1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036 |
- from datetime import datetime
- from hypothesis import given
- import numpy as np
- import pytest
- from pandas.core.dtypes.common import is_scalar
- import pandas as pd
- from pandas import (
- DataFrame,
- DatetimeIndex,
- Index,
- Series,
- StringDtype,
- Timestamp,
- date_range,
- isna,
- )
- import pandas._testing as tm
- from pandas._testing._hypothesis import OPTIONAL_ONE_OF_ALL
- @pytest.fixture(params=["default", "float_string", "mixed_float", "mixed_int"])
- def where_frame(request, float_string_frame, mixed_float_frame, mixed_int_frame):
- if request.param == "default":
- return DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])
- if request.param == "float_string":
- return float_string_frame
- if request.param == "mixed_float":
- return mixed_float_frame
- if request.param == "mixed_int":
- return mixed_int_frame
- def _safe_add(df):
- # only add to the numeric items
- def is_ok(s):
- return (
- issubclass(s.dtype.type, (np.integer, np.floating)) and s.dtype != "uint8"
- )
- return DataFrame(dict((c, s + 1) if is_ok(s) else (c, s) for c, s in df.items()))
- class TestDataFrameIndexingWhere:
- def test_where_get(self, where_frame, float_string_frame):
- def _check_get(df, cond, check_dtypes=True):
- other1 = _safe_add(df)
- rs = df.where(cond, other1)
- rs2 = df.where(cond.values, other1)
- for k, v in rs.items():
- exp = Series(np.where(cond[k], df[k], other1[k]), index=v.index)
- tm.assert_series_equal(v, exp, check_names=False)
- tm.assert_frame_equal(rs, rs2)
- # dtypes
- if check_dtypes:
- assert (rs.dtypes == df.dtypes).all()
- # check getting
- df = where_frame
- if df is float_string_frame:
- msg = "'>' not supported between instances of 'str' and 'int'"
- with pytest.raises(TypeError, match=msg):
- df > 0
- return
- cond = df > 0
- _check_get(df, cond)
- def test_where_upcasting(self):
- # upcasting case (GH # 2794)
- df = DataFrame(
- {
- c: Series([1] * 3, dtype=c)
- for c in ["float32", "float64", "int32", "int64"]
- }
- )
- df.iloc[1, :] = 0
- result = df.dtypes
- expected = Series(
- [
- np.dtype("float32"),
- np.dtype("float64"),
- np.dtype("int32"),
- np.dtype("int64"),
- ],
- index=["float32", "float64", "int32", "int64"],
- )
- # when we don't preserve boolean casts
- #
- # expected = Series({ 'float32' : 1, 'float64' : 3 })
- tm.assert_series_equal(result, expected)
- def test_where_alignment(self, where_frame, float_string_frame):
- # aligning
- def _check_align(df, cond, other, check_dtypes=True):
- rs = df.where(cond, other)
- for i, k in enumerate(rs.columns):
- result = rs[k]
- d = df[k].values
- c = cond[k].reindex(df[k].index).fillna(False).values
- if is_scalar(other):
- o = other
- else:
- if isinstance(other, np.ndarray):
- o = Series(other[:, i], index=result.index).values
- else:
- o = other[k].values
- new_values = d if c.all() else np.where(c, d, o)
- expected = Series(new_values, index=result.index, name=k)
- # since we can't always have the correct numpy dtype
- # as numpy doesn't know how to downcast, don't check
- tm.assert_series_equal(result, expected, check_dtype=False)
- # dtypes
- # can't check dtype when other is an ndarray
- if check_dtypes and not isinstance(other, np.ndarray):
- assert (rs.dtypes == df.dtypes).all()
- df = where_frame
- if df is float_string_frame:
- msg = "'>' not supported between instances of 'str' and 'int'"
- with pytest.raises(TypeError, match=msg):
- df > 0
- return
- # other is a frame
- cond = (df > 0)[1:]
- _check_align(df, cond, _safe_add(df))
- # check other is ndarray
- cond = df > 0
- _check_align(df, cond, (_safe_add(df).values))
