test_asfreq.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. from datetime import datetime
  2. import numpy as np
  3. import pytest
  4. from pandas import (
  5. DataFrame,
  6. DatetimeIndex,
  7. Series,
  8. date_range,
  9. period_range,
  10. to_datetime,
  11. )
  12. import pandas._testing as tm
  13. from pandas.tseries import offsets
  14. class TestAsFreq:
  15. @pytest.fixture(params=["s", "ms", "us", "ns"])
  16. def unit(self, request):
  17. return request.param
  18. def test_asfreq2(self, frame_or_series):
  19. ts = frame_or_series(
  20. [0.0, 1.0, 2.0],
  21. index=DatetimeIndex(
  22. [
  23. datetime(2009, 10, 30),
  24. datetime(2009, 11, 30),
  25. datetime(2009, 12, 31),
  26. ],
  27. freq="BM",
  28. ),
  29. )
  30. daily_ts = ts.asfreq("B")
  31. monthly_ts = daily_ts.asfreq("BM")
  32. tm.assert_equal(monthly_ts, ts)
  33. daily_ts = ts.asfreq("B", method="pad")
  34. monthly_ts = daily_ts.asfreq("BM")
  35. tm.assert_equal(monthly_ts, ts)
  36. daily_ts = ts.asfreq(offsets.BDay())
  37. monthly_ts = daily_ts.asfreq(offsets.BMonthEnd())
  38. tm.assert_equal(monthly_ts, ts)
  39. result = ts[:0].asfreq("M")
  40. assert len(result) == 0
  41. assert result is not ts
  42. if frame_or_series is Series:
  43. daily_ts = ts.asfreq("D", fill_value=-1)
  44. result = daily_ts.value_counts().sort_index()
  45. expected = Series(
  46. [60, 1, 1, 1], index=[-1.0, 2.0, 1.0, 0.0], name="count"
  47. ).sort_index()
  48. tm.assert_series_equal(result, expected)
  49. def test_asfreq_datetimeindex_empty(self, frame_or_series):
  50. # GH#14320
  51. index = DatetimeIndex(["2016-09-29 11:00"])
  52. expected = frame_or_series(index=index, dtype=object).asfreq("H")
  53. result = frame_or_series([3], index=index.copy()).asfreq("H")
  54. tm.assert_index_equal(expected.index, result.index)
  55. @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
  56. def test_tz_aware_asfreq_smoke(self, tz, frame_or_series):
  57. dr = date_range("2011-12-01", "2012-07-20", freq="D", tz=tz)
  58. obj = frame_or_series(np.random.randn(len(dr)), index=dr)
  59. # it works!
  60. obj.asfreq("T")
  61. def test_asfreq_normalize(self, frame_or_series):
  62. rng = date_range("1/1/2000 09:30", periods=20)
  63. norm = date_range("1/1/2000", periods=20)
  64. vals = np.random.randn(20, 3)
  65. obj = DataFrame(vals, index=rng)
  66. expected = DataFrame(vals, index=norm)
  67. if frame_or_series is Series:
  68. obj = obj[0]
  69. expected = expected[0]
  70. result = obj.asfreq("D", normalize=True)
  71. tm.assert_equal(result, expected)
  72. def test_asfreq_keep_index_name(self, frame_or_series):
  73. # GH#9854
  74. index_name = "bar"
  75. index = date_range("20130101", periods=20, name=index_name)
  76. obj = DataFrame(list(range(20)), columns=["foo"], index=index)
  77. obj = tm.get_obj(obj, frame_or_series)
  78. assert index_name == obj.index.name
  79. assert index_name == obj.asfreq("10D").index.name
  80. def test_asfreq_ts(self, frame_or_series):
  81. index = period_range(freq="A", start="1/1/2001", end="12/31/2010")
  82. obj = DataFrame(np.random.randn(len(index), 3), index=index)
  83. obj = tm.get_obj(obj, frame_or_series)
  84. result = obj.asfreq("D", how="end")
  85. exp_index = index.asfreq("D", how="end")
  86. assert len(result) == len(obj)
  87. tm.assert_index_equal(result.index, exp_index)
  88. result = obj.asfreq("D", how="start")
  89. exp_index = index.asfreq("D", how="start")
  90. assert len(result) == len(obj)
  91. tm.assert_index_equal(result.index, exp_index)
  92. def test_asfreq_resample_set_correct_freq(self, frame_or_series):
  93. # GH#5613
  94. # we test if .asfreq() and .resample() set the correct value for .freq
  95. dti = to_datetime(["2012-01-01", "2012-01-02", "2012-01-03"])
  96. obj = DataFrame({"col": [1, 2, 3]}, index=dti)
  97. obj = tm.get_obj(obj, frame_or_series)
  98. # testing the settings before calling .asfreq() and .resample()
  99. assert obj.index.freq is None
  100. assert obj.index.inferred_freq == "D"
  101. # does .asfreq() set .freq correctly?
