123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- import string
- import numpy as np
- import pytest
- import pandas.util._test_decorators as td
- import pandas as pd
- import pandas._testing as tm
- from pandas.core.arrays.sparse import (
- SparseArray,
- SparseDtype,
- )
- class TestSeriesAccessor:
- def test_to_dense(self):
- ser = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]")
- result = ser.sparse.to_dense()
- expected = pd.Series([0, 1, 0, 10])
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("attr", ["npoints", "density", "fill_value", "sp_values"])
- def test_get_attributes(self, attr):
- arr = SparseArray([0, 1])
- ser = pd.Series(arr)
- result = getattr(ser.sparse, attr)
- expected = getattr(arr, attr)
- assert result == expected
- @td.skip_if_no_scipy
- def test_from_coo(self):
- import scipy.sparse
- row = [0, 3, 1, 0]
- col = [0, 3, 1, 2]
- data = [4, 5, 7, 9]
- # TODO(scipy#13585): Remove dtype when scipy is fixed
- # https://github.com/scipy/scipy/issues/13585
- sp_array = scipy.sparse.coo_matrix((data, (row, col)), dtype="int")
- result = pd.Series.sparse.from_coo(sp_array)
- index = pd.MultiIndex.from_arrays(
- [
- np.array([0, 0, 1, 3], dtype=np.int32),
- np.array([0, 2, 1, 3], dtype=np.int32),
- ],
- )
- expected = pd.Series([4, 9, 7, 5], index=index, dtype="Sparse[int]")
- tm.assert_series_equal(result, expected)
- @td.skip_if_no_scipy
- @pytest.mark.parametrize(
- "sort_labels, expected_rows, expected_cols, expected_values_pos",
- [
- (
- False,
- [("b", 2), ("a", 2), ("b", 1), ("a", 1)],
- [("z", 1), ("z", 2), ("x", 2), ("z", 0)],
- {1: (1, 0), 3: (3, 3)},
- ),
- (
- True,
- [("a", 1), ("a", 2), ("b", 1), ("b", 2)],
- [("x", 2), ("z", 0), ("z", 1), ("z", 2)],
- {1: (1, 2), 3: (0, 1)},
- ),
- ],
- )
- def test_to_coo(
- self, sort_labels, expected_rows, expected_cols, expected_values_pos
- ):
- import scipy.sparse
- values = SparseArray([0, np.nan, 1, 0, None, 3], fill_value=0)
- index = pd.MultiIndex.from_tuples(
- [
- ("b", 2, "z", 1),
- ("a", 2, "z", 2),
- ("a", 2, "z", 1),
- ("a", 2, "x", 2),
- ("b", 1, "z", 1),
- ("a", 1, "z", 0),
- ]
- )
- ss = pd.Series(values, index=index)
- expected_A = np.zeros((4, 4))
- for value, (row, col) in expected_values_pos.items():
- expected_A[row, col] = value
- A, rows, cols = ss.sparse.to_coo(
- row_levels=(0, 1), column_levels=(2, 3), sort_labels=sort_labels
- )
- assert isinstance(A, scipy.sparse.coo_matrix)
- tm.assert_numpy_array_equal(A.toarray(), expected_A)
- assert rows == expected_rows
- assert cols == expected_cols
- def test_non_sparse_raises(self):
- ser = pd.Series([1, 2, 3])
- with pytest.raises(AttributeError, match=".sparse"):
- ser.sparse.density
- class TestFrameAccessor:
- def test_accessor_raises(self):
- df = pd.DataFrame({"A": [0, 1]})
- with pytest.raises(AttributeError, match="sparse"):
- df.sparse
- @pytest.mark.parametrize("format", ["csc", "csr", "coo"])
- @pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
- @pytest.mark.parametrize("dtype", ["float64", "int64"])
- @td.skip_if_no_scipy
- def test_from_spmatrix(self, format, labels, dtype):
- import scipy.sparse
- sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
- mat = scipy.sparse.eye(10, format=format, dtype=dtype)
- result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels)
- expected = pd.DataFrame(
- np.eye(10, dtype=dtype), index=labels, columns=labels
- ).astype(sp_dtype)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("format", ["csc", "csr", "coo"])
- @td.skip_if_no_scipy
- def test_from_spmatrix_including_explicit_zero(self, format):
- import scipy.sparse
- mat = scipy.sparse.random(10, 2, density=0.5, format=format)
- mat.data[0] = 0