- # integers are upcast, so don't check the dtypes
- cond = df > 0
- check_dtypes = all(not issubclass(s.type, np.integer) for s in df.dtypes)
- _check_align(df, cond, np.nan, check_dtypes=check_dtypes)
- def test_where_invalid(self):
- # invalid conditions
- df = DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])
- cond = df > 0
- err1 = (df + 1).values[0:2, :]
- msg = "other must be the same shape as self when an ndarray"
- with pytest.raises(ValueError, match=msg):
- df.where(cond, err1)
- err2 = cond.iloc[:2, :].values
- other1 = _safe_add(df)
- msg = "Array conditional must be same shape as self"
- with pytest.raises(ValueError, match=msg):
- df.where(err2, other1)
- with pytest.raises(ValueError, match=msg):
- df.mask(True)
- with pytest.raises(ValueError, match=msg):
- df.mask(0)
- def test_where_set(self, where_frame, float_string_frame):
- # where inplace
- def _check_set(df, cond, check_dtypes=True):
- dfi = df.copy()
- econd = cond.reindex_like(df).fillna(True)
- expected = dfi.mask(~econd)
- return_value = dfi.where(cond, np.nan, inplace=True)
- assert return_value is None
- tm.assert_frame_equal(dfi, expected)
- # dtypes (and confirm upcasts)x
- if check_dtypes:
- for k, v in df.dtypes.items():
- if issubclass(v.type, np.integer) and not cond[k].all():
- v = np.dtype("float64")
- assert dfi[k].dtype == v
- df = where_frame
- if df is float_string_frame:
- msg = "'>' not supported between instances of 'str' and 'int'"
- with pytest.raises(TypeError, match=msg):
- df > 0
- return
- cond = df > 0
- _check_set(df, cond)
- cond = df >= 0
- _check_set(df, cond)
- # aligning
- cond = (df >= 0)[1:]
- _check_set(df, cond)
- def test_where_series_slicing(self):
- # GH 10218
- # test DataFrame.where with Series slicing
- df = DataFrame({"a": range(3), "b": range(4, 7)})
- result = df.where(df["a"] == 1)
- expected = df[df["a"] == 1].reindex(df.index)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("klass", [list, tuple, np.array])
- def test_where_array_like(self, klass):
- # see gh-15414
- df = DataFrame({"a": [1, 2, 3]})
- cond = [[False], [True], [True]]
- expected = DataFrame({"a": [np.nan, 2, 3]})
- result = df.where(klass(cond))
- tm.assert_frame_equal(result, expected)
- df["b"] = 2
- expected["b"] = [2, np.nan, 2]
- cond = [[False, True], [True, False], [True, True]]
- result = df.where(klass(cond))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "cond",
- [
- [[1], [0], [1]],
- Series([[2], [5], [7]]),
- DataFrame({"a": [2, 5, 7]}),
- [["True"], ["False"], ["True"]],
- [[Timestamp("2017-01-01")], [pd.NaT], [Timestamp("2017-01-02")]],
- ],
- )
- def test_where_invalid_input_single(self, cond):
- # see gh-15414: only boolean arrays accepted
- df = DataFrame({"a": [1, 2, 3]})
- msg = "Boolean array expected for the condition"
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- @pytest.mark.parametrize(
- "cond",
- [
- [[0, 1], [1, 0], [1, 1]],
- Series([[0, 2], [5, 0], [4, 7]]),
- [["False", "True"], ["True", "False"], ["True", "True"]],
- DataFrame({"a": [2, 5, 7], "b": [4, 8, 9]}),
- [
- [pd.NaT, Timestamp("2017-01-01")],
- [Timestamp("2017-01-02"), pd.NaT],
- [Timestamp("2017-01-03"), Timestamp("2017-01-03")],
- ],
- ],
- )
- def test_where_invalid_input_multiple(self, cond):
- # see gh-15414: only boolean arrays accepted
- df = DataFrame({"a": [1, 2, 3], "b": [2, 2, 2]})
- msg = "Boolean array expected for the condition"
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- def test_where_dataframe_col_match(self):
- df = DataFrame([[1, 2, 3], [4, 5, 6]])
- cond = DataFrame([[True, False, True], [False, False, True]])
- result = df.where(cond)
