12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064 |
- from __future__ import annotations
- import datetime as dt
- import operator
- from typing import (
- TYPE_CHECKING,
- Hashable,
- )
- import warnings
- import numpy as np
- import pytz
- from pandas._libs import (
- NaT,
- Period,
- Timestamp,
- index as libindex,
- lib,
- )
- from pandas._libs.tslibs import (
- Resolution,
- periods_per_day,
- timezones,
- to_offset,
- )
- from pandas._libs.tslibs.offsets import prefix_mapping
- from pandas._typing import (
- Dtype,
- DtypeObj,
- Frequency,
- IntervalClosedType,
- TimeAmbiguous,
- TimeNonexistent,
- npt,
- )
- from pandas.util._decorators import (
- cache_readonly,
- doc,
- )
- from pandas.core.dtypes.common import (
- is_datetime64_dtype,
- is_datetime64tz_dtype,
- is_scalar,
- )
- from pandas.core.dtypes.generic import ABCSeries
- from pandas.core.dtypes.missing import is_valid_na_for_dtype
- from pandas.core.arrays.datetimes import (
- DatetimeArray,
- tz_to_dtype,
- )
- import pandas.core.common as com
- from pandas.core.indexes.base import (
- Index,
- maybe_extract_name,
- )
- from pandas.core.indexes.datetimelike import DatetimeTimedeltaMixin
- from pandas.core.indexes.extension import inherit_names
- from pandas.core.tools.times import to_time
- if TYPE_CHECKING:
- from pandas.core.api import (
- DataFrame,
- PeriodIndex,
- )
- def _new_DatetimeIndex(cls, d):
- """
- This is called upon unpickling, rather than the default which doesn't
- have arguments and breaks __new__
- """
- if "data" in d and not isinstance(d["data"], DatetimeIndex):
- # Avoid need to verify integrity by calling simple_new directly
- data = d.pop("data")
- if not isinstance(data, DatetimeArray):
- # For backward compat with older pickles, we may need to construct
- # a DatetimeArray to adapt to the newer _simple_new signature
- tz = d.pop("tz")
- freq = d.pop("freq")
- dta = DatetimeArray._simple_new(data, dtype=tz_to_dtype(tz), freq=freq)
- else:
- dta = data
- for key in ["tz", "freq"]:
- # These are already stored in our DatetimeArray; if they are
- # also in the pickle and don't match, we have a problem.
- if key in d:
- assert d[key] == getattr(dta, key)
- d.pop(key)
- result = cls._simple_new(dta, **d)
- else:
- with warnings.catch_warnings():
- # TODO: If we knew what was going in to **d, we might be able to
- # go through _simple_new instead
- warnings.simplefilter("ignore")
- result = cls.__new__(cls, **d)
- return result
- @inherit_names(
- DatetimeArray._field_ops
- + [
- method
- for method in DatetimeArray._datetimelike_methods
- if method not in ("tz_localize", "tz_convert", "strftime")
- ],
- DatetimeArray,
- wrap=True,
- )
- @inherit_names(["is_normalized"], DatetimeArray, cache=True)
- @inherit_names(
- [
- "tz",
- "tzinfo",
- "dtype",
- "to_pydatetime",
- "_format_native_types",
- "date",
- "time",
- "timetz",
- "std",
- ]
- + DatetimeArray._bool_ops,
- DatetimeArray,
- )
- class DatetimeIndex(DatetimeTimedeltaMixin):
- """
- Immutable ndarray-like of datetime64 data.
- Represented internally as int64, and which can be boxed to Timestamp objects
- that are subclasses of datetime and carry metadata.
- .. versionchanged:: 2.0.0
- The various numeric date/time attributes (:attr:`~DatetimeIndex.day`,
- :attr:`~DatetimeIndex.month`, :attr:`~DatetimeIndex.year` etc.) now have dtype
- ``int32``. Previously they had dtype ``int64``.
