123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- import re
- import numpy as np
- import pytest
- from pandas.errors import SettingWithCopyError
- from pandas import (
- DataFrame,
- Index,
- IndexSlice,
- MultiIndex,
- Series,
- concat,
- )
- import pandas._testing as tm
- from pandas.tseries.offsets import BDay
- @pytest.fixture
- def four_level_index_dataframe():
- arr = np.array(
- [
- [-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
- [0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
- [-0.6662, -0.5243, -0.358, 0.89145, 2.5838],
- ]
- )
- index = MultiIndex(
- levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]],
- codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]],
- names=["one", "two", "three", "four"],
- )
- return DataFrame(arr, index=index, columns=list("ABCDE"))
- class TestXS:
- def test_xs(self, float_frame, datetime_frame, using_copy_on_write):
- float_frame_orig = float_frame.copy()
- idx = float_frame.index[5]
- xs = float_frame.xs(idx)
- for item, value in xs.items():
- if np.isnan(value):
- assert np.isnan(float_frame[item][idx])
- else:
- assert value == float_frame[item][idx]
- # mixed-type xs
- test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
- frame = DataFrame(test_data)
- xs = frame.xs("1")
- assert xs.dtype == np.object_
- assert xs["A"] == 1
- assert xs["B"] == "1"
- with pytest.raises(
- KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00')")
- ):
- datetime_frame.xs(datetime_frame.index[0] - BDay())
- # xs get column
- series = float_frame.xs("A", axis=1)
- expected = float_frame["A"]
- tm.assert_series_equal(series, expected)
- # view is returned if possible
- series = float_frame.xs("A", axis=1)
- series[:] = 5
- if using_copy_on_write:
- # but with CoW the view shouldn't propagate mutations
- tm.assert_series_equal(float_frame["A"], float_frame_orig["A"])
- assert not (expected == 5).all()
- else:
- assert (expected == 5).all()
- def test_xs_corner(self):
- # pathological mixed-type reordering case
- df = DataFrame(index=[0])
- df["A"] = 1.0
- df["B"] = "foo"
- df["C"] = 2.0
- df["D"] = "bar"
- df["E"] = 3.0
- xs = df.xs(0)
- exp = Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0)
- tm.assert_series_equal(xs, exp)
- # no columns but Index(dtype=object)
- df = DataFrame(index=["a", "b", "c"])
- result = df.xs("a")
- expected = Series([], name="a", dtype=np.float64)
- tm.assert_series_equal(result, expected)
- def test_xs_duplicates(self):
- df = DataFrame(np.random.randn(5, 2), index=["b", "b", "c", "b", "a"])
- cross = df.xs("c")
- exp = df.iloc[2]
- tm.assert_series_equal(cross, exp)
- def test_xs_keep_level(self):
- df = DataFrame(
- {
- "day": {0: "sat", 1: "sun"},
- "flavour": {0: "strawberry", 1: "strawberry"},
- "sales": {0: 10, 1: 12},
- "year": {0: 2008, 1: 2008},
- }
- ).set_index(["year", "flavour", "day"])
- result = df.xs("sat", level="day", drop_level=False)
- expected = df[:1]
- tm.assert_frame_equal(result, expected)
- result = df.xs((2008, "sat"), level=["year", "day"], drop_level=False)
- tm.assert_frame_equal(result, expected)
- def test_xs_view(self, using_array_manager, using_copy_on_write):
- # in 0.14 this will return a view if possible a copy otherwise, but
- # this is numpy dependent
- dm = DataFrame(np.arange(20.0).reshape(4, 5), index=range(4), columns=range(5))
- df_orig = dm.copy()
- if using_copy_on_write:
- with tm.raises_chained_assignment_error():
- dm.xs(2)[:] = 20
- tm.assert_frame_equal(dm, df_orig)
- elif using_array_manager:
- # INFO(ArrayManager) with ArrayManager getting a row as a view is
- # not possible
- msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame"
- with pytest.raises(SettingWithCopyError, match=msg):
- dm.xs(2)[:] = 20
- assert not (dm.xs(2) == 20).any()
- else:
- dm.xs(2)[:] = 20
- assert (dm.xs(2) == 20).all()
- class TestXSWithMultiIndex:
- def test_xs_doc_example(self):
- # TODO: more descriptive name
- # based on example in advanced.rst
- arrays = [
- ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
- ["one", "two", "one", "two", "one", "two", "one", "two"],
- ]
- tuples = list(zip(*arrays))
- index = MultiIndex.from_tuples(tuples, names=["first", "second"])
- df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
