123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- import re
- import numpy as np
- import pytest
- from pandas._libs.sparse import IntIndex
- import pandas as pd
- from pandas import isna
- import pandas._testing as tm
- from pandas.core.arrays.sparse import (
- SparseArray,
- SparseDtype,
- )
- @pytest.fixture
- def arr_data():
- """Fixture returning numpy array with valid and missing entries"""
- return np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
- @pytest.fixture
- def arr(arr_data):
- """Fixture returning SparseArray from 'arr_data'"""
- return SparseArray(arr_data)
- @pytest.fixture
- def zarr():
- """Fixture returning SparseArray with integer entries and 'fill_value=0'"""
- return SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0)
- class TestSparseArray:
- @pytest.mark.parametrize("fill_value", [0, None, np.nan])
- def test_shift_fill_value(self, fill_value):
- # GH #24128
- sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0)
- res = sparse.shift(1, fill_value=fill_value)
- if isna(fill_value):
- fill_value = res.dtype.na_value
- exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0)
- tm.assert_sp_array_equal(res, exp)
- def test_set_fill_value(self):
- arr = SparseArray([1.0, np.nan, 2.0], fill_value=np.nan)
- arr.fill_value = 2
- assert arr.fill_value == 2
- arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64)
- arr.fill_value = 2
- assert arr.fill_value == 2
- # TODO: this seems fine? You can construct an integer
- # sparsearray with NaN fill value, why not update one?
- # coerces to int
- # msg = "unable to set fill_value 3\\.1 to int64 dtype"
- # with pytest.raises(ValueError, match=msg):
- arr.fill_value = 3.1
- assert arr.fill_value == 3.1
- # msg = "unable to set fill_value nan to int64 dtype"
- # with pytest.raises(ValueError, match=msg):
- arr.fill_value = np.nan
- assert np.isnan(arr.fill_value)
- arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool_)
- arr.fill_value = True
- assert arr.fill_value
- # FIXME: don't leave commented-out
- # coerces to bool
- # TODO: we can construct an sparse array of bool
- # type and use as fill_value any value
- # msg = "fill_value must be True, False or nan"
- # with pytest.raises(ValueError, match=msg):
- # arr.fill_value = 0
- # msg = "unable to set fill_value nan to bool dtype"
- # with pytest.raises(ValueError, match=msg):
- arr.fill_value = np.nan
- assert np.isnan(arr.fill_value)
- @pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)])
- def test_set_fill_invalid_non_scalar(self, val):
- arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool_)
- msg = "fill_value must be a scalar"
- with pytest.raises(ValueError, match=msg):
- arr.fill_value = val
- def test_copy(self, arr):
- arr2 = arr.copy()
- assert arr2.sp_values is not arr.sp_values
- assert arr2.sp_index is arr.sp_index
- def test_values_asarray(self, arr_data, arr):
- tm.assert_almost_equal(arr.to_dense(), arr_data)
- @pytest.mark.parametrize(
- "data,shape,dtype",
- [
- ([0, 0, 0, 0, 0], (5,), None),
- ([], (0,), None),
- ([0], (1,), None),
- (["A", "A", np.nan, "B"], (4,), object),
- ],
- )
- def test_shape(self, data, shape, dtype):
- # GH 21126
- out = SparseArray(data, dtype=dtype)
- assert out.shape == shape
- @pytest.mark.parametrize(
- "vals",
- [
- [np.nan, np.nan, np.nan, np.nan, np.nan],
- [1, np.nan, np.nan, 3, np.nan],
- [1, np.nan, 0, 3, 0],
- ],
- )
- @pytest.mark.parametrize("fill_value", [None, 0])
- def test_dense_repr(self, vals, fill_value):
- vals = np.array(vals)
- arr = SparseArray(vals, fill_value=fill_value)
- res = arr.to_dense()
- tm.assert_numpy_array_equal(res, vals)
- @pytest.mark.parametrize("fix", ["arr", "zarr"])
- def test_pickle(self, fix, request):
- obj = request.getfixturevalue(fix)
- unpickled = tm.round_trip_pickle(obj)
- tm.assert_sp_array_equal(unpickled, obj)