- Parameters
- ----------
- data : array-like (1-dimensional)
- Datetime-like data to construct index with.
- freq : str or pandas offset object, optional
- One of pandas date offset strings or corresponding objects. The string
- 'infer' can be passed in order to set the frequency of the index as the
- inferred frequency upon creation.
- tz : pytz.timezone or dateutil.tz.tzfile or datetime.tzinfo or str
- Set the Timezone of the data.
- normalize : bool, default False
- Normalize start/end dates to midnight before generating date range.
- closed : {'left', 'right'}, optional
- Set whether to include `start` and `end` that are on the
- boundary. The default includes boundary points on either end.
- ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
- When clocks moved backward due to DST, ambiguous times may arise.
- For example in Central European Time (UTC+01), when going from 03:00
- DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC
- and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter
- dictates how ambiguous times should be handled.
- - 'infer' will attempt to infer fall dst-transition hours based on
- order
- - bool-ndarray where True signifies a DST time, False signifies a
- non-DST time (note that this flag is only applicable for ambiguous
- times)
- - 'NaT' will return NaT where there are ambiguous times
- - 'raise' will raise an AmbiguousTimeError if there are ambiguous times.
- dayfirst : bool, default False
- If True, parse dates in `data` with the day first order.
- yearfirst : bool, default False
- If True parse dates in `data` with the year first order.
- dtype : numpy.dtype or DatetimeTZDtype or str, default None
- Note that the only NumPy dtype allowed is ‘datetime64[ns]’.
- copy : bool, default False
- Make a copy of input ndarray.
- name : label, default None
- Name to be stored in the index.
- Attributes
- ----------
- year
- month
- day
- hour
- minute
- second
- microsecond
- nanosecond
- date
- time
- timetz
- dayofyear
- day_of_year
- weekofyear
- week
- dayofweek
- day_of_week
- weekday
- quarter
- tz
- freq
- freqstr
- is_month_start
- is_month_end
- is_quarter_start
- is_quarter_end
- is_year_start
- is_year_end
- is_leap_year
- inferred_freq
- Methods
- -------
- normalize
- strftime
- snap
- tz_convert
- tz_localize
- round
- floor
- ceil
- to_period
- to_pydatetime
- to_series
- to_frame
- month_name
- day_name
- mean
- std
- See Also
- --------
- Index : The base pandas Index type.
- TimedeltaIndex : Index of timedelta64 data.
- PeriodIndex : Index of Period data.
- to_datetime : Convert argument to datetime.
- date_range : Create a fixed-frequency DatetimeIndex.
- Notes
- -----
- To learn more about the frequency strings, please see `this link
- <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
- """
- _typ = "datetimeindex"
- _data_cls = DatetimeArray
- _supports_partial_string_indexing = True
- @property
- def _engine_type(self) -> type[libindex.DatetimeEngine]:
- return libindex.DatetimeEngine
- _data: DatetimeArray
- tz: dt.tzinfo | None
- # --------------------------------------------------------------------
- # methods that dispatch to DatetimeArray and wrap result
- @doc(DatetimeArray.strftime)
- def strftime(self, date_format) -> Index:
- arr = self._data.strftime(date_format)
- return Index(arr, name=self.name, dtype=object)
- @doc(DatetimeArray.tz_convert)
- def tz_convert(self, tz) -> DatetimeIndex:
- arr = self._data.tz_convert(tz)
- return type(self)._simple_new(arr, name=self.name, refs=self._references)
- @doc(DatetimeArray.tz_localize)
- def tz_localize(
- self,
- tz,
- ambiguous: TimeAmbiguous = "raise",
- nonexistent: TimeNonexistent = "raise",
- ) -> DatetimeIndex:
- arr = self._data.tz_localize(tz, ambiguous, nonexistent)
- return type(self)._simple_new(arr, name=self.name)
- @doc(DatetimeArray.to_period)