- result = df.xs(("one", "bar"), level=("second", "first"), axis=1)
- expected = df.iloc[:, [0]]
- tm.assert_frame_equal(result, expected)
- def test_xs_integer_key(self):
- # see GH#2107
- dates = range(20111201, 20111205)
- ids = list("abcde")
- index = MultiIndex.from_product([dates, ids], names=["date", "secid"])
- df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"])
- result = df.xs(20111201, level="date")
- expected = df.loc[20111201, :]
- tm.assert_frame_equal(result, expected)
- def test_xs_level(self, multiindex_dataframe_random_data):
- df = multiindex_dataframe_random_data
- result = df.xs("two", level="second")
- expected = df[df.index.get_level_values(1) == "two"]
- expected.index = Index(["foo", "bar", "baz", "qux"], name="first")
- tm.assert_frame_equal(result, expected)
- def test_xs_level_eq_2(self):
- arr = np.random.randn(3, 5)
- index = MultiIndex(
- levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]],
- codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]],
- )
- df = DataFrame(arr, index=index)
- expected = DataFrame(arr[1:2], index=[["a"], ["b"]])
- result = df.xs("c", level=2)
- tm.assert_frame_equal(result, expected)
- def test_xs_setting_with_copy_error(
- self, multiindex_dataframe_random_data, using_copy_on_write
- ):
- # this is a copy in 0.14
- df = multiindex_dataframe_random_data
- df_orig = df.copy()
- result = df.xs("two", level="second")
- if using_copy_on_write:
- result[:] = 10
- else:
- # setting this will give a SettingWithCopyError
- # as we are trying to write a view
- msg = "A value is trying to be set on a copy of a slice from a DataFrame"
- with pytest.raises(SettingWithCopyError, match=msg):
- result[:] = 10
- tm.assert_frame_equal(df, df_orig)
- def test_xs_setting_with_copy_error_multiple(
- self, four_level_index_dataframe, using_copy_on_write
- ):
- # this is a copy in 0.14
- df = four_level_index_dataframe
- df_orig = df.copy()
- result = df.xs(("a", 4), level=["one", "four"])
- if using_copy_on_write:
- result[:] = 10
- else:
- # setting this will give a SettingWithCopyError
- # as we are trying to write a view
- msg = "A value is trying to be set on a copy of a slice from a DataFrame"
- with pytest.raises(SettingWithCopyError, match=msg):
- result[:] = 10
- tm.assert_frame_equal(df, df_orig)
- @pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])])
- def test_xs_with_duplicates(self, key, level, multiindex_dataframe_random_data):
- # see GH#13719
- frame = multiindex_dataframe_random_data
- df = concat([frame] * 2)
- assert df.index.is_unique is False
- expected = concat([frame.xs("one", level="second")] * 2)
- if isinstance(key, list):
- result = df.xs(tuple(key), level=level)
- else:
- result = df.xs(key, level=level)
- tm.assert_frame_equal(result, expected)
- def test_xs_missing_values_in_index(self):
- # see GH#6574
- # missing values in returned index should be preserved
- acc = [
- ("a", "abcde", 1),
- ("b", "bbcde", 2),
- ("y", "yzcde", 25),
- ("z", "xbcde", 24),
- ("z", None, 26),
- ("z", "zbcde", 25),
- ("z", "ybcde", 26),
- ]
- df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"])
- expected = DataFrame(
- {"cnt": [24, 26, 25, 26]},
- index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"),
- )
- result = df.xs("z", level="a1")
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "key, level, exp_arr, exp_index",
- [
- ("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")),
- ("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")),
- ],
- )
- def test_xs_named_levels_axis_eq_1(self, key, level, exp_arr, exp_index):
- # see GH#2903
- arr = np.random.randn(4, 4)
- index = MultiIndex(
- levels=[["a", "b"], ["bar", "foo", "hello", "world"]],
- codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
- names=["lvl0", "lvl1"],
- )
- df = DataFrame(arr, columns=index)
- result = df.xs(key, level=level, axis=1)
- expected = DataFrame(exp_arr(arr), columns=exp_index)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "indexer",
- [
- lambda df: df.xs(("a", 4), level=["one", "four"]),
- lambda df: df.xs("a").xs(4, level="four"),
- ],
- )
- def test_xs_level_multiple(self, indexer, four_level_index_dataframe):
- df = four_level_index_dataframe
- expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
