123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- import re
- import numpy as np
- import pytest
- from pandas.errors import PerformanceWarning
- import pandas as pd
- from pandas import (
- DataFrame,
- DatetimeIndex,
- Index,
- MultiIndex,
- Series,
- Timestamp,
- )
- import pandas._testing as tm
- @pytest.mark.parametrize(
- "msg,labels,level",
- [
- (r"labels \[4\] not found in level", 4, "a"),
- (r"labels \[7\] not found in level", 7, "b"),
- ],
- )
- def test_drop_raise_exception_if_labels_not_in_level(msg, labels, level):
- # GH 8594
- mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
- s = Series([10, 20, 30], index=mi)
- df = DataFrame([10, 20, 30], index=mi)
- with pytest.raises(KeyError, match=msg):
- s.drop(labels, level=level)
- with pytest.raises(KeyError, match=msg):
- df.drop(labels, level=level)
- @pytest.mark.parametrize("labels,level", [(4, "a"), (7, "b")])
- def test_drop_errors_ignore(labels, level):
- # GH 8594
- mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
- s = Series([10, 20, 30], index=mi)
- df = DataFrame([10, 20, 30], index=mi)
- expected_s = s.drop(labels, level=level, errors="ignore")
- tm.assert_series_equal(s, expected_s)
- expected_df = df.drop(labels, level=level, errors="ignore")
- tm.assert_frame_equal(df, expected_df)
- def test_drop_with_non_unique_datetime_index_and_invalid_keys():
- # GH 30399
- # define dataframe with unique datetime index
- df = DataFrame(
- np.random.randn(5, 3),
- columns=["a", "b", "c"],
- index=pd.date_range("2012", freq="H", periods=5),
- )
- # create dataframe with non-unique datetime index
- df = df.iloc[[0, 2, 2, 3]].copy()
- with pytest.raises(KeyError, match="not found in axis"):
- df.drop(["a", "b"]) # Dropping with labels not exist in the index
- class TestDataFrameDrop:
- def test_drop_names(self):
- df = DataFrame(
- [[1, 2, 3], [3, 4, 5], [5, 6, 7]],
- index=["a", "b", "c"],
- columns=["d", "e", "f"],
- )
- df.index.name, df.columns.name = "first", "second"
- df_dropped_b = df.drop("b")
- df_dropped_e = df.drop("e", axis=1)
- df_inplace_b, df_inplace_e = df.copy(), df.copy()
- return_value = df_inplace_b.drop("b", inplace=True)
- assert return_value is None
- return_value = df_inplace_e.drop("e", axis=1, inplace=True)
- assert return_value is None
- for obj in (df_dropped_b, df_dropped_e, df_inplace_b, df_inplace_e):
- assert obj.index.name == "first"
- assert obj.columns.name == "second"
- assert list(df.columns) == ["d", "e", "f"]
- msg = r"\['g'\] not found in axis"
- with pytest.raises(KeyError, match=msg):
- df.drop(["g"])
- with pytest.raises(KeyError, match=msg):
- df.drop(["g"], axis=1)
- # errors = 'ignore'
- dropped = df.drop(["g"], errors="ignore")
- expected = Index(["a", "b", "c"], name="first")
- tm.assert_index_equal(dropped.index, expected)
- dropped = df.drop(["b", "g"], errors="ignore")
- expected = Index(["a", "c"], name="first")
- tm.assert_index_equal(dropped.index, expected)
- dropped = df.drop(["g"], axis=1, errors="ignore")
- expected = Index(["d", "e", "f"], name="second")
- tm.assert_index_equal(dropped.columns, expected)
- dropped = df.drop(["d", "g"], axis=1, errors="ignore")
- expected = Index(["e", "f"], name="second")
- tm.assert_index_equal(dropped.columns, expected)
- # GH 16398
- dropped = df.drop([], errors="ignore")
- expected = Index(["a", "b", "c"], name="first")
- tm.assert_index_equal(dropped.index, expected)
- def test_drop(self):
- simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]})
- tm.assert_frame_equal(simple.drop("A", axis=1), simple[["B"]])
- tm.assert_frame_equal(simple.drop(["A", "B"], axis="columns"), simple[[]])
- tm.assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.loc[[2], :])
- tm.assert_frame_equal(simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :])
- with pytest.raises(KeyError, match=r"\[5\] not found in axis"):
- simple.drop(5)
- with pytest.raises(KeyError, match=r"\['C'\] not found in axis"):
- simple.drop("C", axis=1)
- with pytest.raises(KeyError, match=r"\[5\] not found in axis"):
- simple.drop([1, 5])
- with pytest.raises(KeyError, match=r"\['C'\] not found in axis"):
- simple.drop(["A", "C"], axis=1)
- # GH 42881
- with pytest.raises(KeyError, match=r"\['C', 'D', 'F'\] not found in axis"):
- simple.drop(["C", "D", "F"], axis=1)
- # errors = 'ignore'
- tm.assert_frame_equal(simple.drop(5, errors="ignore"), simple)
- tm.assert_frame_equal(
- simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]
- )
- tm.assert_frame_equal(simple.drop("C", axis=1, errors="ignore"), simple)
- tm.assert_frame_equal(
- simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]
- )
- # non-unique - wheee!