- def to_period(self, freq=None) -> PeriodIndex:
- from pandas.core.indexes.api import PeriodIndex
- arr = self._data.to_period(freq)
- return PeriodIndex._simple_new(arr, name=self.name)
- @doc(DatetimeArray.to_julian_date)
- def to_julian_date(self) -> Index:
- arr = self._data.to_julian_date()
- return Index._simple_new(arr, name=self.name)
- @doc(DatetimeArray.isocalendar)
- def isocalendar(self) -> DataFrame:
- df = self._data.isocalendar()
- return df.set_index(self)
- @cache_readonly
- def _resolution_obj(self) -> Resolution:
- return self._data._resolution_obj
- # --------------------------------------------------------------------
- # Constructors
- def __new__(
- cls,
- data=None,
- freq: Frequency | lib.NoDefault = lib.no_default,
- tz=lib.no_default,
- normalize: bool = False,
- closed=None,
- ambiguous: TimeAmbiguous = "raise",
- dayfirst: bool = False,
- yearfirst: bool = False,
- dtype: Dtype | None = None,
- copy: bool = False,
- name: Hashable = None,
- ) -> DatetimeIndex:
- if is_scalar(data):
- cls._raise_scalar_data_error(data)
- # - Cases checked above all return/raise before reaching here - #
- name = maybe_extract_name(name, data, cls)
- if (
- isinstance(data, DatetimeArray)
- and freq is lib.no_default
- and tz is lib.no_default
- and dtype is None
- ):
- # fastpath, similar logic in TimedeltaIndex.__new__;
- # Note in this particular case we retain non-nano.
- if copy:
- data = data.copy()
- return cls._simple_new(data, name=name)
- dtarr = DatetimeArray._from_sequence_not_strict(
- data,
- dtype=dtype,
- copy=copy,
- tz=tz,
- freq=freq,
- dayfirst=dayfirst,
- yearfirst=yearfirst,
- ambiguous=ambiguous,
- )
- refs = None
- if not copy and isinstance(data, (Index, ABCSeries)):
- refs = data._references
- subarr = cls._simple_new(dtarr, name=name, refs=refs)
- return subarr
- # --------------------------------------------------------------------
- @cache_readonly
- def _is_dates_only(self) -> bool:
- """
- Return a boolean if we are only dates (and don't have a timezone)
- Returns
- -------
- bool
- """
- from pandas.io.formats.format import is_dates_only
- # error: Argument 1 to "is_dates_only" has incompatible type
- # "Union[ExtensionArray, ndarray]"; expected "Union[ndarray,
- # DatetimeArray, Index, DatetimeIndex]"
- return self.tz is None and is_dates_only(self._values) # type: ignore[arg-type]
- def __reduce__(self):
- d = {"data": self._data, "name": self.name}
- return _new_DatetimeIndex, (type(self), d), None
- def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
- """
- Can we compare values of the given dtype to our own?
- """
- if self.tz is not None:
- # If we have tz, we can compare to tzaware
- return is_datetime64tz_dtype(dtype)
- # if we dont have tz, we can only compare to tznaive
- return is_datetime64_dtype(dtype)
- # --------------------------------------------------------------------
- # Rendering Methods
- @property
- def _formatter_func(self):
- from pandas.io.formats.format import get_format_datetime64
- formatter = get_format_datetime64(is_dates_only_=self._is_dates_only)
- return lambda x: f"'{formatter(x)}'"
- # --------------------------------------------------------------------
- # Set Operation Methods
- def _can_range_setop(self, other) -> bool:
- # GH 46702: If self or other have non-UTC tzs, DST transitions prevent
- # range representation due to no singular step
- if (
- self.tz is not None
- and not timezones.is_utc(self.tz)
- and not timezones.is_fixed_offset(self.tz)
- ):
- return False
- if (
- other.tz is not None
- and not timezones.is_utc(other.tz)
- and not timezones.is_fixed_offset(other.tz)
- ):
- return False
- return super()._can_range_setop(other)
- # --------------------------------------------------------------------
- def _get_time_micros(self) -> npt.NDArray[np.int64]:
- """
- Return the number of microseconds since midnight.