- expected = DataFrame([[1.0, np.nan, 3], [np.nan, np.nan, 6]])
- tm.assert_frame_equal(result, expected)
- # this *does* align, though has no matching columns
- cond.columns = ["a", "b", "c"]
- result = df.where(cond)
- expected = DataFrame(np.nan, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result, expected)
- def test_where_ndframe_align(self):
- msg = "Array conditional must be same shape as self"
- df = DataFrame([[1, 2, 3], [4, 5, 6]])
- cond = [True]
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- expected = DataFrame([[1, 2, 3], [np.nan, np.nan, np.nan]])
- out = df.where(Series(cond))
- tm.assert_frame_equal(out, expected)
- cond = np.array([False, True, False, True])
- with pytest.raises(ValueError, match=msg):
- df.where(cond)
- expected = DataFrame([[np.nan, np.nan, np.nan], [4, 5, 6]])
- out = df.where(Series(cond))
- tm.assert_frame_equal(out, expected)
- def test_where_bug(self):
- # see gh-2793
- df = DataFrame(
- {"a": [1.0, 2.0, 3.0, 4.0], "b": [4.0, 3.0, 2.0, 1.0]}, dtype="float64"
- )
- expected = DataFrame(
- {"a": [np.nan, np.nan, 3.0, 4.0], "b": [4.0, 3.0, np.nan, np.nan]},
- dtype="float64",
- )
- result = df.where(df > 2, np.nan)
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(result > 2, np.nan, inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- def test_where_bug_mixed(self, any_signed_int_numpy_dtype):
- # see gh-2793
- df = DataFrame(
- {
- "a": np.array([1, 2, 3, 4], dtype=any_signed_int_numpy_dtype),
- "b": np.array([4.0, 3.0, 2.0, 1.0], dtype="float64"),
- }
- )
- expected = DataFrame(
- {"a": [np.nan, np.nan, 3.0, 4.0], "b": [4.0, 3.0, np.nan, np.nan]},
- dtype="float64",
- )
- result = df.where(df > 2, np.nan)
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(result > 2, np.nan, inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- def test_where_bug_transposition(self):
- # see gh-7506
- a = DataFrame({0: [1, 2], 1: [3, 4], 2: [5, 6]})
- b = DataFrame({0: [np.nan, 8], 1: [9, np.nan], 2: [np.nan, np.nan]})
- do_not_replace = b.isna() | (a > b)
- expected = a.copy()
- expected[~do_not_replace] = b
- result = a.where(do_not_replace, b)
- tm.assert_frame_equal(result, expected)
- a = DataFrame({0: [4, 6], 1: [1, 0]})
- b = DataFrame({0: [np.nan, 3], 1: [3, np.nan]})
- do_not_replace = b.isna() | (a > b)
- expected = a.copy()
- expected[~do_not_replace] = b
- result = a.where(do_not_replace, b)
- tm.assert_frame_equal(result, expected)
- def test_where_datetime(self):
- # GH 3311
- df = DataFrame(
- {
- "A": date_range("20130102", periods=5),
- "B": date_range("20130104", periods=5),
- "C": np.random.randn(5),
- }
- )
- stamp = datetime(2013, 1, 3)
- msg = "'>' not supported between instances of 'float' and 'datetime.datetime'"
- with pytest.raises(TypeError, match=msg):
- df > stamp
- result = df[df.iloc[:, :-1] > stamp]
- expected = df.copy()
- expected.loc[[0, 1], "A"] = np.nan
- expected.loc[:, "C"] = np.nan
- tm.assert_frame_equal(result, expected)
- def test_where_none(self):
- # GH 4667
- # setting with None changes dtype
- df = DataFrame({"series": Series(range(10))}).astype(float)
- df[df > 7] = None
- expected = DataFrame(
- {"series": Series([0, 1, 2, 3, 4, 5, 6, 7, np.nan, np.nan])}
- )
- tm.assert_frame_equal(df, expected)
- # GH 7656
- df = DataFrame(
- [
- {"A": 1, "B": np.nan, "C": "Test"},
- {"A": np.nan, "B": "Test", "C": np.nan},
- ]
- )
- msg = "boolean setting on mixed-type"
- with pytest.raises(TypeError, match=msg):
- df.where(~isna(df), None, inplace=True)
- def test_where_empty_df_and_empty_cond_having_non_bool_dtypes(self):
- # see gh-21947
- df = DataFrame(columns=["a"])
- cond = df