- nu_df = DataFrame(
- list(zip(range(3), range(-3, 1), list("abc"))), columns=["a", "a", "b"]
- )
- tm.assert_frame_equal(nu_df.drop("a", axis=1), nu_df[["b"]])
- tm.assert_frame_equal(nu_df.drop("b", axis="columns"), nu_df["a"])
- tm.assert_frame_equal(nu_df.drop([]), nu_df) # GH 16398
- nu_df = nu_df.set_index(Index(["X", "Y", "X"]))
- nu_df.columns = list("abc")
- tm.assert_frame_equal(nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :])
- tm.assert_frame_equal(nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :])
- # inplace cache issue
- # GH#5628
- df = DataFrame(np.random.randn(10, 3), columns=list("abc"))
- expected = df[~(df.b > 0)]
- return_value = df.drop(labels=df[df.b > 0].index, inplace=True)
- assert return_value is None
- tm.assert_frame_equal(df, expected)
- def test_drop_multiindex_not_lexsorted(self):
- # GH#11640
- # define the lexsorted version
- lexsorted_mi = MultiIndex.from_tuples(
- [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"]
- )
- lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi)
- assert lexsorted_df.columns._is_lexsorted()
- # define the non-lexsorted version
- not_lexsorted_df = DataFrame(
- columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]]
- )
- not_lexsorted_df = not_lexsorted_df.pivot_table(
- index="a", columns=["b", "c"], values="d"
- )
- not_lexsorted_df = not_lexsorted_df.reset_index()
- assert not not_lexsorted_df.columns._is_lexsorted()
- # compare the results
- tm.assert_frame_equal(lexsorted_df, not_lexsorted_df)
- expected = lexsorted_df.drop("a", axis=1)
- with tm.assert_produces_warning(PerformanceWarning):
- result = not_lexsorted_df.drop("a", axis=1)
- tm.assert_frame_equal(result, expected)
- def test_drop_api_equivalence(self):
- # equivalence of the labels/axis and index/columns API's (GH#12392)
- df = DataFrame(
- [[1, 2, 3], [3, 4, 5], [5, 6, 7]],
- index=["a", "b", "c"],
- columns=["d", "e", "f"],
- )
- res1 = df.drop("a")
- res2 = df.drop(index="a")
- tm.assert_frame_equal(res1, res2)
- res1 = df.drop("d", axis=1)
- res2 = df.drop(columns="d")
- tm.assert_frame_equal(res1, res2)
- res1 = df.drop(labels="e", axis=1)
- res2 = df.drop(columns="e")
- tm.assert_frame_equal(res1, res2)
- res1 = df.drop(["a"], axis=0)
- res2 = df.drop(index=["a"])
- tm.assert_frame_equal(res1, res2)
- res1 = df.drop(["a"], axis=0).drop(["d"], axis=1)
- res2 = df.drop(index=["a"], columns=["d"])
