| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 | Metadata-Version: 2.1Name: pandasVersion: 2.0.3Summary: Powerful data structures for data analysis, time series, and statisticsAuthor-email: The Pandas Development Team <pandas-dev@python.org>License: BSD 3-Clause License                Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team        All rights reserved.                Copyright (c) 2011-2023, Open source contributors.                Redistribution and use in source and binary forms, with or without        modification, are permitted provided that the following conditions are met:                * Redistributions of source code must retain the above copyright notice, this          list of conditions and the following disclaimer.                * Redistributions in binary form must reproduce the above copyright notice,          this list of conditions and the following disclaimer in the documentation          and/or other materials provided with the distribution.                * Neither the name of the copyright holder nor the names of its          contributors may be used to endorse or promote products derived from          this software without specific prior written permission.                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"        AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE        IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE        FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL        DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR        SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER        CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,        OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE        OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.        Project-URL: homepage, https://pandas.pydata.orgProject-URL: documentation, https://pandas.pydata.org/docs/Project-URL: repository, https://github.com/pandas-dev/pandasClassifier: Development Status :: 5 - Production/StableClassifier: Environment :: ConsoleClassifier: Intended Audience :: Science/ResearchClassifier: License :: OSI Approved :: BSD LicenseClassifier: Operating System :: OS IndependentClassifier: Programming Language :: CythonClassifier: Programming Language :: PythonClassifier: Programming Language :: Python :: 3Classifier: Programming Language :: Python :: 3 :: OnlyClassifier: Programming Language :: Python :: 3.8Classifier: Programming Language :: Python :: 3.9Classifier: Programming Language :: Python :: 3.10Classifier: Programming Language :: Python :: 3.11Classifier: Topic :: Scientific/EngineeringRequires-Python: >=3.8Description-Content-Type: text/markdownLicense-File: LICENSELicense-File: AUTHORS.mdRequires-Dist: python-dateutil (>=2.8.2)Requires-Dist: pytz (>=2020.1)Requires-Dist: tzdata (>=2022.1)Requires-Dist: numpy (>=1.20.3) ; python_version < "3.10"Requires-Dist: numpy (>=1.21.0) ; python_version >= "3.10"Requires-Dist: numpy (>=1.23.2) ; python_version >= "3.11"Provides-Extra: allRequires-Dist: beautifulsoup4 (>=4.9.3) ; extra == 'all'Requires-Dist: bottleneck (>=1.3.2) ; extra == 'all'Requires-Dist: brotlipy (>=0.7.0) ; extra == 'all'Requires-Dist: fastparquet (>=0.6.3) ; extra == 'all'Requires-Dist: fsspec (>=2021.07.0) ; extra == 'all'Requires-Dist: gcsfs (>=2021.07.0) ; extra == 'all'Requires-Dist: html5lib (>=1.1) ; extra == 'all'Requires-Dist: hypothesis (>=6.34.2) ; extra == 'all'Requires-Dist: jinja2 (>=3.0.0) ; extra == 'all'Requires-Dist: lxml (>=4.6.3) ; extra == 'all'Requires-Dist: matplotlib (>=3.6.1) ; extra == 'all'Requires-Dist: numba (>=0.53.1) ; extra == 'all'Requires-Dist: numexpr (>=2.7.3) ; extra == 'all'Requires-Dist: odfpy (>=1.4.1) ; extra == 'all'Requires-Dist: openpyxl (>=3.0.7) ; extra == 'all'Requires-Dist: pandas-gbq (>=0.15.0) ; extra == 'all'Requires-Dist: psycopg2 (>=2.8.6) ; extra == 'all'Requires-Dist: pyarrow (>=7.0.0) ; extra == 'all'Requires-Dist: pymysql (>=1.0.2) ; extra == 'all'Requires-Dist: PyQt5 (>=5.15.1) ; extra == 'all'Requires-Dist: pyreadstat (>=1.1.2) ; extra == 'all'Requires-Dist: pytest (>=7.3.2) ; extra == 'all'Requires-Dist: pytest-xdist (>=2.2.0) ; extra == 'all'Requires-Dist: pytest-asyncio (>=0.17.0) ; extra == 'all'Requires-Dist: python-snappy (>=0.6.0) ; extra == 'all'Requires-Dist: pyxlsb (>=1.0.8) ; extra == 'all'Requires-Dist: qtpy (>=2.2.0) ; extra == 'all'Requires-Dist: scipy (>=1.7.1) ; extra == 'all'Requires-Dist: s3fs (>=2021.08.0) ; extra == 'all'Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'all'Requires-Dist: tables (>=3.6.1) ; extra == 'all'Requires-Dist: tabulate (>=0.8.9) ; extra == 'all'Requires-Dist: xarray (>=0.21.0) ; extra == 'all'Requires-Dist: xlrd (>=2.0.1) ; extra == 'all'Requires-Dist: xlsxwriter (>=1.4.3) ; extra == 'all'Requires-Dist: zstandard (>=0.15.2) ; extra == 'all'Provides-Extra: awsRequires-Dist: s3fs (>=2021.08.0) ; extra == 'aws'Provides-Extra: clipboardRequires-Dist: PyQt5 (>=5.15.1) ; extra == 'clipboard'Requires-Dist: qtpy (>=2.2.0) ; extra == 'clipboard'Provides-Extra: compressionRequires-Dist: brotlipy (>=0.7.0) ; extra == 'compression'Requires-Dist: python-snappy (>=0.6.0) ; extra == 'compression'Requires-Dist: zstandard (>=0.15.2) ; extra == 'compression'Provides-Extra: computationRequires-Dist: scipy (>=1.7.1) ; extra == 'computation'Requires-Dist: xarray (>=0.21.0) ; extra == 'computation'Provides-Extra: excelRequires-Dist: odfpy (>=1.4.1) ; extra == 'excel'Requires-Dist: openpyxl (>=3.0.7) ; extra == 'excel'Requires-Dist: pyxlsb (>=1.0.8) ; extra == 'excel'Requires-Dist: xlrd (>=2.0.1) ; extra == 'excel'Requires-Dist: xlsxwriter (>=1.4.3) ; extra == 'excel'Provides-Extra: featherRequires-Dist: pyarrow (>=7.0.0) ; extra == 'feather'Provides-Extra: fssRequires-Dist: fsspec (>=2021.07.0) ; extra == 'fss'Provides-Extra: gcpRequires-Dist: gcsfs (>=2021.07.0) ; extra == 'gcp'Requires-Dist: pandas-gbq (>=0.15.0) ; extra == 'gcp'Provides-Extra: hdf5Requires-Dist: tables (>=3.6.1) ; extra == 'hdf5'Provides-Extra: htmlRequires-Dist: beautifulsoup4 (>=4.9.3) ; extra == 'html'Requires-Dist: html5lib (>=1.1) ; extra == 'html'Requires-Dist: lxml (>=4.6.3) ; extra == 'html'Provides-Extra: mysqlRequires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'mysql'Requires-Dist: pymysql (>=1.0.2) ; extra == 'mysql'Provides-Extra: output_formattingRequires-Dist: jinja2 (>=3.0.0) ; extra == 'output_formatting'Requires-Dist: tabulate (>=0.8.9) ; extra == 'output_formatting'Provides-Extra: parquetRequires-Dist: pyarrow (>=7.0.0) ; extra == 'parquet'Provides-Extra: performanceRequires-Dist: bottleneck (>=1.3.2) ; extra == 'performance'Requires-Dist: numba (>=0.53.1) ; extra == 'performance'Requires-Dist: numexpr (>=2.7.1) ; extra == 'performance'Provides-Extra: plotRequires-Dist: matplotlib (>=3.6.1) ; extra == 'plot'Provides-Extra: postgresqlRequires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'postgresql'Requires-Dist: psycopg2 (>=2.8.6) ; extra == 'postgresql'Provides-Extra: spssRequires-Dist: pyreadstat (>=1.1.2) ; extra == 'spss'Provides-Extra: sql-otherRequires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'sql-other'Provides-Extra: testRequires-Dist: hypothesis (>=6.34.2) ; extra == 'test'Requires-Dist: pytest (>=7.3.2) ; extra == 'test'Requires-Dist: pytest-xdist (>=2.2.0) ; extra == 'test'Requires-Dist: pytest-asyncio (>=0.17.0) ; extra == 'test'Provides-Extra: xmlRequires-Dist: lxml (>=4.6.3) ; extra == 'xml'<div align="center">  <img src="https://pandas.pydata.org/static/img/pandas.svg"><br></div>-----------------# pandas: powerful Python data analysis toolkit[](https://pypi.org/project/pandas/)[](https://anaconda.org/anaconda/pandas/)[](https://doi.org/10.5281/zenodo.3509134)[](https://pypi.org/project/pandas/)[](https://github.com/pandas-dev/pandas/blob/main/LICENSE)[](https://codecov.io/gh/pandas-dev/pandas)[](https://pepy.tech/project/pandas)[](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack)[](https://numfocus.org)[](https://github.com/psf/black)[](https://pycqa.github.io/isort/)## What is it?**pandas** is a Python package that provides fast, flexible, and expressive datastructures designed to make working with "relational" or "labeled" data botheasy and intuitive. It aims to be the fundamental high-level building block fordoing practical, **real world** data analysis in Python. Additionally, it hasthe broader goal of becoming **the most powerful and flexible open source dataanalysis / manipulation tool available in any language**. It is already well onits way towards this goal.## Main FeaturesHere are just a few of the things that pandas does well:  - Easy handling of [**missing data**][missing-data] (represented as    `NaN`, `NA`, or `NaT`) in floating point as well as non-floating point data  - Size mutability: columns can be [**inserted and    deleted**][insertion-deletion] from DataFrame and higher dimensional    objects  - Automatic and explicit [**data alignment**][alignment]: objects can    be explicitly aligned to a set of labels, or the user can simply    ignore the labels and let `Series`, `DataFrame`, etc. automatically    align the data for you in computations  - Powerful, flexible [**group by**][groupby] functionality to perform    split-apply-combine operations on data sets, for both aggregating    and transforming data  - Make it [**easy to convert**][conversion] ragged,    differently-indexed data in other Python and NumPy data structures    into DataFrame objects  - Intelligent label-based [**slicing**][slicing], [**fancy    