None
- dropped = df.dropna(axis=0, thresh=4)
- expected = df.loc[range(2, 6)]
- inp = df.copy()
- return_value = inp.dropna(axis=0, thresh=4, inplace=True)
- tm.assert_frame_equal(dropped, expected)
- tm.assert_frame_equal(inp, expected)
- assert return_value is None
- dropped = df.dropna(axis=1, thresh=4)
- tm.assert_frame_equal(dropped, df)
- dropped = df.dropna(axis=1, thresh=3)
- tm.assert_frame_equal(dropped, df)
- # subset
- dropped = df.dropna(axis=0, subset=[0, 1, 3])
- inp = df.copy()
- return_value = inp.dropna(axis=0, subset=[0, 1, 3], inplace=True)
- tm.assert_frame_equal(dropped, df)
- tm.assert_frame_equal(inp, df)
- assert return_value is None
- # all
- dropped = df.dropna(axis=1, how="all")
- tm.assert_frame_equal(dropped, df)
- df[2] = np.nan
- dropped = df.dropna(axis=1, how="all")
- expected = df.loc[:, [0, 1, 3]]
- tm.assert_frame_equal(dropped, expected)
- # bad input
- msg = "No axis named 3 for object type DataFrame"
- with pytest.raises(ValueError, match=msg):
- df.dropna(axis=3)
- def test_drop_and_dropna_caching(self):
- # tst that cacher updates
- original = Series([1, 2, np.nan], name="A")
- expected = Series([1, 2], dtype=original.dtype, name="A")
- df = DataFrame({"A": original.values.copy()})
- df2 = df.copy()
- df["A"].dropna()
- tm.assert_series_equal(df["A"], original)
- ser = df["A"]
- return_value = ser.dropna(inplace=True)
- tm.assert_series_equal(ser, expected)
- tm.assert_series_equal(df["A"], original)
- assert return_value is None
- df2["A"].drop([1])
- tm.assert_series_equal(df2["A"], original)
- ser = df2["A"]
- return_value = ser.drop([1], inplace=True)
- tm.assert_series_equal(ser, original.drop([1]))
- tm.assert_series_equal(df2["A"], original)
- assert return_value is None
- def test_dropna_corner(self, float_frame):
- # bad input
- msg = "invalid how option: foo"
- with pytest.raises(ValueError, match=msg):
- float_frame.dropna(how="foo")
- # non-existent column - 8303
- with pytest.raises(KeyError, match=r"^\['X'\]$"):
- float_frame.dropna(subset=["A", "X"])
- def test_dropna_multiple_axes(self):
- df = DataFrame(
- [
- [1, np.nan, 2, 3],
- [4, np.nan, 5, 6],
- [np.nan, np.nan, np.nan, np.nan],
- [7, np.nan, 8, 9],
- ]
- )
- # GH20987
- with pytest.raises(TypeError, match="supplying multiple axes"):
- df.dropna(how="all", axis=[0, 1])
- with pytest.raises(TypeError, match="supplying multiple axes"):
- df.dropna(how="all", axis=(0, 1))
- inp = df.copy()
- with pytest.raises(TypeError, match="supplying multiple axes"):
- inp.dropna(how="all", axis=(0, 1), inplace=True)
- def test_dropna_tz_aware_datetime(self):
- # GH13407
- df = DataFrame()
- dt1 = datetime.datetime(2015, 1, 1, tzinfo=dateutil.tz.tzutc())
- dt2 = datetime.datetime(2015, 2, 2, tzinfo=dateutil.tz.tzutc())
- df["Time"] = [dt1]
- result = df.dropna(axis=0)
- expected = DataFrame({"Time": [dt1]})
- tm.assert_frame_equal(result, expected)
- # Ex2
- df = DataFrame({"Time": [dt1, None, np.nan, dt2]})
- result = df.dropna(axis=0)
- expected = DataFrame([dt1, dt2], columns=["Time"], index=[0, 3])
- tm.assert_frame_equal(result, expected)
- def test_dropna_categorical_interval_index(self):
- # GH 25087
- ii = pd.IntervalIndex.from_breaks([0, 2.78, 3.14, 6.28])
- ci = pd.CategoricalIndex(ii)
- df = DataFrame({"A": list("abc")}, index=ci)
- expected = df
- result = df.dropna()
- tm.assert_frame_equal(result, expected)
- def test_dropna_with_duplicate_columns(self):
- df = DataFrame(
- {
- "A": np.random.randn(5),
- "B": np.random.randn(5),
- "C": np.random.randn(5),
- "D": ["a", "b", "c", "d", "e"],
- }
- )
- df.iloc[2, [0, 1, 2]] = np.nan
- df.iloc[0, 0] = np.nan
- df.iloc[1, 1] = np.nan
- df.iloc[:, 3] = np.nan
- expected = df.dropna(subset=["A", "B", "C"], how="all")
- expected.columns = ["A", "A", "B", "C"]
- df.columns = ["A", "A", "B", "C"]
- result = df.dropna(subset=["A", "C"], how="all")
- tm.assert_frame_equal(result, expected)
- def test_set_single_column_subset(self):
- # GH 41021
- df = DataFrame({"A": [1, 2, 3], "B": list("abc"), "C": [4, np.NaN, 5]})
- expected = DataFrame(
- {"A": [1, 3], "B": list("ac"), "C": [4.0, 5.0]}, index=[0, 2]
- )
- result = df.dropna(subset="C")
- tm.assert_frame_equal(result, expected)
- def test_single_column_not_present_in_axis(self):
- # GH 41021
- df = DataFrame({"A": [1, 2, 3]})
- # Column not present
- with pytest.raises(KeyError, match="['D']"):
- df.dropna(subset="D", axis=0)
- def test_subset_is_nparray(self):
- # GH 41021
- df = DataFrame({"A": [1, 2, np.NaN], "B": list("abc"), "C": [4, np.NaN, 5]})
- expected = DataFrame({"A": [1.0], "B": ["a"], "C": [4.0]})
- result = df.dropna(subset=np.array(["A", "C"]))
- tm.assert_frame_equal(result, expected)
- def test_no_nans_in_frame(self, axis):
- # GH#41965
- df = DataFrame([[1, 2], [3, 4]], columns=pd.RangeIndex(0, 2))
- expected = df.copy()
- result = df.dropna(axis=axis)
- tm.assert_frame_equal(result, expected, check_index_type=True)
- def test_how_thresh_param_incompatible(self):
- # GH46575
- df = DataFrame([1, 2, pd.NA])
- msg = "You cannot set both the how and thresh arguments at the same time"
- with pytest.raises(TypeError, match=msg):
- df.dropna(how="all", thresh=2)
- with pytest.raises(TypeError, match=msg):
- df.dropna(how="any", thresh=2)
- with pytest.raises(TypeError, match=msg):
- df.dropna(how=None, thresh=None)
- @pytest.mark.parametrize("val", [1, 1.5])
- def test_dropna_ignore_index(self, val):
- # GH#31725
- df = DataFrame({"a": [1, 2, val]}, index=[3, 2, 1])
- result = df.dropna(ignore_index=True)
- expected = DataFrame({"a": [1, 2, val]})
- tm.assert_frame_equal(result, expected)
- df.dropna(ignore_index=True, inplace=True)
- tm.assert_frame_equal(df, expected)
|