123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- Series,
- )
- import pandas._testing as tm
- class TestDataFrameClip:
- def test_clip(self, float_frame):
- median = float_frame.median().median()
- original = float_frame.copy()
- double = float_frame.clip(upper=median, lower=median)
- assert not (double.values != median).any()
- # Verify that float_frame was not changed inplace
- assert (float_frame.values == original.values).all()
- def test_inplace_clip(self, float_frame):
- # GH#15388
- median = float_frame.median().median()
- frame_copy = float_frame.copy()
- return_value = frame_copy.clip(upper=median, lower=median, inplace=True)
- assert return_value is None
- assert not (frame_copy.values != median).any()
- def test_dataframe_clip(self):
- # GH#2747
- df = DataFrame(np.random.randn(1000, 2))
- for lb, ub in [(-1, 1), (1, -1)]:
- clipped_df = df.clip(lb, ub)
- lb, ub = min(lb, ub), max(ub, lb)
- lb_mask = df.values <= lb
- ub_mask = df.values >= ub
- mask = ~lb_mask & ~ub_mask
- assert (clipped_df.values[lb_mask] == lb).all()
- assert (clipped_df.values[ub_mask] == ub).all()
- assert (clipped_df.values[mask] == df.values[mask]).all()
- def test_clip_mixed_numeric(self):
- # clip on mixed integer or floats
- # GH#24162, clipping now preserves numeric types per column
- df = DataFrame({"A": [1, 2, 3], "B": [1.0, np.nan, 3.0]})
- result = df.clip(1, 2)
- expected = DataFrame({"A": [1, 2, 2], "B": [1.0, np.nan, 2.0]})
- tm.assert_frame_equal(result, expected)
- df = DataFrame([[1, 2, 3.4], [3, 4, 5.6]], columns=["foo", "bar", "baz"])
- expected = df.dtypes
- result = df.clip(upper=3).dtypes
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("inplace", [True, False])
- def test_clip_against_series(self, inplace):
- # GH#6966
- df = DataFrame(np.random.randn(1000, 2))
- lb = Series(np.random.randn(1000))
- ub = lb + 1
- original = df.copy()
- clipped_df = df.clip(lb, ub, axis=0, inplace=inplace)
- if inplace:
- clipped_df = df
- for i in range(2):
- lb_mask = original.iloc[:, i] <= lb
- ub_mask = original.iloc[:, i] >= ub
- mask = ~lb_mask & ~ub_mask
- result = clipped_df.loc[lb_mask, i]
- tm.assert_series_equal(result, lb[lb_mask], check_names=False)
- assert result.name == i
- result = clipped_df.loc[ub_mask, i]
- tm.assert_series_equal(result, ub[ub_mask], check_names=False)
- assert result.name == i
- tm.assert_series_equal(clipped_df.loc[mask, i], df.loc[mask, i])
- @pytest.mark.parametrize("inplace", [True, False])
- @pytest.mark.parametrize("lower", [[2, 3, 4], np.asarray([2, 3, 4])])
- @pytest.mark.parametrize(
- "axis,res",
- [
- (0, [[2.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 7.0, 7.0]]),
- (1, [[2.0, 3.0, 4.0], [4.0, 5.0, 6.0], [5.0, 6.0, 7.0]]),
- ],
- )
- def test_clip_against_list_like(self, simple_frame, inplace, lower, axis, res):
- # GH#15390
- original = simple_frame.copy(deep=True)
- result = original.clip(lower=lower, upper=[5, 6, 7], axis=axis, inplace=inplace)
- expected = DataFrame(res, columns=original.columns, index=original.index)
- if inplace:
- result = original
- tm.assert_frame_equal(result, expected, check_exact=True)
- @pytest.mark.parametrize("axis", [0, 1, None])
- def test_clip_against_frame(self, axis):
- df = DataFrame(np.random.randn(1000, 2))
- lb = DataFrame(np.random.randn(1000, 2))
- ub = lb + 1
- clipped_df = df.clip(lb, ub, axis=axis)
- lb_mask = df <= lb
- ub_mask = df >= ub
- mask = ~lb_mask & ~ub_mask
- tm.assert_frame_equal(clipped_df[lb_mask], lb[lb_mask])
- tm.assert_frame_equal(clipped_df[ub_mask], ub[ub_mask])
- tm.assert_frame_equal(clipped_df[mask], df[mask])
- def test_clip_against_unordered_columns(self):
- # GH#20911
- df1 = DataFrame(np.random.randn(1000, 4), columns=["A", "B", "C", "D"])
- df2 = DataFrame(np.random.randn(1000, 4), columns=["D", "A", "B", "C"])
- df3 = DataFrame(df2.values - 1, columns=["B", "D", "C", "A"])
- result_upper = df1.clip(lower=0, upper=df2)
- expected_upper = df1.clip(lower=0, upper=df2[df1.columns])
- result_lower = df1.clip(lower=df3, upper=3)
- expected_lower = df1.clip(lower=df3[df1.columns], upper=3)
- result_lower_upper = df1.clip(lower=df3, upper=df2)
- expected_lower_upper = df1.clip(lower=df3[df1.columns], upper=df2[df1.columns])
- tm.assert_frame_equal(result_upper, expected_upper)
- tm.assert_frame_equal(result_lower, expected_lower)
- tm.assert_frame_equal(result_lower_upper, expected_lower_upper)
- def test_clip_with_na_args(self, float_frame):
- """Should process np.nan argument as None"""
- # GH#17276
- tm.assert_frame_equal(float_frame.clip(np.nan), float_frame)
- tm.assert_frame_equal(float_frame.clip(upper=np.nan, lower=np.nan), float_frame)
- # GH#19992 and adjusted in GH#40420
- df = DataFrame({"col_0": [1, 2, 3], "col_1": [4, 5, 6], "col_2": [7, 8, 9]})
- result = df.clip(lower=[4, 5, np.nan], axis=0)
- expected = DataFrame(
- {"col_0": [4, 5, 3], "col_1": [4, 5, 6], "col_2": [7, 8, 9]}
- )
- tm.assert_frame_equal(result, expected)
- result = df.clip(lower=[4, 5, np.nan], axis=1)
- expected = DataFrame(
- {"col_0": [4, 4, 4], "col_1": [5, 5, 6], "col_2": [7, 8, 9]}
- )
- tm.assert_frame_equal(result, expected)
- # GH#40420
- data = {"col_0": [9, -3, 0, -1, 5], "col_1": [-2, -7, 6, 8, -5]}
- df = DataFrame(data)
- t = Series([2, -4, np.NaN, 6, 3])
- result = df.clip(lower=t, axis=0)
- expected = DataFrame({"col_0": [9, -3, 0, 6, 5], "col_1": [2, -4, 6, 8, 3]})
- tm.assert_frame_equal(result, expected)
|