aggregations.pyi 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. from typing import (
  2. Any,
  3. Callable,
  4. Literal,
  5. )
  6. import numpy as np
  7. from pandas._typing import (
  8. WindowingRankType,
  9. npt,
  10. )
  11. def roll_sum(
  12. values: np.ndarray, # const float64_t[:]
  13. start: np.ndarray, # np.ndarray[np.int64]
  14. end: np.ndarray, # np.ndarray[np.int64]
  15. minp: int, # int64_t
  16. ) -> np.ndarray: ... # np.ndarray[float]
  17. def roll_mean(
  18. values: np.ndarray, # const float64_t[:]
  19. start: np.ndarray, # np.ndarray[np.int64]
  20. end: np.ndarray, # np.ndarray[np.int64]
  21. minp: int, # int64_t
  22. ) -> np.ndarray: ... # np.ndarray[float]
  23. def roll_var(
  24. values: np.ndarray, # const float64_t[:]
  25. start: np.ndarray, # np.ndarray[np.int64]
  26. end: np.ndarray, # np.ndarray[np.int64]
  27. minp: int, # int64_t
  28. ddof: int = ...,
  29. ) -> np.ndarray: ... # np.ndarray[float]
  30. def roll_skew(
  31. values: np.ndarray, # np.ndarray[np.float64]
  32. start: np.ndarray, # np.ndarray[np.int64]
  33. end: np.ndarray, # np.ndarray[np.int64]
  34. minp: int, # int64_t
  35. ) -> np.ndarray: ... # np.ndarray[float]
  36. def roll_kurt(
  37. values: np.ndarray, # np.ndarray[np.float64]
  38. start: np.ndarray, # np.ndarray[np.int64]
  39. end: np.ndarray, # np.ndarray[np.int64]
  40. minp: int, # int64_t
  41. ) -> np.ndarray: ... # np.ndarray[float]
  42. def roll_median_c(
  43. values: np.ndarray, # np.ndarray[np.float64]
  44. start: np.ndarray, # np.ndarray[np.int64]
  45. end: np.ndarray, # np.ndarray[np.int64]
  46. minp: int, # int64_t
  47. ) -> np.ndarray: ... # np.ndarray[float]
  48. def roll_max(
  49. values: np.ndarray, # np.ndarray[np.float64]
  50. start: np.ndarray, # np.ndarray[np.int64]
  51. end: np.ndarray, # np.ndarray[np.int64]
  52. minp: int, # int64_t
  53. ) -> np.ndarray: ... # np.ndarray[float]
  54. def roll_min(
  55. values: np.ndarray, # np.ndarray[np.float64]
  56. start: np.ndarray, # np.ndarray[np.int64]
  57. end: np.ndarray, # np.ndarray[np.int64]
  58. minp: int, # int64_t
  59. ) -> np.ndarray: ... # np.ndarray[float]
  60. def roll_quantile(
  61. values: np.ndarray, # const float64_t[:]
  62. start: np.ndarray, # np.ndarray[np.int64]
  63. end: np.ndarray, # np.ndarray[np.int64]
  64. minp: int, # int64_t
  65. quantile: float, # float64_t
  66. interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
  67. ) -> np.ndarray: ... # np.ndarray[float]
  68. def roll_rank(
  69. values: np.ndarray,
  70. start: np.ndarray,
  71. end: np.ndarray,
  72. minp: int,
  73. percentile: bool,
  74. method: WindowingRankType,
  75. ascending: bool,
  76. ) -> np.ndarray: ... # np.ndarray[float]
  77. def roll_apply(
  78. obj: object,
  79. start: np.ndarray, # np.ndarray[np.int64]
  80. end: np.ndarray, # np.ndarray[np.int64]
  81. minp: int, # int64_t
  82. function: Callable[..., Any],
  83. raw: bool,
  84. args: tuple[Any, ...],
  85. kwargs: dict[str, Any],
  86. ) -> npt.NDArray[np.float64]: ...
  87. def roll_weighted_sum(
  88. values: np.ndarray, # const float64_t[:]
  89. weights: np.ndarray, # const float64_t[:]
  90. minp: int,
  91. ) -> np.ndarray: ... # np.ndarray[np.float64]
  92. def roll_weighted_mean(
  93. values: np.ndarray, # const float64_t[:]
  94. weights: np.ndarray, # const float64_t[:]
  95. minp: int,
  96. ) -> np.ndarray: ... # np.ndarray[np.float64]
  97. def roll_weighted_var(
  98. values: np.ndarray, # const float64_t[:]
  99. weights: np.ndarray, # const float64_t[:]
  100. minp: int, # int64_t
  101. ddof: int, # unsigned int
  102. ) -> np.ndarray: ... # np.ndarray[np.float64]
  103. def ewm(
  104. vals: np.ndarray, # const float64_t[:]
  105. start: np.ndarray, # const int64_t[:]
  106. end: np.ndarray, # const int64_t[:]
  107. minp: int,
  108. com: float, # float64_t
  109. adjust: bool,
  110. ignore_na: bool,
  111. deltas: np.ndarray, # const float64_t[:]
  112. normalize: bool,
  113. ) -> np.ndarray: ... # np.ndarray[np.float64]
  114. def ewmcov(
  115. input_x: np.ndarray, # const float64_t[:]
  116. start: np.ndarray, # const int64_t[:]
  117. end: np.ndarray, # const int64_t[:]
  118. minp: int,
  119. input_y: np.ndarray, # const float64_t[:]
  120. com: float, # float64_t
  121. adjust: bool,
  122. ignore_na: bool,
  123. bias: bool,
  124. ) -> np.ndarray: ... # np.ndarray[np.float64]