- assert (cond.dtypes == object).all()
- result = df.where(cond)
- tm.assert_frame_equal(result, df)
- def test_where_align(self):
- def create():
- df = DataFrame(np.random.randn(10, 3))
- df.iloc[3:5, 0] = np.nan
- df.iloc[4:6, 1] = np.nan
- df.iloc[5:8, 2] = np.nan
- return df
- # series
- df = create()
- expected = df.fillna(df.mean())
- result = df.where(pd.notna(df), df.mean(), axis="columns")
- tm.assert_frame_equal(result, expected)
- return_value = df.where(pd.notna(df), df.mean(), inplace=True, axis="columns")
- assert return_value is None
- tm.assert_frame_equal(df, expected)
- df = create().fillna(0)
- expected = df.apply(lambda x, y: x.where(x > 0, y), y=df[0])
- result = df.where(df > 0, df[0], axis="index")
- tm.assert_frame_equal(result, expected)
- result = df.where(df > 0, df[0], axis="rows")
- tm.assert_frame_equal(result, expected)
- # frame
- df = create()
- expected = df.fillna(1)
- result = df.where(
- pd.notna(df), DataFrame(1, index=df.index, columns=df.columns)
- )
- tm.assert_frame_equal(result, expected)
- def test_where_complex(self):
- # GH 6345
- expected = DataFrame([[1 + 1j, 2], [np.nan, 4 + 1j]], columns=["a", "b"])
- df = DataFrame([[1 + 1j, 2], [5 + 1j, 4 + 1j]], columns=["a", "b"])
- df[df.abs() >= 5] = np.nan
- tm.assert_frame_equal(df, expected)
- def test_where_axis(self):
- # GH 9736
- df = DataFrame(np.random.randn(2, 2))
- mask = DataFrame([[False, False], [False, False]])
- ser = Series([0, 1])
- expected = DataFrame([[0, 0], [1, 1]], dtype="float64")
- result = df.where(mask, ser, axis="index")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, ser, axis="index", inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- expected = DataFrame([[0, 1], [0, 1]], dtype="float64")
- result = df.where(mask, ser, axis="columns")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, ser, axis="columns", inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- def test_where_axis_with_upcast(self):
- # Upcast needed
- df = DataFrame([[1, 2], [3, 4]], dtype="int64")
- mask = DataFrame([[False, False], [False, False]])
- ser = Series([0, np.nan])
- expected = DataFrame([[0, 0], [np.nan, np.nan]], dtype="float64")
- result = df.where(mask, ser, axis="index")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, ser, axis="index", inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- expected = DataFrame([[0, np.nan], [0, np.nan]])
- result = df.where(mask, ser, axis="columns")
- tm.assert_frame_equal(result, expected)
- expected = DataFrame(
- {
- 0: np.array([0, 0], dtype="int64"),
- 1: np.array([np.nan, np.nan], dtype="float64"),
- }
- )
- result = df.copy()
- return_value = result.where(mask, ser, axis="columns", inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- def test_where_axis_multiple_dtypes(self):
- # Multiple dtypes (=> multiple Blocks)
- df = pd.concat(
- [
- DataFrame(np.random.randn(10, 2)),
- DataFrame(np.random.randint(0, 10, size=(10, 2)), dtype="int64"),
- ],
- ignore_index=True,
- axis=1,
- )
- mask = DataFrame(False, columns=df.columns, index=df.index)
- s1 = Series(1, index=df.columns)
- s2 = Series(2, index=df.index)
- result = df.where(mask, s1, axis="columns")
- expected = DataFrame(1.0, columns=df.columns, index=df.index)
- expected[2] = expected[2].astype("int64")
- expected[3] = expected[3].astype("int64")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, s1, axis="columns", inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- result = df.where(mask, s2, axis="index")
- expected = DataFrame(2.0, columns=df.columns, index=df.index)
- expected[2] = expected[2].astype("int64")
