123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- import numpy as np
- import pytest
- import pandas as pd
- import pandas._testing as tm
- from pandas.core.arrays import FloatingArray
- from pandas.core.arrays.floating import (
- Float32Dtype,
- Float64Dtype,
- )
- def test_uses_pandas_na():
- a = pd.array([1, None], dtype=Float64Dtype())
- assert a[1] is pd.NA
- def test_floating_array_constructor():
- values = np.array([1, 2, 3, 4], dtype="float64")
- mask = np.array([False, False, False, True], dtype="bool")
- result = FloatingArray(values, mask)
- expected = pd.array([1, 2, 3, np.nan], dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- tm.assert_numpy_array_equal(result._data, values)
- tm.assert_numpy_array_equal(result._mask, mask)
- msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
- with pytest.raises(TypeError, match=msg):
- FloatingArray(values.tolist(), mask)
- with pytest.raises(TypeError, match=msg):
- FloatingArray(values, mask.tolist())
- with pytest.raises(TypeError, match=msg):
- FloatingArray(values.astype(int), mask)
- msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
- with pytest.raises(TypeError, match=msg):
- FloatingArray(values)
- def test_floating_array_disallows_float16():
- # GH#44715
- arr = np.array([1, 2], dtype=np.float16)
- mask = np.array([False, False])
- msg = "FloatingArray does not support np.float16 dtype"
- with pytest.raises(TypeError, match=msg):
- FloatingArray(arr, mask)
- def test_floating_array_disallows_Float16_dtype(request):
- # GH#44715
- with pytest.raises(TypeError, match="data type 'Float16' not understood"):
- pd.array([1.0, 2.0], dtype="Float16")
- def test_floating_array_constructor_copy():
- values = np.array([1, 2, 3, 4], dtype="float64")
- mask = np.array([False, False, False, True], dtype="bool")
- result = FloatingArray(values, mask)
- assert result._data is values
- assert result._mask is mask
- result = FloatingArray(values, mask, copy=True)
- assert result._data is not values
- assert result._mask is not mask
- def test_to_array():
- result = pd.array([0.1, 0.2, 0.3, 0.4])
- expected = pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- @pytest.mark.parametrize(
- "a, b",
- [
- ([1, None], [1, pd.NA]),
- ([None], [pd.NA]),
- ([None, np.nan], [pd.NA, pd.NA]),
- ([1, np.nan], [1, pd.NA]),
- ([np.nan], [pd.NA]),
- ],
- )
- def test_to_array_none_is_nan(a, b):
- result = pd.array(a, dtype="Float64")
- expected = pd.array(b, dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- def test_to_array_mixed_integer_float():
- result = pd.array([1, 2.0])
- expected = pd.array([1.0, 2.0], dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- result = pd.array([1, None, 2.0])
- expected = pd.array([1.0, None, 2.0], dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- @pytest.mark.parametrize(
- "values",
- [
- ["foo", "bar"],
- "foo",
- 1,
- 1.0,
- pd.date_range("20130101", periods=2),
- np.array(["foo"]),
- [[1, 2], [3, 4]],
- [np.nan, {"a": 1}],
- # GH#44514 all-NA case used to get quietly swapped out before checking ndim
- np.array([pd.NA] * 6, dtype=object).reshape(3, 2),
- ],
- )
- def test_to_array_error(values):
- # error in converting existing arrays to FloatingArray
- msg = "|".join(
- [
- "cannot be converted to FloatingDtype",
- "values must be a 1D list-like",
- "Cannot pass scalar",
- r"float\(\) argument must be a string or a (real )?number, not 'dict'",
- "could not convert string to float: 'foo'",
- ]
- )
- with pytest.raises((TypeError, ValueError), match=msg):
- pd.array(values, dtype="Float64")
- @pytest.mark.parametrize("values", [["1", "2", None], ["1.5", "2", None]])
- def test_construct_from_float_strings(values):
- # see also test_to_integer_array_str
- expected = pd.array([float(values[0]), 2, None], dtype="Float64")
- res = pd.array(values, dtype="Float64")
- tm.assert_extension_array_equal(res, expected)
- res = FloatingArray._from_sequence(values)
- tm.assert_extension_array_equal(res, expected)
- def test_to_array_inferred_dtype():
- # if values has dtype -> respect it
- result = pd.array(np.array([1, 2], dtype="float32"))
- assert result.dtype == Float32Dtype()
- # if values have no dtype -> always float64
- result = pd.array([1.0, 2.0])
- assert result.dtype == Float64Dtype()
- def test_to_array_dtype_keyword():
- result = pd.array([1, 2], dtype="Float32")
- assert result.dtype == Float32Dtype()
- # if values has dtype -> override it
- result = pd.array(np.array([1, 2], dtype="float32"), dtype="Float64")
- assert result.dtype == Float64Dtype()
- def test_to_array_integer():
- result = pd.array([1, 2], dtype="Float64")
- expected = pd.array([1.0, 2.0], dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- # for integer dtypes, the itemsize is not preserved
- # TODO can we specify "floating" in general?
- result = pd.array(np.array([1, 2], dtype="int32"), dtype="Float64")
- assert result.dtype == Float64Dtype()
- @pytest.mark.parametrize(
- "bool_values, values, target_dtype, expected_dtype",
- [
- ([False, True], [0, 1], Float64Dtype(), Float64Dtype()),
- ([False, True], [0, 1], "Float64", Float64Dtype()),
- ([False, True, np.nan], [0, 1, np.nan], Float64Dtype(), Float64Dtype()),
- ],
- )
- def test_to_array_bool(bool_values, values, target_dtype, expected_dtype):
- result = pd.array(bool_values, dtype=target_dtype)
- assert result.dtype == expected_dtype
- expected = pd.array(values, dtype=target_dtype)
- tm.assert_extension_array_equal(result, expected)
- def test_series_from_float(data):
- # construct from our dtype & string dtype
- dtype = data.dtype
- # from float
- expected = pd.Series(data)
- result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
- tm.assert_series_equal(result, expected)
- # from list
- expected = pd.Series(data)
- result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
- tm.assert_series_equal(result, expected)
|