123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- from datetime import datetime
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- DatetimeIndex,
- Series,
- date_range,
- period_range,
- to_datetime,
- )
- import pandas._testing as tm
- from pandas.tseries import offsets
- class TestAsFreq:
- @pytest.fixture(params=["s", "ms", "us", "ns"])
- def unit(self, request):
- return request.param
- def test_asfreq2(self, frame_or_series):
- ts = frame_or_series(
- [0.0, 1.0, 2.0],
- index=DatetimeIndex(
- [
- datetime(2009, 10, 30),
- datetime(2009, 11, 30),
- datetime(2009, 12, 31),
- ],
- freq="BM",
- ),
- )
- daily_ts = ts.asfreq("B")
- monthly_ts = daily_ts.asfreq("BM")
- tm.assert_equal(monthly_ts, ts)
- daily_ts = ts.asfreq("B", method="pad")
- monthly_ts = daily_ts.asfreq("BM")
- tm.assert_equal(monthly_ts, ts)
- daily_ts = ts.asfreq(offsets.BDay())
- monthly_ts = daily_ts.asfreq(offsets.BMonthEnd())
- tm.assert_equal(monthly_ts, ts)
- result = ts[:0].asfreq("M")
- assert len(result) == 0
- assert result is not ts
- if frame_or_series is Series:
- daily_ts = ts.asfreq("D", fill_value=-1)
- result = daily_ts.value_counts().sort_index()
- expected = Series(
- [60, 1, 1, 1], index=[-1.0, 2.0, 1.0, 0.0], name="count"
- ).sort_index()
- tm.assert_series_equal(result, expected)
- def test_asfreq_datetimeindex_empty(self, frame_or_series):
- # GH#14320
- index = DatetimeIndex(["2016-09-29 11:00"])
- expected = frame_or_series(index=index, dtype=object).asfreq("H")
- result = frame_or_series([3], index=index.copy()).asfreq("H")
- tm.assert_index_equal(expected.index, result.index)
- @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
- def test_tz_aware_asfreq_smoke(self, tz, frame_or_series):
- dr = date_range("2011-12-01", "2012-07-20", freq="D", tz=tz)
- obj = frame_or_series(np.random.randn(len(dr)), index=dr)
- # it works!
- obj.asfreq("T")
- def test_asfreq_normalize(self, frame_or_series):
- rng = date_range("1/1/2000 09:30", periods=20)
- norm = date_range("1/1/2000", periods=20)
- vals = np.random.randn(20, 3)
- obj = DataFrame(vals, index=rng)
- expected = DataFrame(vals, index=norm)
- if frame_or_series is Series:
- obj = obj[0]
- expected = expected[0]
- result = obj.asfreq("D", normalize=True)
- tm.assert_equal(result, expected)
- def test_asfreq_keep_index_name(self, frame_or_series):
- # GH#9854
- index_name = "bar"
- index = date_range("20130101", periods=20, name=index_name)
- obj = DataFrame(list(range(20)), columns=["foo"], index=index)
- obj = tm.get_obj(obj, frame_or_series)
- assert index_name == obj.index.name
- assert index_name == obj.asfreq("10D").index.name
- def test_asfreq_ts(self, frame_or_series):
- index = period_range(freq="A", start="1/1/2001", end="12/31/2010")
- obj = DataFrame(np.random.randn(len(index), 3), index=index)
- obj = tm.get_obj(obj, frame_or_series)
- result = obj.asfreq("D", how="end")
- exp_index = index.asfreq("D", how="end")
- assert len(result) == len(obj)
- tm.assert_index_equal(result.index, exp_index)
- result = obj.asfreq("D", how="start")
- exp_index = index.asfreq("D", how="start")
- assert len(result) == len(obj)
- tm.assert_index_equal(result.index, exp_index)
- def test_asfreq_resample_set_correct_freq(self, frame_or_series):
- # GH#5613
- # we test if .asfreq() and .resample() set the correct value for .freq
- dti = to_datetime(["2012-01-01", "2012-01-02", "2012-01-03"])
- obj = DataFrame({"col": [1, 2, 3]}, index=dti)
- obj = tm.get_obj(obj, frame_or_series)
- # testing the settings before calling .asfreq() and .resample()
- assert obj.index.freq is None
- assert obj.index.inferred_freq == "D"
- # does .asfreq() set .freq correctly?
- assert obj.asfreq("D").index.freq == "D"
- # does .resample() set .freq correctly?
- assert obj.resample("D").asfreq().index.freq == "D"
- def test_asfreq_empty(self, datetime_frame):
- # test does not blow up on length-0 DataFrame
- zero_length = datetime_frame.reindex([])
- result = zero_length.asfreq("BM")
- assert result is not zero_length
- def test_asfreq(self, datetime_frame):
- offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd())
- rule_monthly = datetime_frame.asfreq("BM")
- tm.assert_frame_equal(offset_monthly, rule_monthly)
- filled = rule_monthly.asfreq("B", method="pad") # noqa
- # TODO: actually check that this worked.
- # don't forget!
- filled_dep = rule_monthly.asfreq("B", method="pad") # noqa
- def test_asfreq_datetimeindex(self):
- df = DataFrame(
- {"A": [1, 2, 3]},
- index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
- )
- df = df.asfreq("B")
- assert isinstance(df.index, DatetimeIndex)
- ts = df["A"].asfreq("B")
- assert isinstance(ts.index, DatetimeIndex)
- def test_asfreq_fillvalue(self):
- # test for fill value during upsampling, related to issue 3715
- # setup
- rng = date_range("1/1/2016", periods=10, freq="2S")
- # Explicit cast to 'float' to avoid implicit cast when setting None
- ts = Series(np.arange(len(rng)), index=rng, dtype="float")
- df = DataFrame({"one": ts})
- # insert pre-existing missing value
- df.loc["2016-01-01 00:00:08", "one"] = None
- actual_df = df.asfreq(freq="1S", fill_value=9.0)
- expected_df = df.asfreq(freq="1S").fillna(9.0)
- expected_df.loc["2016-01-01 00:00:08", "one"] = None
- tm.assert_frame_equal(expected_df, actual_df)
- expected_series = ts.asfreq(freq="1S").fillna(9.0)
- actual_series = ts.asfreq(freq="1S", fill_value=9.0)
- tm.assert_series_equal(expected_series, actual_series)
- def test_asfreq_with_date_object_index(self, frame_or_series):
- rng = date_range("1/1/2000", periods=20)
- ts = frame_or_series(np.random.randn(20), index=rng)
- ts2 = ts.copy()
- ts2.index = [x.date() for x in ts2.index]
- result = ts2.asfreq("4H", method="ffill")
- expected = ts.asfreq("4H", method="ffill")
- tm.assert_equal(result, expected)
- def test_asfreq_with_unsorted_index(self, frame_or_series):
- # GH#39805
- # Test that rows are not dropped when the datetime index is out of order
- index = to_datetime(["2021-01-04", "2021-01-02", "2021-01-03", "2021-01-01"])
- result = frame_or_series(range(4), index=index)
- expected = result.reindex(sorted(index))
- expected.index = expected.index._with_freq("infer")
- result = result.asfreq("D")
- tm.assert_equal(result, expected)
- def test_asfreq_after_normalize(self, unit):
- # https://github.com/pandas-dev/pandas/issues/50727
- result = DatetimeIndex(
- date_range("2000", periods=2).as_unit(unit).normalize(), freq="D"
- )
- expected = DatetimeIndex(["2000-01-01", "2000-01-02"], freq="D").as_unit(unit)
- tm.assert_index_equal(result, expected)
|