- tm.assert_frame_equal(res1, res2)
- msg = "Cannot specify both 'labels' and 'index'/'columns'"
- with pytest.raises(ValueError, match=msg):
- df.drop(labels="a", index="b")
- with pytest.raises(ValueError, match=msg):
- df.drop(labels="a", columns="b")
- msg = "Need to specify at least one of 'labels', 'index' or 'columns'"
- with pytest.raises(ValueError, match=msg):
- df.drop(axis=1)
- data = [[1, 2, 3], [1, 2, 3]]
- @pytest.mark.parametrize(
- "actual",
- [
- DataFrame(data=data, index=["a", "a"]),
- DataFrame(data=data, index=["a", "b"]),
- DataFrame(data=data, index=["a", "b"]).set_index([0, 1]),
- DataFrame(data=data, index=["a", "a"]).set_index([0, 1]),
- ],
- )
- def test_raise_on_drop_duplicate_index(self, actual):
- # GH#19186
- level = 0 if isinstance(actual.index, MultiIndex) else None
- msg = re.escape("\"['c'] not found in axis\"")
- with pytest.raises(KeyError, match=msg):
- actual.drop("c", level=level, axis=0)
- with pytest.raises(KeyError, match=msg):
- actual.T.drop("c", level=level, axis=1)
- expected_no_err = actual.drop("c", axis=0, level=level, errors="ignore")
- tm.assert_frame_equal(expected_no_err, actual)
- expected_no_err = actual.T.drop("c", axis=1, level=level, errors="ignore")
- tm.assert_frame_equal(expected_no_err.T, actual)
- @pytest.mark.parametrize("index", [[1, 2, 3], [1, 1, 2]])
- @pytest.mark.parametrize("drop_labels", [[], [1], [2]])
- def test_drop_empty_list(self, index, drop_labels):
- # GH#21494
- expected_index = [i for i in index if i not in drop_labels]
- frame = DataFrame(index=index).drop(drop_labels)
- tm.assert_frame_equal(frame, DataFrame(index=expected_index))
- @pytest.mark.parametrize("index", [[1, 2, 3], [1, 2, 2]])
- @pytest.mark.parametrize("drop_labels", [[1, 4], [4, 5]])
- def test_drop_non_empty_list(self, index, drop_labels):
- # GH# 21494
- with pytest.raises(KeyError, match="not found in axis"):
- DataFrame(index=index).drop(drop_labels)
- @pytest.mark.parametrize(
- "empty_listlike",
- [
- [],
- {},
- np.array([]),
- Series([], dtype="datetime64[ns]"),
- Index([]),
- DatetimeIndex([]),
- ],
- )
- def test_drop_empty_listlike_non_unique_datetime_index(self, empty_listlike):
- # GH#27994
- data = {"column_a": [5, 10], "column_b": ["one", "two"]}
- index = [Timestamp("2021-01-01"), Timestamp("2021-01-01")]
- df = DataFrame(data, index=index)
- # Passing empty list-like should return the same DataFrame.