- def test_generator_warnings(self):
- sp_arr = SparseArray([1, 2, 3])
- with tm.assert_produces_warning(None):
- for _ in sp_arr:
- pass
- def test_where_retain_fill_value(self):
- # GH#45691 don't lose fill_value on _where
- arr = SparseArray([np.nan, 1.0], fill_value=0)
- mask = np.array([True, False])
- res = arr._where(~mask, 1)
- exp = SparseArray([1, 1.0], fill_value=0)
- tm.assert_sp_array_equal(res, exp)
- ser = pd.Series(arr)
- res = ser.where(~mask, 1)
- tm.assert_series_equal(res, pd.Series(exp))
- def test_fillna(self):
- s = SparseArray([1, np.nan, np.nan, 3, np.nan])
- res = s.fillna(-1)
- exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0)
- res = s.fillna(-1)
- exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- s = SparseArray([1, np.nan, 0, 3, 0])
- res = s.fillna(-1)
- exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0)
- res = s.fillna(-1)
- exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- s = SparseArray([np.nan, np.nan, np.nan, np.nan])
- res = s.fillna(-1)
- exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0)
- res = s.fillna(-1)
- exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- # float dtype's fill_value is np.nan, replaced by -1
- s = SparseArray([0.0, 0.0, 0.0, 0.0])
- res = s.fillna(-1)
- exp = SparseArray([0.0, 0.0, 0.0, 0.0], fill_value=-1)
- tm.assert_sp_array_equal(res, exp)
- # int dtype shouldn't have missing. No changes.
- s = SparseArray([0, 0, 0, 0])
- assert s.dtype == SparseDtype(np.int64)
- assert s.fill_value == 0
- res = s.fillna(-1)
- tm.assert_sp_array_equal(res, s)
- s = SparseArray([0, 0, 0, 0], fill_value=0)
- assert s.dtype == SparseDtype(np.int64)
- assert s.fill_value == 0
- res = s.fillna(-1)
- exp = SparseArray([0, 0, 0, 0], fill_value=0)
- tm.assert_sp_array_equal(res, exp)
- # fill_value can be nan if there is no missing hole.
- # only fill_value will be changed
- s = SparseArray([0, 0, 0, 0], fill_value=np.nan)
- assert s.dtype == SparseDtype(np.int64, fill_value=np.nan)
- assert np.isnan(s.fill_value)
- res = s.fillna(-1)
- exp = SparseArray([0, 0, 0, 0], fill_value=-1)
- tm.assert_sp_array_equal(res, exp)
- def test_fillna_overlap(self):
- s = SparseArray([1, np.nan, np.nan, 3, np.nan])
- # filling with existing value doesn't replace existing value with
- # fill_value, i.e. existing 3 remains in sp_values
- res = s.fillna(3)
- exp = np.array([1, 3, 3, 3, 3], dtype=np.float64)
- tm.assert_numpy_array_equal(res.to_dense(), exp)
- s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0)
- res = s.fillna(3)
- exp = SparseArray([1, 3, 3, 3, 3], fill_value=0, dtype=np.float64)
- tm.assert_sp_array_equal(res, exp)
- def test_nonzero(self):
- # Tests regression #21172.
- sa = SparseArray([float("nan"), float("nan"), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0])
- expected = np.array([2, 5, 9], dtype=np.int32)
- (result,) = sa.nonzero()
- tm.assert_numpy_array_equal(expected, result)
- sa = SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0])
- (result,) = sa.nonzero()
- tm.assert_numpy_array_equal(expected, result)
- class TestSparseArrayAnalytics:
- @pytest.mark.parametrize(
- "data,expected",
- [
- (
- np.array([1, 2, 3, 4, 5], dtype=float), # non-null data
- SparseArray(np.array([1.0, 3.0, 6.0, 10.0, 15.0])),
- ),
- (
- np.array([1, 2, np.nan, 4, 5], dtype=float), # null data
- SparseArray(np.array([1.0, 3.0, np.nan, 7.0, 12.0])),
- ),
- ],
- )
- @pytest.mark.parametrize("numpy", [True, False])
- def test_cumsum(self, data, expected, numpy):
- cumsum = np.cumsum if numpy else lambda s: s.cumsum()
- out = cumsum(SparseArray(data))
- tm.assert_sp_array_equal(out, expected)
- out = cumsum(SparseArray(data, fill_value=np.nan))
- tm.assert_sp_array_equal(out, expected)
- out = cumsum(SparseArray(data, fill_value=2))
- tm.assert_sp_array_equal(out, expected)
- if numpy: # numpy compatibility checks.