- Returns
- -------
- ndarray[int64_t]
- """
- values = self._data._local_timestamps()
- ppd = periods_per_day(self._data._creso)
- frac = values % ppd
- if self.unit == "ns":
- micros = frac // 1000
- elif self.unit == "us":
- micros = frac
- elif self.unit == "ms":
- micros = frac * 1000
- elif self.unit == "s":
- micros = frac * 1_000_000
- else: # pragma: no cover
- raise NotImplementedError(self.unit)
- micros[self._isnan] = -1
- return micros
- def snap(self, freq: Frequency = "S") -> DatetimeIndex:
- """
- Snap time stamps to nearest occurring frequency.
- Returns
- -------
- DatetimeIndex
- """
- # Superdumb, punting on any optimizing
- freq = to_offset(freq)
- dta = self._data.copy()
- for i, v in enumerate(self):
- s = v
- if not freq.is_on_offset(s):
- t0 = freq.rollback(s)
- t1 = freq.rollforward(s)
- if abs(s - t0) < abs(t1 - s):
- s = t0
- else:
- s = t1
- dta[i] = s
- return DatetimeIndex._simple_new(dta, name=self.name)
- # --------------------------------------------------------------------
- # Indexing Methods
- def _parsed_string_to_bounds(self, reso: Resolution, parsed: dt.datetime):
- """
- Calculate datetime bounds for parsed time string and its resolution.
- Parameters
- ----------
- reso : Resolution
- Resolution provided by parsed string.
- parsed : datetime
- Datetime from parsed string.
- Returns
- -------
- lower, upper: pd.Timestamp
- """
- per = Period(parsed, freq=reso.attr_abbrev)
- start, end = per.start_time, per.end_time
- # GH 24076
- # If an incoming date string contained a UTC offset, need to localize
- # the parsed date to this offset first before aligning with the index's
- # timezone
- start = start.tz_localize(parsed.tzinfo)
- end = end.tz_localize(parsed.tzinfo)
- if parsed.tzinfo is not None:
- if self.tz is None:
- raise ValueError(
- "The index must be timezone aware when indexing "
- "with a date string with a UTC offset"
- )
- # The flipped case with parsed.tz is None and self.tz is not None
- # is ruled out bc parsed and reso are produced by _parse_with_reso,
- # which localizes parsed.
- return start, end
- def _parse_with_reso(self, label: str):
- parsed, reso = super()._parse_with_reso(label)
- parsed = Timestamp(parsed)
- if self.tz is not None and parsed.tzinfo is None:
- # we special-case timezone-naive strings and timezone-aware
- # DatetimeIndex
- # https://github.com/pandas-dev/pandas/pull/36148#issuecomment-687883081
- parsed = parsed.tz_localize(self.tz)
- return parsed, reso
- def _disallow_mismatched_indexing(self, key) -> None:
- """
- Check for mismatched-tzawareness indexing and re-raise as KeyError.