- expected[3] = expected[3].astype("int64")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, s2, axis="index", inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- # DataFrame vs DataFrame
- d1 = df.copy().drop(1, axis=0)
- # Explicit cast to avoid implicit cast when setting value to np.nan
- expected = df.copy().astype("float")
- expected.loc[1, :] = np.nan
- result = df.where(mask, d1)
- tm.assert_frame_equal(result, expected)
- result = df.where(mask, d1, axis="index")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, d1, inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, d1, inplace=True, axis="index")
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- d2 = df.copy().drop(1, axis=1)
- expected = df.copy()
- expected.loc[:, 1] = np.nan
- result = df.where(mask, d2)
- tm.assert_frame_equal(result, expected)
- result = df.where(mask, d2, axis="columns")
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, d2, inplace=True)
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- result = df.copy()
- return_value = result.where(mask, d2, inplace=True, axis="columns")
- assert return_value is None
- tm.assert_frame_equal(result, expected)
- def test_where_callable(self):
- # GH 12533
- df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- result = df.where(lambda x: x > 4, lambda x: x + 1)
- exp = DataFrame([[2, 3, 4], [5, 5, 6], [7, 8, 9]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, df.where(df > 4, df + 1))
- # return ndarray and scalar
- result = df.where(lambda x: (x % 2 == 0).values, lambda x: 99)
- exp = DataFrame([[99, 2, 99], [4, 99, 6], [99, 8, 99]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, df.where(df % 2 == 0, 99))
- # chain
- result = (df + 2).where(lambda x: x > 8, lambda x: x + 10)
- exp = DataFrame([[13, 14, 15], [16, 17, 18], [9, 10, 11]])
- tm.assert_frame_equal(result, exp)
- tm.assert_frame_equal(result, (df + 2).where((df + 2) > 8, (df + 2) + 10))
- def test_where_tz_values(self, tz_naive_fixture, frame_or_series):
- obj1 = DataFrame(
- DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
- columns=["date"],
- )
- obj2 = DataFrame(
- DatetimeIndex(["20150103", "20150104", "20150105"], tz=tz_naive_fixture),
- columns=["date"],
- )
- mask = DataFrame([True, True, False], columns=["date"])
- exp = DataFrame(
- DatetimeIndex(["20150101", "20150102", "20150105"], tz=tz_naive_fixture),
- columns=["date"],
- )
- if frame_or_series is Series:
- obj1 = obj1["date"]
- obj2 = obj2["date"]
- mask = mask["date"]
- exp = exp["date"]
- result = obj1.where(mask, obj2)
- tm.assert_equal(exp, result)
- def test_df_where_change_dtype(self):
- # GH#16979
- df = DataFrame(np.arange(2 * 3).reshape(2, 3), columns=list("ABC"))
- mask = np.array([[True, False, False], [False, False, True]])
- result = df.where(mask)
- expected = DataFrame(
- [[0, np.nan, np.nan], [np.nan, np.nan, 5]], columns=list("ABC")
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("kwargs", [{}, {"other": None}])
- def test_df_where_with_category(self, kwargs):
- # GH#16979
- data = np.arange(2 * 3, dtype=np.int64).reshape(2, 3)
- df = DataFrame(data, columns=list("ABC"))
- mask = np.array([[True, False, False], [False, False, True]])
- # change type to category
- df.A = df.A.astype("category")
- df.B = df.B.astype("category")
- df.C = df.C.astype("category")
- result = df.where(mask, **kwargs)
- A = pd.Categorical([0, np.nan], categories=[0, 3])
- B = pd.Categorical([np.nan, np.nan], categories=[1, 4])
- C = pd.Categorical([np.nan, 5], categories=[2, 5])
- expected = DataFrame({"A": A, "B": B, "C": C})
- tm.assert_frame_equal(result, expected)
- # Check Series.where while we're here
- result = df.A.where(mask[:, 0], **kwargs)