- expected_index = MultiIndex(
- levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"]
- )
- expected = DataFrame(
- expected_values, index=expected_index, columns=list("ABCDE")
- )
- result = indexer(df)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")]
- )
- def test_xs_level0(self, indexer, four_level_index_dataframe):
- df = four_level_index_dataframe
- expected_values = [
- [-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
- [0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
- ]
- expected_index = MultiIndex(
- levels=[["b", "q"], [10.0032, 20.0], [4, 5]],
- codes=[[0, 1], [0, 1], [1, 0]],
- names=["two", "three", "four"],
- )
- expected = DataFrame(
- expected_values, index=expected_index, columns=list("ABCDE")
- )
- result = indexer(df)
- tm.assert_frame_equal(result, expected)
- def test_xs_values(self, multiindex_dataframe_random_data):
- df = multiindex_dataframe_random_data
- result = df.xs(("bar", "two")).values
- expected = df.values[4]
- tm.assert_almost_equal(result, expected)
- def test_xs_loc_equality(self, multiindex_dataframe_random_data):
- df = multiindex_dataframe_random_data
- result = df.xs(("bar", "two"))
- expected = df.loc[("bar", "two")]
- tm.assert_series_equal(result, expected)
- def test_xs_IndexSlice_argument_not_implemented(self, frame_or_series):
- # GH#35301
- index = MultiIndex(
- levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
- codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
- )
- obj = DataFrame(np.random.randn(6, 4), index=index)
- if frame_or_series is Series:
- obj = obj[0]
- expected = obj.iloc[-2:].droplevel(0)
- result = obj.xs(IndexSlice[("foo", "qux", 0), :])
- tm.assert_equal(result, expected)
- result = obj.loc[IndexSlice[("foo", "qux", 0), :]]
- tm.assert_equal(result, expected)
- def test_xs_levels_raises(self, frame_or_series):
- obj = DataFrame({"A": [1, 2, 3]})
- if frame_or_series is Series:
- obj = obj["A"]
- msg = "Index must be a MultiIndex"
- with pytest.raises(TypeError, match=msg):
- obj.xs(0, level="as")
- def test_xs_multiindex_droplevel_false(self):
- # GH#19056
- mi = MultiIndex.from_tuples(
- [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
- )
- df = DataFrame([[1, 2, 3]], columns=mi)
- result = df.xs("a", axis=1, drop_level=False)
- expected = DataFrame(
- [[1, 2]],
- columns=MultiIndex.from_tuples(
- [("a", "x"), ("a", "y")], names=["level1", "level2"]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_xs_droplevel_false(self):
- # GH#19056
- df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
- result = df.xs("a", axis=1, drop_level=False)
- expected = DataFrame({"a": [1]})
- tm.assert_frame_equal(result, expected)
- def test_xs_droplevel_false_view(self, using_array_manager, using_copy_on_write):
- # GH#37832
- df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
- result = df.xs("a", axis=1, drop_level=False)
- # check that result still views the same data as df
- assert np.shares_memory(result.iloc[:, 0]._values, df.iloc[:, 0]._values)
- df.iloc[0, 0] = 2
- if using_copy_on_write:
- # with copy on write the subset is never modified
- expected = DataFrame({"a": [1]})
- else:
- # modifying original df also modifies result when having a single block
- expected = DataFrame({"a": [2]})
- tm.assert_frame_equal(result, expected)
- # with mixed dataframe, modifying the parent doesn't modify result
- # TODO the "split" path behaves differently here as with single block
- df = DataFrame([[1, 2.5, "a"]], columns=Index(["a", "b", "c"]))
- result = df.xs("a", axis=1, drop_level=False)
- df.iloc[0, 0] = 2
- if using_copy_on_write:
- # with copy on write the subset is never modified
- expected = DataFrame({"a": [1]})
- elif using_array_manager:
- # Here the behavior is consistent
- expected = DataFrame({"a": [2]})
- else:
- # FIXME: iloc does not update the array inplace using
- # "split" path
- expected = DataFrame({"a": [1]})
- tm.assert_frame_equal(result, expected)
- def test_xs_list_indexer_droplevel_false(self):
- # GH#41760
- mi = MultiIndex.from_tuples([("x", "m", "a"), ("x", "n", "b"), ("y", "o", "c")])
- df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=mi)
- with pytest.raises(KeyError, match="y"):
- df.xs(("x", "y"), drop_level=False, axis=1)
|