- msg = "the 'dtype' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.cumsum(SparseArray(data), dtype=np.int64)
- msg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.cumsum(SparseArray(data), out=out)
- else:
- axis = 1 # SparseArray currently 1-D, so only axis = 0 is valid.
- msg = re.escape(f"axis(={axis}) out of bounds")
- with pytest.raises(ValueError, match=msg):
- SparseArray(data).cumsum(axis=axis)
- def test_ufunc(self):
- # GH 13853 make sure ufunc is applied to fill_value
- sparse = SparseArray([1, np.nan, 2, np.nan, -2])
- result = SparseArray([1, np.nan, 2, np.nan, 2])
- tm.assert_sp_array_equal(abs(sparse), result)
- tm.assert_sp_array_equal(np.abs(sparse), result)
- sparse = SparseArray([1, -1, 2, -2], fill_value=1)
- result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1)
- tm.assert_sp_array_equal(abs(sparse), result)
- tm.assert_sp_array_equal(np.abs(sparse), result)
- sparse = SparseArray([1, -1, 2, -2], fill_value=-1)
- exp = SparseArray([1, 1, 2, 2], fill_value=1)
- tm.assert_sp_array_equal(abs(sparse), exp)
- tm.assert_sp_array_equal(np.abs(sparse), exp)
- sparse = SparseArray([1, np.nan, 2, np.nan, -2])
- result = SparseArray(np.sin([1, np.nan, 2, np.nan, -2]))
- tm.assert_sp_array_equal(np.sin(sparse), result)
- sparse = SparseArray([1, -1, 2, -2], fill_value=1)
- result = SparseArray(np.sin([1, -1, 2, -2]), fill_value=np.sin(1))
- tm.assert_sp_array_equal(np.sin(sparse), result)
- sparse = SparseArray([1, -1, 0, -2], fill_value=0)
- result = SparseArray(np.sin([1, -1, 0, -2]), fill_value=np.sin(0))
- tm.assert_sp_array_equal(np.sin(sparse), result)
- def test_ufunc_args(self):
- # GH 13853 make sure ufunc is applied to fill_value, including its arg
- sparse = SparseArray([1, np.nan, 2, np.nan, -2])
- result = SparseArray([2, np.nan, 3, np.nan, -1])
- tm.assert_sp_array_equal(np.add(sparse, 1), result)
- sparse = SparseArray([1, -1, 2, -2], fill_value=1)
- result = SparseArray([2, 0, 3, -1], fill_value=2)
- tm.assert_sp_array_equal(np.add(sparse, 1), result)
- sparse = SparseArray([1, -1, 0, -2], fill_value=0)
- result = SparseArray([2, 0, 1, -1], fill_value=1)
- tm.assert_sp_array_equal(np.add(sparse, 1), result)
- @pytest.mark.parametrize("fill_value", [0.0, np.nan])
- def test_modf(self, fill_value):
- # https://github.com/pandas-dev/pandas/issues/26946
- sparse = SparseArray([fill_value] * 10 + [1.1, 2.2], fill_value=fill_value)
- r1, r2 = np.modf(sparse)
- e1, e2 = np.modf(np.asarray(sparse))
- tm.assert_sp_array_equal(r1, SparseArray(e1, fill_value=fill_value))
- tm.assert_sp_array_equal(r2, SparseArray(e2, fill_value=fill_value))
- def test_nbytes_integer(self):
- arr = SparseArray([1, 0, 0, 0, 2], kind="integer")
- result = arr.nbytes
- # (2 * 8) + 2 * 4
- assert result == 24
- def test_nbytes_block(self):
- arr = SparseArray([1, 2, 0, 0, 0], kind="block")
- result = arr.nbytes
- # (2 * 8) + 4 + 4
- # sp_values, blocs, blengths
- assert result == 24
- def test_asarray_datetime64(self):
- s = SparseArray(pd.to_datetime(["2012", None, None, "2013"]))
- np.asarray(s)
- def test_density(self):
- arr = SparseArray([0, 1])
- assert arr.density == 0.5
- def test_npoints(self):
- arr = SparseArray([0, 1])
- assert arr.npoints == 1
- def test_setting_fill_value_fillna_still_works():
- # This is why letting users update fill_value / dtype is bad
- # astype has the same problem.
