123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818 |
- import pickle
- from functools import partial
- import numpy as np
- import pytest
- from numpy.testing import assert_equal, assert_, assert_array_equal
- from numpy.random import (Generator, MT19937, PCG64, PCG64DXSM, Philox, SFC64)
- @pytest.fixture(scope='module',
- params=(np.bool_, np.int8, np.int16, np.int32, np.int64,
- np.uint8, np.uint16, np.uint32, np.uint64))
- def dtype(request):
- return request.param
- def params_0(f):
- val = f()
- assert_(np.isscalar(val))
- val = f(10)
- assert_(val.shape == (10,))
- val = f((10, 10))
- assert_(val.shape == (10, 10))
- val = f((10, 10, 10))
- assert_(val.shape == (10, 10, 10))
- val = f(size=(5, 5))
- assert_(val.shape == (5, 5))
- def params_1(f, bounded=False):
- a = 5.0
- b = np.arange(2.0, 12.0)
- c = np.arange(2.0, 102.0).reshape((10, 10))
- d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
- e = np.array([2.0, 3.0])
- g = np.arange(2.0, 12.0).reshape((1, 10, 1))
- if bounded:
- a = 0.5
- b = b / (1.5 * b.max())
- c = c / (1.5 * c.max())
- d = d / (1.5 * d.max())
- e = e / (1.5 * e.max())
- g = g / (1.5 * g.max())
- # Scalar
- f(a)
- # Scalar - size
- f(a, size=(10, 10))
- # 1d
- f(b)
- # 2d
- f(c)
- # 3d
- f(d)
- # 1d size
- f(b, size=10)
- # 2d - size - broadcast
- f(e, size=(10, 2))
- # 3d - size
- f(g, size=(10, 10, 10))
- def comp_state(state1, state2):
- identical = True
- if isinstance(state1, dict):
- for key in state1:
- identical &= comp_state(state1[key], state2[key])
- elif type(state1) != type(state2):
- identical &= type(state1) == type(state2)
- else:
- if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
- state2, (list, tuple, np.ndarray))):
- for s1, s2 in zip(state1, state2):
- identical &= comp_state(s1, s2)
- else:
- identical &= state1 == state2
- return identical
- def warmup(rg, n=None):
- if n is None:
- n = 11 + np.random.randint(0, 20)
- rg.standard_normal(n)
- rg.standard_normal(n)
- rg.standard_normal(n, dtype=np.float32)
- rg.standard_normal(n, dtype=np.float32)
- rg.integers(0, 2 ** 24, n, dtype=np.uint64)
- rg.integers(0, 2 ** 48, n, dtype=np.uint64)
- rg.standard_gamma(11.0, n)
- rg.standard_gamma(11.0, n, dtype=np.float32)
- rg.random(n, dtype=np.float64)
- rg.random(n, dtype=np.float32)
- class RNG:
- @classmethod
- def setup_class(cls):
- # Overridden in test classes. Place holder to silence IDE noise
- cls.bit_generator = PCG64
- cls.advance = None
- cls.seed = [12345]
- cls.rg = Generator(cls.bit_generator(*cls.seed))
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 64
- cls._extra_setup()
- @classmethod
- def _extra_setup(cls):
- cls.vec_1d = np.arange(2.0, 102.0)
- cls.vec_2d = np.arange(2.0, 102.0)[None, :]
- cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
- cls.seed_error = TypeError
- def _reset_state(self):
- self.rg.bit_generator.state = self.initial_state
- def test_init(self):
- rg = Generator(self.bit_generator())
- state = rg.bit_generator.state
- rg.standard_normal(1)
- rg.standard_normal(1)
- rg.bit_generator.state = state
- new_state = rg.bit_generator.state
- assert_(comp_state(state, new_state))
- def test_advance(self):
- state = self.rg.bit_generator.state
- if hasattr(self.rg.bit_generator, 'advance'):
- self.rg.bit_generator.advance(self.advance)
- assert_(not comp_state(state, self.rg.bit_generator.state))
- else:
- bitgen_name = self.rg.bit_generator.__class__.__name__
- pytest.skip(f'Advance is not supported by {bitgen_name}')
- def test_jump(self):
- state = self.rg.bit_generator.state