- """
- # we get here with isinstance(key, self._data._recognized_scalars)
- try:
- # GH#36148
- self._data._assert_tzawareness_compat(key)
- except TypeError as err:
- raise KeyError(key) from err
- def get_loc(self, key):
- """
- Get integer location for requested label
- Returns
- -------
- loc : int
- """
- self._check_indexing_error(key)
- orig_key = key
- if is_valid_na_for_dtype(key, self.dtype):
- key = NaT
- if isinstance(key, self._data._recognized_scalars):
- # needed to localize naive datetimes
- self._disallow_mismatched_indexing(key)
- key = Timestamp(key)
- elif isinstance(key, str):
- try:
- parsed, reso = self._parse_with_reso(key)
- except (ValueError, pytz.NonExistentTimeError) as err:
- raise KeyError(key) from err
- self._disallow_mismatched_indexing(parsed)
- if self._can_partial_date_slice(reso):
- try:
- return self._partial_date_slice(reso, parsed)
- except KeyError as err:
- raise KeyError(key) from err
- key = parsed
- elif isinstance(key, dt.timedelta):
- # GH#20464
- raise TypeError(
- f"Cannot index {type(self).__name__} with {type(key).__name__}"
- )
- elif isinstance(key, dt.time):
- return self.indexer_at_time(key)
- else:
- # unrecognized type
- raise KeyError(key)
- try:
- return Index.get_loc(self, key)
- except KeyError as err:
- raise KeyError(orig_key) from err
- @doc(DatetimeTimedeltaMixin._maybe_cast_slice_bound)
- def _maybe_cast_slice_bound(self, label, side: str):
- # GH#42855 handle date here instead of get_slice_bound
- if isinstance(label, dt.date) and not isinstance(label, dt.datetime):
- # Pandas supports slicing with dates, treated as datetimes at midnight.
- # https://github.com/pandas-dev/pandas/issues/31501
- label = Timestamp(label).to_pydatetime()
- label = super()._maybe_cast_slice_bound(label, side)
- self._data._assert_tzawareness_compat(label)
- return Timestamp(label)
- def slice_indexer(self, start=None, end=None, step=None):
- """
- Return indexer for specified label slice.
- Index.slice_indexer, customized to handle time slicing.
- In addition to functionality provided by Index.slice_indexer, does the
- following:
- - if both `start` and `end` are instances of `datetime.time`, it
- invokes `indexer_between_time`
- - if `start` and `end` are both either string or None perform
- value-based selection in non-monotonic cases.
- """
- # For historical reasons DatetimeIndex supports slices between two
- # instances of datetime.time as if it were applying a slice mask to
- # an array of (self.hour, self.minute, self.seconds, self.microsecond).
- if isinstance(start, dt.time) and isinstance(end, dt.time):
- if step is not None and step != 1:
- raise ValueError("Must have step size of 1 with time slices")
- return self.indexer_between_time(start, end)
- if isinstance(start, dt.time) or isinstance(end, dt.time):
- raise KeyError("Cannot mix time and non-time slice keys")
- def check_str_or_none(point) -> bool:
- return point is not None and not isinstance(point, str)
- # GH#33146 if start and end are combinations of str and None and Index is not
- # monotonic, we can not use Index.slice_indexer because it does not honor the
- # actual elements, is only searching for start and end
- if (
- check_str_or_none(start)
- or check_str_or_none(end)
- or self.is_monotonic_increasing
- ):
- return Index.slice_indexer(self, start, end, step)
- mask = np.array(True)
- raise_mask = np.array(True)
- if start is not None:
- start_casted = self._maybe_cast_slice_bound(start, "left")
- mask = start_casted <= self
- raise_mask = start_casted == self
- if end is not None:
- end_casted = self._maybe_cast_slice_bound(end, "right")
- mask = (self <= end_casted) & mask
- raise_mask = (end_casted == self) | raise_mask
- if not raise_mask.any():
- raise KeyError(
- "Value based partial slicing on non-monotonic DatetimeIndexes "
- "with non-existing keys is not allowed.",
- )
- indexer = mask.nonzero()[0][::step]
- if len(indexer) == len(self):
- return slice(None)
- else:
- return indexer
- # --------------------------------------------------------------------
- @property
- def inferred_type(self) -> str:
- # b/c datetime is represented as microseconds since the epoch, make
- # sure we can't have ambiguous indexing
- return "datetime64"
- def indexer_at_time(self, time, asof: bool = False) -> npt.NDArray[np.intp]:
- """
- Return index locations of values at particular time of day.
- Parameters
- ----------
- time : datetime.time or str
- Time passed in either as object (datetime.time) or as string in
- appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p",
- "%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p").
- Returns
- -------
- np.ndarray[np.intp]
- See Also
- --------
- indexer_between_time : Get index locations of values between particular
- times of day.