- expected = Series(A, name="A")
- tm.assert_series_equal(result, expected)
- def test_where_categorical_filtering(self):
- # GH#22609 Verify filtering operations on DataFrames with categorical Series
- df = DataFrame(data=[[0, 0], [1, 1]], columns=["a", "b"])
- df["b"] = df["b"].astype("category")
- result = df.where(df["a"] > 0)
- # Explicitly cast to 'float' to avoid implicit cast when setting np.nan
- expected = df.copy().astype({"a": "float"})
- expected.loc[0, :] = np.nan
- tm.assert_equal(result, expected)
- def test_where_ea_other(self):
- # GH#38729/GH#38742
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- arr = pd.array([7, pd.NA, 9])
- ser = Series(arr)
- mask = np.ones(df.shape, dtype=bool)
- mask[1, :] = False
- # TODO: ideally we would get Int64 instead of object
- result = df.where(mask, ser, axis=0)
- expected = DataFrame({"A": [1, pd.NA, 3], "B": [4, pd.NA, 6]}).astype(object)
- tm.assert_frame_equal(result, expected)
- ser2 = Series(arr[:2], index=["A", "B"])
- expected = DataFrame({"A": [1, 7, 3], "B": [4, pd.NA, 6]})
- expected["B"] = expected["B"].astype(object)
- result = df.where(mask, ser2, axis=1)
- tm.assert_frame_equal(result, expected)
- def test_where_interval_noop(self):
- # GH#44181
- df = DataFrame([pd.Interval(0, 0)])
- res = df.where(df.notna())
- tm.assert_frame_equal(res, df)
- ser = df[0]
- res = ser.where(ser.notna())
- tm.assert_series_equal(res, ser)
- def test_where_interval_fullop_downcast(self, frame_or_series):
- # GH#45768
- obj = frame_or_series([pd.Interval(0, 0)] * 2)
- other = frame_or_series([1.0, 2.0])
- res = obj.where(~obj.notna(), other)
- # since all entries are being changed, we will downcast result
- # from object to ints (not floats)
- tm.assert_equal(res, other.astype(np.int64))
- # unlike where, Block.putmask does not downcast
- obj.mask(obj.notna(), other, inplace=True)
- tm.assert_equal(obj, other.astype(object))
- @pytest.mark.parametrize(
- "dtype",
- [
- "timedelta64[ns]",
- "datetime64[ns]",
- "datetime64[ns, Asia/Tokyo]",
- "Period[D]",
- ],
- )
- def test_where_datetimelike_noop(self, dtype):
- # GH#45135, analogue to GH#44181 for Period don't raise on no-op
- # For td64/dt64/dt64tz we already don't raise, but also are
- # checking that we don't unnecessarily upcast to object.
- ser = Series(np.arange(3) * 10**9, dtype=np.int64).view(dtype)
- df = ser.to_frame()
- mask = np.array([False, False, False])
- res = ser.where(~mask, "foo")
- tm.assert_series_equal(res, ser)
- mask2 = mask.reshape(-1, 1)
- res2 = df.where(~mask2, "foo")
- tm.assert_frame_equal(res2, df)
- res3 = ser.mask(mask, "foo")
- tm.assert_series_equal(res3, ser)
- res4 = df.mask(mask2, "foo")
- tm.assert_frame_equal(res4, df)
- # opposite case where we are replacing *all* values -> we downcast
- # from object dtype # GH#45768
- res5 = df.where(mask2, 4)
- expected = DataFrame(4, index=df.index, columns=df.columns)
- tm.assert_frame_equal(res5, expected)
- # unlike where, Block.putmask does not downcast
- df.mask(~mask2, 4, inplace=True)
- tm.assert_frame_equal(df, expected.astype(object))
- def test_where_int_downcasting_deprecated():
- # GH#44597
- arr = np.arange(6).astype(np.int16).reshape(3, 2)
- df = DataFrame(arr)
- mask = np.zeros(arr.shape, dtype=bool)
- mask[:, 0] = True
- res = df.where(mask, 2**17)
- expected = DataFrame({0: arr[:, 0], 1: np.array([2**17] * 3, dtype=np.int32)})
- tm.assert_frame_equal(res, expected)
- def test_where_copies_with_noop(frame_or_series):
- # GH-39595
- result = frame_or_series([1, 2, 3, 4])
- expected = result.copy()
- col = result[0] if frame_or_series is DataFrame else result