- arr = SparseArray([1.0, np.nan, 1.0], fill_value=0.0)
- arr.fill_value = np.nan
- result = arr.isna()
- # Can't do direct comparison, since the sp_index will be different
- # So let's convert to ndarray and check there.
- result = np.asarray(result)
- expected = np.array([False, True, False])
- tm.assert_numpy_array_equal(result, expected)
- def test_setting_fill_value_updates():
- arr = SparseArray([0.0, np.nan], fill_value=0)
- arr.fill_value = np.nan
- # use private constructor to get the index right
- # otherwise both nans would be un-stored.
- expected = SparseArray._simple_new(
- sparse_array=np.array([np.nan]),
- sparse_index=IntIndex(2, [1]),
- dtype=SparseDtype(float, np.nan),
- )
- tm.assert_sp_array_equal(arr, expected)
- @pytest.mark.parametrize(
- "arr,fill_value,loc",
- [
- ([None, 1, 2], None, 0),
- ([0, None, 2], None, 1),
- ([0, 1, None], None, 2),
- ([0, 1, 1, None, None], None, 3),
- ([1, 1, 1, 2], None, -1),
- ([], None, -1),
- ([None, 1, 0, 0, None, 2], None, 0),
- ([None, 1, 0, 0, None, 2], 1, 1),
- ([None, 1, 0, 0, None, 2], 2, 5),
- ([None, 1, 0, 0, None, 2], 3, -1),
- ([None, 0, 0, 1, 2, 1], 0, 1),
- ([None, 0, 0, 1, 2, 1], 1, 3),
- ],
- )
- def test_first_fill_value_loc(arr, fill_value, loc):
- result = SparseArray(arr, fill_value=fill_value)._first_fill_value_loc()
- assert result == loc
- @pytest.mark.parametrize(
- "arr",
- [
- [1, 2, np.nan, np.nan],
- [1, np.nan, 2, np.nan],
- [1, 2, np.nan],
- [np.nan, 1, 0, 0, np.nan, 2],
- [np.nan, 0, 0, 1, 2, 1],
- ],
- )
- @pytest.mark.parametrize("fill_value", [np.nan, 0, 1])
- def test_unique_na_fill(arr, fill_value):
- a = SparseArray(arr, fill_value=fill_value).unique()
- b = pd.Series(arr).unique()
- assert isinstance(a, SparseArray)
- a = np.asarray(a)
- tm.assert_numpy_array_equal(a, b)
- def test_unique_all_sparse():
- # https://github.com/pandas-dev/pandas/issues/23168
- arr = SparseArray([0, 0])
- result = arr.unique()
- expected = SparseArray([0])
- tm.assert_sp_array_equal(result, expected)
- def test_map():
- arr = SparseArray([0, 1, 2])
- expected = SparseArray([10, 11, 12], fill_value=10)
- # dict
- result = arr.map({0: 10, 1: 11, 2: 12})
- tm.assert_sp_array_equal(result, expected)
- # series
- result = arr.map(pd.Series({0: 10, 1: 11, 2: 12}))
- tm.assert_sp_array_equal(result, expected)
- # function
- result = arr.map(pd.Series({0: 10, 1: 11, 2: 12}))
- expected = SparseArray([10, 11, 12], fill_value=10)
- tm.assert_sp_array_equal(result, expected)
- def test_map_missing():
- arr = SparseArray([0, 1, 2])
- expected = SparseArray([10, 11, None], fill_value=10)
- result = arr.map({0: 10, 1: 11})
- tm.assert_sp_array_equal(result, expected)
- @pytest.mark.parametrize("fill_value", [np.nan, 1])
- def test_dropna(fill_value):
- # GH-28287
- arr = SparseArray([np.nan, 1], fill_value=fill_value)
- exp = SparseArray([1.0], fill_value=fill_value)
- tm.assert_sp_array_equal(arr.dropna(), exp)
- df = pd.DataFrame({"a": [0, 1], "b": arr})
- expected_df = pd.DataFrame({"a": [1], "b": exp}, index=pd.Index([1]))
- tm.assert_equal(df.dropna(), expected_df)
- def test_drop_duplicates_fill_value():
- # GH 11726
- df = pd.DataFrame(np.zeros((5, 5))).apply(lambda x: SparseArray(x, fill_value=0))
- result = df.drop_duplicates()
- expected = pd.DataFrame({i: SparseArray([0.0], fill_value=0) for i in range(5)})
- tm.assert_frame_equal(result, expected)
|