- DataFrame.at_time : Select values at particular time of day.
- """
- if asof:
- raise NotImplementedError("'asof' argument is not supported")
- if isinstance(time, str):
- from dateutil.parser import parse
- time = parse(time).time()
- if time.tzinfo:
- if self.tz is None:
- raise ValueError("Index must be timezone aware.")
- time_micros = self.tz_convert(time.tzinfo)._get_time_micros()
- else:
- time_micros = self._get_time_micros()
- micros = _time_to_micros(time)
- return (time_micros == micros).nonzero()[0]
- def indexer_between_time(
- self, start_time, end_time, include_start: bool = True, include_end: bool = True
- ) -> npt.NDArray[np.intp]:
- """
- Return index locations of values between particular times of day.
- Parameters
- ----------
- start_time, end_time : datetime.time, str
- Time passed either as object (datetime.time) or as string in
- appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p",
- "%H:%M:%S", "%H%M%S", "%I:%M:%S%p","%I%M%S%p").
- include_start : bool, default True
- include_end : bool, default True
- Returns
- -------
- np.ndarray[np.intp]
- See Also
- --------
- indexer_at_time : Get index locations of values at particular time of day.
- DataFrame.between_time : Select values between particular times of day.
- """
- start_time = to_time(start_time)
- end_time = to_time(end_time)
- time_micros = self._get_time_micros()
- start_micros = _time_to_micros(start_time)
- end_micros = _time_to_micros(end_time)
- if include_start and include_end:
- lop = rop = operator.le
- elif include_start:
- lop = operator.le
- rop = operator.lt
- elif include_end:
- lop = operator.lt
- rop = operator.le
- else:
- lop = rop = operator.lt
- if start_time <= end_time:
- join_op = operator.and_
- else:
- join_op = operator.or_
- mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros))
- return mask.nonzero()[0]
- def date_range(
- start=None,
- end=None,
- periods=None,
- freq=None,
- tz=None,
- normalize: bool = False,
- name: Hashable = None,
- inclusive: IntervalClosedType = "both",
- *,
- unit: str | None = None,
- **kwargs,
- ) -> DatetimeIndex:
- """
- Return a fixed frequency DatetimeIndex.
- Returns the range of equally spaced time points (where the difference between any
- two adjacent points is specified by the given frequency) such that they all
- satisfy `start <[=] x <[=] end`, where the first one and the last one are, resp.,
- the first and last time points in that range that fall on the boundary of ``freq``
- (if given as a frequency string) or that are valid for ``freq`` (if given as a
- :class:`pandas.tseries.offsets.DateOffset`). (If exactly one of ``start``,
- ``end``, or ``freq`` is *not* specified, this missing parameter can be computed
- given ``periods``, the number of timesteps in the range. See the note below.)
- Parameters
- ----------
- start : str or datetime-like, optional
- Left bound for generating dates.
- end : str or datetime-like, optional
- Right bound for generating dates.
- periods : int, optional
- Number of periods to generate.
- freq : str, datetime.timedelta, or DateOffset, default 'D'
- Frequency strings can have multiples, e.g. '5H'. See
- :ref:`here <timeseries.offset_aliases>` for a list of
- frequency aliases.
- tz : str or tzinfo, optional
- Time zone name for returning localized DatetimeIndex, for example
- 'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is
- timezone-naive unless timezone-aware datetime-likes are passed.
- normalize : bool, default False
- Normalize start/end dates to midnight before generating date range.
- name : str, default None
- Name of the resulting DatetimeIndex.
- inclusive : {"both", "neither", "left", "right"}, default "both"
- Include boundaries; Whether to set each bound as closed or open.
- .. versionadded:: 1.4.0
- unit : str, default None
- Specify the desired resolution of the result.
- .. versionadded:: 2.0.0
- **kwargs
- For compatibility. Has no effect on the result.
- Returns
- -------
- DatetimeIndex
- See Also
- --------
- DatetimeIndex : An immutable container for datetimes.
