parsing.pyi 1.1 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. from datetime import datetime
  2. import numpy as np
  3. from pandas._typing import npt
  4. class DateParseError(ValueError): ...
  5. def py_parse_datetime_string(
  6. date_string: str,
  7. dayfirst: bool = ...,
  8. yearfirst: bool = ...,
  9. ) -> datetime: ...
  10. def parse_datetime_string_with_reso(
  11. date_string: str,
  12. freq: str | None = ...,
  13. dayfirst: bool | None = ...,
  14. yearfirst: bool | None = ...,
  15. ) -> tuple[datetime, str]: ...
  16. def _does_string_look_like_datetime(py_string: str) -> bool: ...
  17. def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
  18. def try_parse_dates(
  19. values: npt.NDArray[np.object_], # object[:]
  20. parser,
  21. ) -> npt.NDArray[np.object_]: ...
  22. def try_parse_year_month_day(
  23. years: npt.NDArray[np.object_], # object[:]
  24. months: npt.NDArray[np.object_], # object[:]
  25. days: npt.NDArray[np.object_], # object[:]
  26. ) -> npt.NDArray[np.object_]: ...
  27. def guess_datetime_format(
  28. dt_str,
  29. dayfirst: bool | None = ...,
  30. ) -> str | None: ...
  31. def concat_date_cols(
  32. date_cols: tuple,
  33. ) -> npt.NDArray[np.object_]: ...
  34. def get_rule_month(source: str) -> str: ...