- expected = df.copy()
- result = df.drop(empty_listlike)
- tm.assert_frame_equal(result, expected)
- def test_mixed_depth_drop(self):
- arrays = [
- ["a", "top", "top", "routine1", "routine1", "routine2"],
- ["", "OD", "OD", "result1", "result2", "result1"],
- ["", "wx", "wy", "", "", ""],
- ]
- tuples = sorted(zip(*arrays))
- index = MultiIndex.from_tuples(tuples)
- df = DataFrame(np.random.randn(4, 6), columns=index)
- result = df.drop("a", axis=1)
- expected = df.drop([("a", "", "")], axis=1)
- tm.assert_frame_equal(expected, result)
- result = df.drop(["top"], axis=1)
- expected = df.drop([("top", "OD", "wx")], axis=1)
- expected = expected.drop([("top", "OD", "wy")], axis=1)
- tm.assert_frame_equal(expected, result)
- result = df.drop(("top", "OD", "wx"), axis=1)
- expected = df.drop([("top", "OD", "wx")], axis=1)
- tm.assert_frame_equal(expected, result)
- expected = df.drop([("top", "OD", "wy")], axis=1)
- expected = df.drop("top", axis=1)
- result = df.drop("result1", level=1, axis=1)
- expected = df.drop(
- [("routine1", "result1", ""), ("routine2", "result1", "")], axis=1
- )
- tm.assert_frame_equal(expected, result)
- def test_drop_multiindex_other_level_nan(self):
- # GH#12754
- df = (
- DataFrame(
- {
- "A": ["one", "one", "two", "two"],
- "B": [np.nan, 0.0, 1.0, 2.0],
- "C": ["a", "b", "c", "c"],
- "D": [1, 2, 3, 4],
- }
- )
- .set_index(["A", "B", "C"])
- .sort_index()
- )
- result = df.drop("c", level="C")
- expected = DataFrame(
- [2, 1],
- columns=["D"],
- index=MultiIndex.from_tuples(
- [("one", 0.0, "b"), ("one", np.nan, "a")], names=["A", "B", "C"]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_drop_nonunique(self):
- df = DataFrame(
- [
- ["x-a", "x", "a", 1.5],
- ["x-a", "x", "a", 1.2],
- ["z-c", "z", "c", 3.1],
- ["x-a", "x", "a", 4.1],
- ["x-b", "x", "b", 5.1],
- ["x-b", "x", "b", 4.1],
- ["x-b", "x", "b", 2.2],
- ["y-a", "y", "a", 1.2],
- ["z-b", "z", "b", 2.1],
- ],
- columns=["var1", "var2", "var3", "var4"],
- )
- grp_size = df.groupby("var1").size()
- drop_idx = grp_size.loc[grp_size == 1]
- idf = df.set_index(["var1", "var2", "var3"])
- # it works! GH#2101
- result = idf.drop(drop_idx.index, level=0).reset_index()
- expected = df[-df.var1.isin(drop_idx.index)]
- result.index = expected.index
- tm.assert_frame_equal(result, expected)
- def test_drop_level(self, multiindex_dataframe_random_data):
- frame = multiindex_dataframe_random_data
- result = frame.drop(["bar", "qux"], level="first")
- expected = frame.iloc[[0, 1, 2, 5, 6]]
- tm.assert_frame_equal(result, expected)
- result = frame.drop(["two"], level="second")
- expected = frame.iloc[[0, 2, 3, 6, 7, 9]]
- tm.assert_frame_equal(result, expected)
- result = frame.T.drop(["bar", "qux"], axis=1, level="first")
- expected = frame.iloc[[0, 1, 2, 5, 6]].T
- tm.assert_frame_equal(result, expected)
- result = frame.T.drop(["two"], axis=1, level="second")
- expected = frame.iloc[[0, 2, 3, 6, 7, 9]].T
- tm.assert_frame_equal(result, expected)
- def test_drop_level_nonunique_datetime(self):
- # GH#12701
- idx = Index([2, 3, 4, 4, 5], name="id")
- idxdt = pd.to_datetime(
- [
- "2016-03-23 14:00",
- "2016-03-23 15:00",
- "2016-03-23 16:00",
- "2016-03-23 16:00",
- "2016-03-23 17:00",
- ]
- )
- df = DataFrame(np.arange(10).reshape(5, 2), columns=list("ab"), index=idx)
- df["tstamp"] = idxdt
- df = df.set_index("tstamp", append=True)
- ts = Timestamp("201603231600")
- assert df.index.is_unique is False
- result = df.drop(ts, level="tstamp")
- expected = df.loc[idx != 4]
- tm.assert_frame_equal(result, expected)
- def test_drop_tz_aware_timestamp_across_dst(self, frame_or_series):
- # GH#21761
- start = Timestamp("2017-10-29", tz="Europe/Berlin")