  102. assert obj.asfreq("D").index.freq == "D"
  103. # does .resample() set .freq correctly?
  104. assert obj.resample("D").asfreq().index.freq == "D"
  105. def test_asfreq_empty(self, datetime_frame):
  106. # test does not blow up on length-0 DataFrame
  107. zero_length = datetime_frame.reindex([])
  108. result = zero_length.asfreq("BM")
  109. assert result is not zero_length
  110. def test_asfreq(self, datetime_frame):
  111. offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd())
  112. rule_monthly = datetime_frame.asfreq("BM")
  113. tm.assert_frame_equal(offset_monthly, rule_monthly)
  114. filled = rule_monthly.asfreq("B", method="pad") # noqa
  115. # TODO: actually check that this worked.
  116. # don't forget!
  117. filled_dep = rule_monthly.asfreq("B", method="pad") # noqa
  118. def test_asfreq_datetimeindex(self):
  119. df = DataFrame(
  120. {"A": [1, 2, 3]},
  121. index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
  122. )
  123. df = df.asfreq("B")
  124. assert isinstance(df.index, DatetimeIndex)
  125. ts = df["A"].asfreq("B")
  126. assert isinstance(ts.index, DatetimeIndex)
  127. def test_asfreq_fillvalue(self):
  128. # test for fill value during upsampling, related to issue 3715
  129. # setup
  130. rng = date_range("1/1/2016", periods=10, freq="2S")
  131. # Explicit cast to 'float' to avoid implicit cast when setting None
  132. ts = Series(np.arange(len(rng)), index=rng, dtype="float")
  133. df = DataFrame({"one": ts})
  134. # insert pre-existing missing value
  135. df.loc["2016-01-01 00:00:08", "one"] = None
  136. actual_df = df.asfreq(freq="1S", fill_value=9.0)
  137. expected_df = df.asfreq(freq="1S").fillna(9.0)
  138. expected_df.loc["2016-01-01 00:00:08", "one"] = None
  139. tm.assert_frame_equal(expected_df, actual_df)
  140. expected_series = ts.asfreq(freq="1S").fillna(9.0)
  141. actual_series = ts.asfreq(freq="1S", fill_value=9.0)
  142. tm.assert_series_equal(expected_series, actual_series)
  143. def test_asfreq_with_date_object_index(self, frame_or_series):
  144. rng = date_range("1/1/2000", periods=20)
  145. ts = frame_or_series(np.random.randn(20), index=rng)
  146. ts2 = ts.copy()
  147. ts2.index = [x.date() for x in ts2.index]
  148. result = ts2.asfreq("4H", method="ffill")
  149. expected = ts.asfreq("4H", method="ffill")
  150. tm.assert_equal(result, expected)
  151. def test_asfreq_with_unsorted_index(self, frame_or_series):
  152. # GH#39805
  153. # Test that rows are not dropped when the datetime index is out of order
  154. index = to_datetime(["2021-01-04", "2021-01-02", "2021-01-03", "2021-01-01"])
  155. result = frame_or_series(range(4), index=index)
  156. expected = result.reindex(sorted(index))
  157. expected.index = expected.index._with_freq("infer")
  158. result = result.asfreq("D")
  159. tm.assert_equal(result, expected)
  160. def test_asfreq_after_normalize(self, unit):
  161. # https://github.com/pandas-dev/pandas/issues/50727
  162. result = DatetimeIndex(
  163. date_range("2000", periods=2).as_unit(unit).normalize(), freq="D"
  164. )
  165. expected = DatetimeIndex(["2000-01-01", "2000-01-02"], freq="D").as_unit(unit)
  166. tm.assert_index_equal(result, expected)