123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- from typing import (
- Any,
- Callable,
- Literal,
- )
- import numpy as np
- from pandas._typing import (
- WindowingRankType,
- npt,
- )
- def roll_sum(
- values: np.ndarray, # const float64_t[:]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_mean(
- values: np.ndarray, # const float64_t[:]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_var(
- values: np.ndarray, # const float64_t[:]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ddof: int = ...,
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_skew(
- values: np.ndarray, # np.ndarray[np.float64]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_kurt(
- values: np.ndarray, # np.ndarray[np.float64]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_median_c(
- values: np.ndarray, # np.ndarray[np.float64]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_max(
- values: np.ndarray, # np.ndarray[np.float64]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_min(
- values: np.ndarray, # np.ndarray[np.float64]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_quantile(
- values: np.ndarray, # const float64_t[:]
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- quantile: float, # float64_t
- interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_rank(
- values: np.ndarray,
- start: np.ndarray,
- end: np.ndarray,
- minp: int,
- percentile: bool,
- method: WindowingRankType,
- ascending: bool,
- ) -> np.ndarray: ... # np.ndarray[float]
- def roll_apply(
- obj: object,
- start: np.ndarray, # np.ndarray[np.int64]
- end: np.ndarray, # np.ndarray[np.int64]
- minp: int, # int64_t
- function: Callable[..., Any],
- raw: bool,
- args: tuple[Any, ...],
- kwargs: dict[str, Any],
- ) -> npt.NDArray[np.float64]: ...
- def roll_weighted_sum(
- values: np.ndarray, # const float64_t[:]
- weights: np.ndarray, # const float64_t[:]
- minp: int,
- ) -> np.ndarray: ... # np.ndarray[np.float64]
- def roll_weighted_mean(
- values: np.ndarray, # const float64_t[:]
- weights: np.ndarray, # const float64_t[:]
- minp: int,
- ) -> np.ndarray: ... # np.ndarray[np.float64]
- def roll_weighted_var(
- values: np.ndarray, # const float64_t[:]
- weights: np.ndarray, # const float64_t[:]
- minp: int, # int64_t
- ddof: int, # unsigned int
- ) -> np.ndarray: ... # np.ndarray[np.float64]
- def ewm(
- vals: np.ndarray, # const float64_t[:]
- start: np.ndarray, # const int64_t[:]
- end: np.ndarray, # const int64_t[:]
- minp: int,
- com: float, # float64_t
- adjust: bool,
- ignore_na: bool,
- deltas: np.ndarray, # const float64_t[:]
- normalize: bool,
- ) -> np.ndarray: ... # np.ndarray[np.float64]
- def ewmcov(
- input_x: np.ndarray, # const float64_t[:]
- start: np.ndarray, # const int64_t[:]
- end: np.ndarray, # const int64_t[:]
- minp: int,
- input_y: np.ndarray, # const float64_t[:]
- com: float, # float64_t
- adjust: bool,
- ignore_na: bool,
- bias: bool,
- ) -> np.ndarray: ... # np.ndarray[np.float64]
|