123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- import numpy as np
- import pytest
- from pandas.compat import IS64
- import pandas as pd
- import pandas._testing as tm
- @pytest.mark.parametrize("ufunc", [np.abs, np.sign])
- # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
- @pytest.mark.filterwarnings("ignore:invalid value encountered in sign:RuntimeWarning")
- def test_ufuncs_single(ufunc):
- a = pd.array([1, 2, -3, np.nan], dtype="Float64")
- result = ufunc(a)
- expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- s = pd.Series(a)
- result = ufunc(s)
- expected = pd.Series(expected)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
- def test_ufuncs_single_float(ufunc):
- a = pd.array([1.0, 0.2, 3.0, np.nan], dtype="Float64")
- with np.errstate(invalid="ignore"):
- result = ufunc(a)
- expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- s = pd.Series(a)
- with np.errstate(invalid="ignore"):
- result = ufunc(s)
- expected = pd.Series(ufunc(s.astype(float)), dtype="Float64")
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("ufunc", [np.add, np.subtract])
- def test_ufuncs_binary_float(ufunc):
- # two FloatingArrays
- a = pd.array([1, 0.2, -3, np.nan], dtype="Float64")
- result = ufunc(a, a)
- expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- # FloatingArray with numpy array
- arr = np.array([1, 2, 3, 4])
- result = ufunc(a, arr)
- expected = pd.array(ufunc(a.astype(float), arr), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- result = ufunc(arr, a)
- expected = pd.array(ufunc(arr, a.astype(float)), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- # FloatingArray with scalar
- result = ufunc(a, 1)
- expected = pd.array(ufunc(a.astype(float), 1), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- result = ufunc(1, a)
- expected = pd.array(ufunc(1, a.astype(float)), dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- @pytest.mark.parametrize("values", [[0, 1], [0, None]])
- def test_ufunc_reduce_raises(values):
- arr = pd.array(values, dtype="Float64")
- res = np.add.reduce(arr)
- expected = arr.sum(skipna=False)
- tm.assert_almost_equal(res, expected)
- @pytest.mark.skipif(not IS64, reason="GH 36579: fail on 32-bit system")
- @pytest.mark.parametrize(
- "pandasmethname, kwargs",
- [
- ("var", {"ddof": 0}),
- ("var", {"ddof": 1}),
- ("std", {"ddof": 0}),
- ("std", {"ddof": 1}),
- ("kurtosis", {}),
- ("skew", {}),
- ("sem", {}),
- ],
- )
- def test_stat_method(pandasmethname, kwargs):
- s = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, np.nan, np.nan], dtype="Float64")
- pandasmeth = getattr(s, pandasmethname)
- result = pandasmeth(**kwargs)
- s2 = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype="float64")
- pandasmeth = getattr(s2, pandasmethname)
- expected = pandasmeth(**kwargs)
- assert expected == result
- def test_value_counts_na():
- arr = pd.array([0.1, 0.2, 0.1, pd.NA], dtype="Float64")
- result = arr.value_counts(dropna=False)
- idx = pd.Index([0.1, 0.2, pd.NA], dtype=arr.dtype)
- assert idx.dtype == arr.dtype
- expected = pd.Series([2, 1, 1], index=idx, dtype="Int64", name="count")
- tm.assert_series_equal(result, expected)
- result = arr.value_counts(dropna=True)
- expected = pd.Series([2, 1], index=idx[:-1], dtype="Int64", name="count")
- tm.assert_series_equal(result, expected)
- def test_value_counts_empty():
- ser = pd.Series([], dtype="Float64")
- result = ser.value_counts()
- idx = pd.Index([], dtype="Float64")
- assert idx.dtype == "Float64"
- expected = pd.Series([], index=idx, dtype="Int64", name="count")
- tm.assert_series_equal(result, expected)
- def test_value_counts_with_normalize():
- ser = pd.Series([0.1, 0.2, 0.1, pd.NA], dtype="Float64")
- result = ser.value_counts(normalize=True)
- expected = pd.Series([2, 1], index=ser[:2], dtype="Float64", name="proportion") / 3
- assert expected.index.dtype == ser.dtype
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("skipna", [True, False])
- @pytest.mark.parametrize("min_count", [0, 4])
- def test_floating_array_sum(skipna, min_count, dtype):
- arr = pd.array([1, 2, 3, None], dtype=dtype)
- result = arr.sum(skipna=skipna, min_count=min_count)
- if skipna and min_count == 0:
- assert result == 6.0
- else:
- assert result is pd.NA
- @pytest.mark.parametrize(
- "values, expected", [([1, 2, 3], 6.0), ([1, 2, 3, None], 6.0), ([None], 0.0)]
- )
- def test_floating_array_numpy_sum(values, expected):
- arr = pd.array(values, dtype="Float64")
- result = np.sum(arr)
- assert result == expected
- @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
- def test_preserve_dtypes(op):
- df = pd.DataFrame(
- {
- "A": ["a", "b", "b"],
- "B": [1, None, 3],
- "C": pd.array([0.1, None, 3.0], dtype="Float64"),
- }
- )
- # op
- result = getattr(df.C, op)()
- assert isinstance(result, np.float64)
- # groupby
- result = getattr(df.groupby("A"), op)()
- expected = pd.DataFrame(
- {"B": np.array([1.0, 3.0]), "C": pd.array([0.1, 3], dtype="Float64")},
- index=pd.Index(["a", "b"], name="A"),
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("skipna", [True, False])
- @pytest.mark.parametrize("method", ["min", "max"])
- def test_floating_array_min_max(skipna, method, dtype):
- arr = pd.array([0.0, 1.0, None], dtype=dtype)
- func = getattr(arr, method)
- result = func(skipna=skipna)
- if skipna:
- assert result == (0 if method == "min" else 1)
- else:
- assert result is pd.NA
- @pytest.mark.parametrize("skipna", [True, False])
- @pytest.mark.parametrize("min_count", [0, 9])
- def test_floating_array_prod(skipna, min_count, dtype):
- arr = pd.array([1.0, 2.0, None], dtype=dtype)
- result = arr.prod(skipna=skipna, min_count=min_count)
- if skipna and min_count == 0:
- assert result == 2
- else:
- assert result is pd.NA
|