- where_res = result.where(col < 5)
- where_res *= 2
- tm.assert_equal(result, expected)
- where_res = result.where(col > 5, [1, 2, 3, 4])
- where_res *= 2
- tm.assert_equal(result, expected)
- def test_where_string_dtype(frame_or_series):
- # GH40824
- obj = frame_or_series(
- ["a", "b", "c", "d"], index=["id1", "id2", "id3", "id4"], dtype=StringDtype()
- )
- filtered_obj = frame_or_series(
- ["b", "c"], index=["id2", "id3"], dtype=StringDtype()
- )
- filter_ser = Series([False, True, True, False])
- result = obj.where(filter_ser, filtered_obj)
- expected = frame_or_series(
- [pd.NA, "b", "c", pd.NA],
- index=["id1", "id2", "id3", "id4"],
- dtype=StringDtype(),
- )
- tm.assert_equal(result, expected)
- result = obj.mask(~filter_ser, filtered_obj)
- tm.assert_equal(result, expected)
- obj.mask(~filter_ser, filtered_obj, inplace=True)
- tm.assert_equal(result, expected)
- def test_where_bool_comparison():
- # GH 10336
- df_mask = DataFrame(
- {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False, True, False]}
- )
- result = df_mask.where(df_mask == False) # noqa:E712
- expected = DataFrame(
- {
- "AAA": np.array([np.nan] * 4, dtype=object),
- "BBB": [False] * 4,
- "CCC": [np.nan, False, np.nan, False],
- }
- )
- tm.assert_frame_equal(result, expected)
- def test_where_none_nan_coerce():
- # GH 15613
- expected = DataFrame(
- {
- "A": [Timestamp("20130101"), pd.NaT, Timestamp("20130103")],
- "B": [1, 2, np.nan],
- }
- )
- result = expected.where(expected.notnull(), None)
- tm.assert_frame_equal(result, expected)
- def test_where_duplicate_axes_mixed_dtypes():
- # GH 25399, verify manually masking is not affected anymore by dtype of column for
- # duplicate axes.
- result = DataFrame(data=[[0, np.nan]], columns=Index(["A", "A"]))
- index, columns = result.axes
- mask = DataFrame(data=[[True, True]], columns=columns, index=index)
- a = result.astype(object).where(mask)
- b = result.astype("f8").where(mask)
- c = result.T.where(mask.T).T
- d = result.where(mask) # used to fail with "cannot reindex from a duplicate axis"
- tm.assert_frame_equal(a.astype("f8"), b.astype("f8"))
- tm.assert_frame_equal(b.astype("f8"), c.astype("f8"))
- tm.assert_frame_equal(c.astype("f8"), d.astype("f8"))
- def test_where_columns_casting():
- # GH 42295
- df = DataFrame({"a": [1.0, 2.0], "b": [3, np.nan]})
- expected = df.copy()
- result = df.where(pd.notnull(df), None)
- # make sure dtypes don't change
- tm.assert_frame_equal(expected, result)
- @pytest.mark.parametrize("as_cat", [True, False])
- def test_where_period_invalid_na(frame_or_series, as_cat, request):
- # GH#44697
- idx = pd.period_range("2016-01-01", periods=3, freq="D")
- if as_cat:
- idx = idx.astype("category")
- obj = frame_or_series(idx)
- # NA value that we should *not* cast to Period dtype
- tdnat = pd.NaT.to_numpy("m8[ns]")
- mask = np.array([True, True, False], ndmin=obj.ndim).T
- if as_cat:
- msg = (
- r"Cannot setitem on a Categorical with a new category \(NaT\), "
- "set the categories first"
- )
- else:
- msg = "value should be a 'Period'"
- if as_cat:
- with pytest.raises(TypeError, match=msg):
- obj.where(mask, tdnat)
- with pytest.raises(TypeError, match=msg):
- obj.mask(mask, tdnat)
- with pytest.raises(TypeError, match=msg):
- obj.mask(mask, tdnat, inplace=True)
- else:
- # With PeriodDtype, ser[i] = tdnat coerces instead of raising,
- # so for consistency, ser[mask] = tdnat must as well
- expected = obj.astype(object).where(mask, tdnat)
- result = obj.where(mask, tdnat)
- tm.assert_equal(result, expected)
- expected = obj.astype(object).mask(mask, tdnat)
- result = obj.mask(mask, tdnat)
- tm.assert_equal(result, expected)