- result = pd.DataFrame.sparse.from_spmatrix(mat)
- dtype = SparseDtype("float64", 0.0)
- expected = pd.DataFrame(mat.todense()).astype(dtype)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "columns",
- [["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]],
- )
- @td.skip_if_no_scipy
- def test_from_spmatrix_columns(self, columns):
- import scipy.sparse
- dtype = SparseDtype("float64", 0.0)
- mat = scipy.sparse.random(10, 2, density=0.5)
- result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns)
- expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2), ("x", "x"), (0, 0)]
- )
- @td.skip_if_no_scipy
- def test_to_coo(self, colnames):
- import scipy.sparse
- df = pd.DataFrame(
- {colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]"
- )
- result = df.sparse.to_coo()
- expected = scipy.sparse.coo_matrix(np.asarray(df))
- assert (result != expected).nnz == 0
- @pytest.mark.parametrize("fill_value", [1, np.nan])
- @td.skip_if_no_scipy
- def test_to_coo_nonzero_fill_val_raises(self, fill_value):
- df = pd.DataFrame(
- {
- "A": SparseArray(
- [fill_value, fill_value, fill_value, 2], fill_value=fill_value
- ),
- "B": SparseArray(
- [fill_value, 2, fill_value, fill_value], fill_value=fill_value
- ),
- }
- )
- with pytest.raises(ValueError, match="fill value must be 0"):
- df.sparse.to_coo()
- @td.skip_if_no_scipy
- def test_to_coo_midx_categorical(self):
- # GH#50996
- import scipy.sparse
- midx = pd.MultiIndex.from_arrays(
- [
- pd.CategoricalIndex(list("ab"), name="x"),
- pd.CategoricalIndex([0, 1], name="y"),
- ]
- )
- ser = pd.Series(1, index=midx, dtype="Sparse[int]")
- result = ser.sparse.to_coo(row_levels=["x"], column_levels=["y"])[0]
- expected = scipy.sparse.coo_matrix(
- (np.array([1, 1]), (np.array([0, 1]), np.array([0, 1]))), shape=(2, 2)
- )
- assert (result != expected).nnz == 0
- def test_to_dense(self):
- df = pd.DataFrame(
- {
- "A": SparseArray([1, 0], dtype=SparseDtype("int64", 0)),
- "B": SparseArray([1, 0], dtype=SparseDtype("int64", 1)),
- "C": SparseArray([1.0, 0.0], dtype=SparseDtype("float64", 0.0)),
- },
- index=["b", "a"],
- )
- result = df.sparse.to_dense()
- expected = pd.DataFrame(
- {"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"]
- )
- tm.assert_frame_equal(result, expected)
- def test_density(self):
- df = pd.DataFrame(
- {
- "A": SparseArray([1, 0, 2, 1], fill_value=0),
- "B": SparseArray([0, 1, 1, 1], fill_value=0),
- }
- )
- res = df.sparse.density
- expected = 0.75
- assert res == expected
- @pytest.mark.parametrize("dtype", ["int64", "float64"])
- @pytest.mark.parametrize("dense_index", [True, False])
- @td.skip_if_no_scipy
- def test_series_from_coo(self, dtype, dense_index):
- import scipy.sparse
- A = scipy.sparse.eye(3, format="coo", dtype=dtype)
- result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
- index = pd.MultiIndex.from_tuples(
- [
- np.array([0, 0], dtype=np.int32),
- np.array([1, 1], dtype=np.int32),
- np.array([2, 2], dtype=np.int32),
- ],
- )
- expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index)
- if dense_index:
- expected = expected.reindex(pd.MultiIndex.from_product(index.levels))
- tm.assert_series_equal(result, expected)
- @td.skip_if_no_scipy
- def test_series_from_coo_incorrect_format_raises(self):
- # gh-26554
- import scipy.sparse
- m = scipy.sparse.csr_matrix(np.array([[0, 1], [0, 0]]))
- with pytest.raises(
- TypeError, match="Expected coo_matrix. Got csr_matrix instead."
- ):
- pd.Series.sparse.from_coo(m)
- def test_with_column_named_sparse(self):
- # https://github.com/pandas-dev/pandas/issues/30758
- df = pd.DataFrame({"sparse": pd.arrays.SparseArray([1, 2])})
- assert isinstance(df.sparse, pd.core.arrays.sparse.accessor.SparseFrameAccessor)
|