- end = Timestamp("2017-10-29 04:00:00", tz="Europe/Berlin")
- index = pd.date_range(start, end, freq="15min")
- data = frame_or_series(data=[1] * len(index), index=index)
- result = data.drop(start)
- expected_start = Timestamp("2017-10-29 00:15:00", tz="Europe/Berlin")
- expected_idx = pd.date_range(expected_start, end, freq="15min")
- expected = frame_or_series(data=[1] * len(expected_idx), index=expected_idx)
- tm.assert_equal(result, expected)
- def test_drop_preserve_names(self):
- index = MultiIndex.from_arrays(
- [[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]], names=["one", "two"]
- )
- df = DataFrame(np.random.randn(6, 3), index=index)
- result = df.drop([(0, 2)])
- assert result.index.names == ("one", "two")
- @pytest.mark.parametrize(
- "operation", ["__iadd__", "__isub__", "__imul__", "__ipow__"]
- )
- @pytest.mark.parametrize("inplace", [False, True])
- def test_inplace_drop_and_operation(self, operation, inplace):
- # GH#30484
- df = DataFrame({"x": range(5)})
- expected = df.copy()
- df["y"] = range(5)
- y = df["y"]
- with tm.assert_produces_warning(None):
- if inplace:
- df.drop("y", axis=1, inplace=inplace)
- else:
- df = df.drop("y", axis=1, inplace=inplace)
- # Perform operation and check result
- getattr(y, operation)(1)
- tm.assert_frame_equal(df, expected)
- def test_drop_with_non_unique_multiindex(self):
- # GH#36293
- mi = MultiIndex.from_arrays([["x", "y", "x"], ["i", "j", "i"]])
- df = DataFrame([1, 2, 3], index=mi)
- result = df.drop(index="x")
- expected = DataFrame([2], index=MultiIndex.from_arrays([["y"], ["j"]]))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("indexer", [("a", "a"), [("a", "a")]])
- def test_drop_tuple_with_non_unique_multiindex(self, indexer):
- # GH#42771
- idx = MultiIndex.from_product([["a", "b"], ["a", "a"]])
- df = DataFrame({"x": range(len(idx))}, index=idx)
- result = df.drop(index=[("a", "a")])
- expected = DataFrame(
- {"x": [2, 3]}, index=MultiIndex.from_tuples([("b", "a"), ("b", "a")])
- )
- tm.assert_frame_equal(result, expected)
- def test_drop_with_duplicate_columns(self):
- df = DataFrame(
- [[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "a", "a"]
- )
- result = df.drop(["a"], axis=1)
- expected = DataFrame([[1], [1], [1]], columns=["bar"])
- tm.assert_frame_equal(result, expected)
- result = df.drop("a", axis=1)
- tm.assert_frame_equal(result, expected)
- def test_drop_with_duplicate_columns2(self):
- # drop buggy GH#6240
- df = DataFrame(
- {
- "A": np.random.randn(5),
- "B": np.random.randn(5),
- "C": np.random.randn(5),
- "D": ["a", "b", "c", "d", "e"],
- }
- )
- expected = df.take([0, 1, 1], axis=1)
- df2 = df.take([2, 0, 1, 2, 1], axis=1)
- result = df2.drop("C", axis=1)
- tm.assert_frame_equal(result, expected)
- def test_drop_inplace_no_leftover_column_reference(self):
- # GH 13934
- df = DataFrame({"a": [1, 2, 3]})
- a = df.a
- df.drop(["a"], axis=1, inplace=True)
- tm.assert_index_equal(df.columns, Index([], dtype="object"))
- a -= a.mean()
- tm.assert_index_equal(df.columns, Index([], dtype="object"))
- def test_drop_level_missing_label_multiindex(self):
- # GH 18561
- df = DataFrame(index=MultiIndex.from_product([range(3), range(3)]))
- with pytest.raises(KeyError, match="labels \\[5\\] not found in level"):
- df.drop(5, level=0)
- @pytest.mark.parametrize("idx, level", [(["a", "b"], 0), (["a"], None)])
- def test_drop_index_ea_dtype(self, any_numeric_ea_dtype, idx, level):
- # GH#45860
- df = DataFrame(
- {"a": [1, 2, 2, pd.NA], "b": 100}, dtype=any_numeric_ea_dtype
- ).set_index(idx)
- result = df.drop(Index([2, pd.NA]), level=level)
- expected = DataFrame(
- {"a": [1], "b": 100}, dtype=any_numeric_ea_dtype
- ).set_index(idx)
- tm.assert_frame_equal(result, expected)
|