- obj.mask(mask, tdnat, inplace=True)
- tm.assert_equal(obj, expected)
- def test_where_nullable_invalid_na(frame_or_series, any_numeric_ea_dtype):
- # GH#44697
- arr = pd.array([1, 2, 3], dtype=any_numeric_ea_dtype)
- obj = frame_or_series(arr)
- mask = np.array([True, True, False], ndmin=obj.ndim).T
- msg = r"Invalid value '.*' for dtype (U?Int|Float)\d{1,2}"
- for null in tm.NP_NAT_OBJECTS + [pd.NaT]:
- # NaT is an NA value that we should *not* cast to pd.NA dtype
- with pytest.raises(TypeError, match=msg):
- obj.where(mask, null)
- with pytest.raises(TypeError, match=msg):
- obj.mask(mask, null)
- @given(data=OPTIONAL_ONE_OF_ALL)
- def test_where_inplace_casting(data):
- # GH 22051
- df = DataFrame({"a": data})
- df_copy = df.where(pd.notnull(df), None).copy()
- df.where(pd.notnull(df), None, inplace=True)
- tm.assert_equal(df, df_copy)
- def test_where_downcast_to_td64():
- ser = Series([1, 2, 3])
- mask = np.array([False, False, False])
- td = pd.Timedelta(days=1)
- res = ser.where(mask, td)
- expected = Series([td, td, td], dtype="m8[ns]")
- tm.assert_series_equal(res, expected)
- def _check_where_equivalences(df, mask, other, expected):
- # similar to tests.series.indexing.test_setitem.SetitemCastingEquivalences
- # but with DataFrame in mind and less fleshed-out
- res = df.where(mask, other)
- tm.assert_frame_equal(res, expected)
- res = df.mask(~mask, other)
- tm.assert_frame_equal(res, expected)
- # Note: frame.mask(~mask, other, inplace=True) takes some more work bc
- # Block.putmask does *not* downcast. The change to 'expected' here
- # is specific to the cases in test_where_dt64_2d.
- df = df.copy()
- df.mask(~mask, other, inplace=True)
- if not mask.all():
- # with mask.all(), Block.putmask is a no-op, so does not downcast
- expected = expected.copy()
- expected["A"] = expected["A"].astype(object)
- tm.assert_frame_equal(df, expected)
- def test_where_dt64_2d():
- dti = date_range("2016-01-01", periods=6)
- dta = dti._data.reshape(3, 2)
- other = dta - dta[0, 0]
- df = DataFrame(dta, columns=["A", "B"])
- mask = np.asarray(df.isna()).copy()
- mask[:, 1] = True
- # setting all of one column, none of the other
- expected = DataFrame({"A": other[:, 0], "B": dta[:, 1]})
- _check_where_equivalences(df, mask, other, expected)
- # setting part of one column, none of the other
- mask[1, 0] = True
- expected = DataFrame(
- {
- "A": np.array([other[0, 0], dta[1, 0], other[2, 0]], dtype=object),
- "B": dta[:, 1],
- }
- )
- _check_where_equivalences(df, mask, other, expected)
- # setting nothing in either column
- mask[:] = True
- expected = df
- _check_where_equivalences(df, mask, other, expected)
- def test_where_producing_ea_cond_for_np_dtype():
- # GH#44014
- df = DataFrame({"a": Series([1, pd.NA, 2], dtype="Int64"), "b": [1, 2, 3]})
- result = df.where(lambda x: x.apply(lambda y: y > 1, axis=1))
- expected = DataFrame(
- {"a": Series([pd.NA, pd.NA, 2], dtype="Int64"), "b": [np.nan, 2, 3]}
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "replacement", [0.001, True, "snake", None, datetime(2022, 5, 4)]
- )
- def test_where_int_overflow(replacement):
- # GH 31687
- df = DataFrame([[1.0, 2e25, "nine"], [np.nan, 0.1, None]])
- result = df.where(pd.notnull(df), replacement)
- expected = DataFrame([[1.0, 2e25, "nine"], [replacement, 0.1, replacement]])
- tm.assert_frame_equal(result, expected)
- def test_where_inplace_no_other():
- # GH#51685
- df = DataFrame({"a": [1, 2], "b": ["x", "y"]})
- cond = DataFrame({"a": [True, False], "b": [False, True]})
- df.where(cond, inplace=True)
- expected = DataFrame({"a": [1, np.nan], "b": [np.nan, "y"]})
- tm.assert_frame_equal(df, expected)
|