- timedelta_range : Return a fixed frequency TimedeltaIndex.
- period_range : Return a fixed frequency PeriodIndex.
- interval_range : Return a fixed frequency IntervalIndex.
- Notes
- -----
- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
- exactly three must be specified. If ``freq`` is omitted, the resulting
- ``DatetimeIndex`` will have ``periods`` linearly spaced elements between
- ``start`` and ``end`` (closed on both sides).
- To learn more about the frequency strings, please see `this link
- <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
- Examples
- --------
- **Specifying the values**
- The next four examples generate the same `DatetimeIndex`, but vary
- the combination of `start`, `end` and `periods`.
- Specify `start` and `end`, with the default daily frequency.
- >>> pd.date_range(start='1/1/2018', end='1/08/2018')
- DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
- '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
- dtype='datetime64[ns]', freq='D')
- Specify timezone-aware `start` and `end`, with the default daily frequency.
- >>> pd.date_range(
- ... start=pd.to_datetime("1/1/2018").tz_localize("Europe/Berlin"),
- ... end=pd.to_datetime("1/08/2018").tz_localize("Europe/Berlin"),
- ... )
- DatetimeIndex(['2018-01-01 00:00:00+01:00', '2018-01-02 00:00:00+01:00',
- '2018-01-03 00:00:00+01:00', '2018-01-04 00:00:00+01:00',
- '2018-01-05 00:00:00+01:00', '2018-01-06 00:00:00+01:00',
- '2018-01-07 00:00:00+01:00', '2018-01-08 00:00:00+01:00'],
- dtype='datetime64[ns, Europe/Berlin]', freq='D')
- Specify `start` and `periods`, the number of periods (days).
- >>> pd.date_range(start='1/1/2018', periods=8)
- DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
- '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
- dtype='datetime64[ns]', freq='D')
- Specify `end` and `periods`, the number of periods (days).
- >>> pd.date_range(end='1/1/2018', periods=8)
- DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
- '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
- dtype='datetime64[ns]', freq='D')
- Specify `start`, `end`, and `periods`; the frequency is generated
- automatically (linearly spaced).
- >>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3)
- DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',
- '2018-04-27 00:00:00'],
- dtype='datetime64[ns]', freq=None)
- **Other Parameters**
- Changed the `freq` (frequency) to ``'M'`` (month end frequency).
- >>> pd.date_range(start='1/1/2018', periods=5, freq='M')
- DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
- '2018-05-31'],
- dtype='datetime64[ns]', freq='M')
- Multiples are allowed
- >>> pd.date_range(start='1/1/2018', periods=5, freq='3M')
- DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
- '2019-01-31'],
- dtype='datetime64[ns]', freq='3M')
- `freq` can also be specified as an Offset object.
- >>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3))
- DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
- '2019-01-31'],
- dtype='datetime64[ns]', freq='3M')
- Specify `tz` to set the timezone.
- >>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo')
- DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',
- '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
- '2018-01-05 00:00:00+09:00'],
- dtype='datetime64[ns, Asia/Tokyo]', freq='D')
- `inclusive` controls whether to include `start` and `end` that are on the
- boundary. The default, "both", includes boundary points on either end.
- >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both")
- DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],
- dtype='datetime64[ns]', freq='D')
- Use ``inclusive='left'`` to exclude `end` if it falls on the boundary.
- >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left')
- DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],
- dtype='datetime64[ns]', freq='D')
- Use ``inclusive='right'`` to exclude `start` if it falls on the boundary, and
- similarly ``inclusive='neither'`` will exclude both `start` and `end`.