indexing**][fancy-indexing], and [**subsetting**][subsetting] of    large data sets  - Intuitive [**merging**][merging] and [**joining**][joining] data    sets  - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of    data sets  - [**Hierarchical**][mi] labeling of axes (possible to have multiple    labels per tick)  - Robust IO tools for loading data from [**flat files**][flat-files]    (CSV and delimited), [**Excel files**][excel], [**databases**][db],    and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]  - [**Time series**][timeseries]-specific functionality: date range    generation and frequency conversion, moving window statistics,    date shifting and lagging   [missing-data]: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html   [insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion   [alignment]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html?highlight=alignment#intro-to-data-structures   [groupby]: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine   [conversion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe   [slicing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#slicing-ranges   [fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced   [subsetting]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing   [merging]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging   [joining]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#joining-on-index   [reshape]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html   [pivot-table]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html   [mi]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#hierarchical-indexing-multiindex   [flat-files]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#csv-text-files   [excel]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#excel-files   [db]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries   [hdfstore]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#hdf5-pytables   [timeseries]: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-series-date-functionality## Where to get itThe source code is currently hosted on GitHub at:https://github.com/pandas-dev/pandasBinary installers for the latest released version are available at the [PythonPackage Index (PyPI)](https://pypi.org/project/pandas) and on [Conda](https://docs.conda.io/en/latest/).```sh# condaconda install pandas``````sh# or PyPIpip install pandas```## Dependencies- [NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays](https://www.numpy.org)- [python-dateutil - Provides powerful extensions to the standard datetime module](https://dateutil.readthedocs.io/en/stable/index.html)- [pytz - Brings the Olson tz database into Python which allows accurate and cross platform timezone calculations](https://github.com/stub42/pytz)See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies.## Installation from sourcesTo install pandas from source you need [Cython](https://cython.org/) in addition to the normaldependencies above. Cython can be installed from PyPI:```shpip install cython```In the `pandas` directory (same one where you found this file aftercloning the git repo), execute:```shpython setup.py install```or for installing in [development mode](https://pip.pypa.io/en/latest/cli/pip_install/#install-editable):```shpython -m pip install -e . --no-build-isolation --no-use-pep517```or alternatively```shpython setup.py develop```See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html#installing-from-source).## License[BSD 3](LICENSE)## DocumentationThe official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable## BackgroundWork on ``pandas`` started at [AQR](https://www.aqr.com/) (a quantitative hedge fund) in 2008 andhas been under active development since then.## Getting HelpFor usage questions, the best place to go to is [StackOverflow](https://stackoverflow.com/questions/tagged/pandas).Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata).## Discussion and DevelopmentMost development discussions take place on GitHub in this repo. Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Slack channel](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) is available for quick development related questions.## Contributing to pandas [](https://www.codetriage.com/pandas-dev/pandas)All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**.If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [good first issue](https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open) where you could start out.You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas).Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Slack](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack).As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)
 |