- >>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right')
- DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],
- dtype='datetime64[ns]', freq='D')
- **Specify a unit**
- >>> pd.date_range(start="2017-01-01", periods=10, freq="100AS", unit="s")
- DatetimeIndex(['2017-01-01', '2117-01-01', '2217-01-01', '2317-01-01',
- '2417-01-01', '2517-01-01', '2617-01-01', '2717-01-01',
- '2817-01-01', '2917-01-01'],
- dtype='datetime64[s]', freq='100AS-JAN')
- """
- if freq is None and com.any_none(periods, start, end):
- freq = "D"
- dtarr = DatetimeArray._generate_range(
- start=start,
- end=end,
- periods=periods,
- freq=freq,
- tz=tz,
- normalize=normalize,
- inclusive=inclusive,
- unit=unit,
- **kwargs,
- )
- return DatetimeIndex._simple_new(dtarr, name=name)
- def bdate_range(
- start=None,
- end=None,
- periods: int | None = None,
- freq: Frequency = "B",
- tz=None,
- normalize: bool = True,
- name: Hashable = None,
- weekmask=None,
- holidays=None,
- inclusive: IntervalClosedType = "both",
- **kwargs,
- ) -> DatetimeIndex:
- """
- Return a fixed frequency DatetimeIndex with business day as the default.
- Parameters
- ----------
- start : str or datetime-like, default None
- Left bound for generating dates.
- end : str or datetime-like, default None
- Right bound for generating dates.
- periods : int, default None
- Number of periods to generate.
- freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'B'
- Frequency strings can have multiples, e.g. '5H'. The default is
- business daily ('B').
- tz : str or None
- Time zone name for returning localized DatetimeIndex, for example
- Asia/Beijing.
- normalize : bool, default False
- Normalize start/end dates to midnight before generating date range.
- name : str, default None
- Name of the resulting DatetimeIndex.
- weekmask : str or None, default None
- Weekmask of valid business days, passed to ``numpy.busdaycalendar``,
- only used when custom frequency strings are passed. The default
- value None is equivalent to 'Mon Tue Wed Thu Fri'.
- holidays : list-like or None, default None
- Dates to exclude from the set of valid business days, passed to
- ``numpy.busdaycalendar``, only used when custom frequency strings
- are passed.
- inclusive : {"both", "neither", "left", "right"}, default "both"
- Include boundaries; Whether to set each bound as closed or open.
- .. versionadded:: 1.4.0
- **kwargs
- For compatibility. Has no effect on the result.
- Returns
- -------
- DatetimeIndex
- Notes
- -----
- Of the four parameters: ``start``, ``end``, ``periods``, and ``freq``,
- exactly three must be specified. Specifying ``freq`` is a requirement
- for ``bdate_range``. Use ``date_range`` if specifying ``freq`` is not
- desired.
- To learn more about the frequency strings, please see `this link
- <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
- Examples
- --------
- Note how the two weekend days are skipped in the result.
- >>> pd.bdate_range(start='1/1/2018', end='1/08/2018')
- DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
- '2018-01-05', '2018-01-08'],
- dtype='datetime64[ns]', freq='B')
- """
- if freq is None:
- msg = "freq must be specified for bdate_range; use date_range instead"
- raise TypeError(msg)
- if isinstance(freq, str) and freq.startswith("C"):
- try:
- weekmask = weekmask or "Mon Tue Wed Thu Fri"
- freq = prefix_mapping[freq](holidays=holidays, weekmask=weekmask)
- except (KeyError, TypeError) as err:
- msg = f"invalid custom frequency string: {freq}"
- raise ValueError(msg) from err
- elif holidays or weekmask:
- msg = (
- "a custom frequency string is required when holidays or "
- f"weekmask are passed, got frequency {freq}"
- )
- raise ValueError(msg)
- return date_range(
- start=start,
- end=end,
- periods=periods,
- freq=freq,
- tz=tz,
- normalize=normalize,
- name=name,
- inclusive=inclusive,
- **kwargs,
- )
- def _time_to_micros(time_obj: dt.time) -> int:
- seconds = time_obj.hour * 60 * 60 + 60 * time_obj.minute + time_obj.second
- return 1_000_000 * seconds + time_obj.microsecond
|