- if hasattr(self.rg.bit_generator, 'jumped'):
- bit_gen2 = self.rg.bit_generator.jumped()
- jumped_state = bit_gen2.state
- assert_(not comp_state(state, jumped_state))
- self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
- self.rg.bit_generator.state = state
- bit_gen3 = self.rg.bit_generator.jumped()
- rejumped_state = bit_gen3.state
- assert_(comp_state(jumped_state, rejumped_state))
- else:
- bitgen_name = self.rg.bit_generator.__class__.__name__
- if bitgen_name not in ('SFC64',):
- raise AttributeError(f'no "jumped" in {bitgen_name}')
- pytest.skip(f'Jump is not supported by {bitgen_name}')
- def test_uniform(self):
- r = self.rg.uniform(-1.0, 0.0, size=10)
- assert_(len(r) == 10)
- assert_((r > -1).all())
- assert_((r <= 0).all())
- def test_uniform_array(self):
- r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
- assert_(len(r) == 10)
- assert_((r > -1).all())
- assert_((r <= 0).all())
- r = self.rg.uniform(np.array([-1.0] * 10),
- np.array([0.0] * 10), size=10)
- assert_(len(r) == 10)
- assert_((r > -1).all())
- assert_((r <= 0).all())
- r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
- assert_(len(r) == 10)
- assert_((r > -1).all())
- assert_((r <= 0).all())
- def test_random(self):
- assert_(len(self.rg.random(10)) == 10)
- params_0(self.rg.random)
- def test_standard_normal_zig(self):
- assert_(len(self.rg.standard_normal(10)) == 10)
- def test_standard_normal(self):
- assert_(len(self.rg.standard_normal(10)) == 10)
- params_0(self.rg.standard_normal)
- def test_standard_gamma(self):
- assert_(len(self.rg.standard_gamma(10, 10)) == 10)
- assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
- params_1(self.rg.standard_gamma)
- def test_standard_exponential(self):
- assert_(len(self.rg.standard_exponential(10)) == 10)
- params_0(self.rg.standard_exponential)
- def test_standard_exponential_float(self):
- randoms = self.rg.standard_exponential(10, dtype='float32')
- assert_(len(randoms) == 10)
- assert randoms.dtype == np.float32
- params_0(partial(self.rg.standard_exponential, dtype='float32'))
- def test_standard_exponential_float_log(self):
- randoms = self.rg.standard_exponential(10, dtype='float32',
- method='inv')
- assert_(len(randoms) == 10)
- assert randoms.dtype == np.float32
- params_0(partial(self.rg.standard_exponential, dtype='float32',
- method='inv'))
- def test_standard_cauchy(self):
- assert_(len(self.rg.standard_cauchy(10)) == 10)
- params_0(self.rg.standard_cauchy)
- def test_standard_t(self):
- assert_(len(self.rg.standard_t(10, 10)) == 10)
- params_1(self.rg.standard_t)
- def test_binomial(self):
- assert_(self.rg.binomial(10, .5) >= 0)
- assert_(self.rg.binomial(1000, .5) >= 0)
- def test_reset_state(self):
- state = self.rg.bit_generator.state
- int_1 = self.rg.integers(2**31)
- self.rg.bit_generator.state = state
- int_2 = self.rg.integers(2**31)
- assert_(int_1 == int_2)
- def test_entropy_init(self):
- rg = Generator(self.bit_generator())
- rg2 = Generator(self.bit_generator())
- assert_(not comp_state(rg.bit_generator.state,
- rg2.bit_generator.state))
- def test_seed(self):
- rg = Generator(self.bit_generator(*self.seed))
- rg2 = Generator(self.bit_generator(*self.seed))
- rg.random()
- rg2.random()
- assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
- def test_reset_state_gauss(self):
- rg = Generator(self.bit_generator(*self.seed))
- rg.standard_normal()
- state = rg.bit_generator.state
- n1 = rg.standard_normal(size=10)
- rg2 = Generator(self.bit_generator())
- rg2.bit_generator.state = state
- n2 = rg2.standard_normal(size=10)
- assert_array_equal(n1, n2)
- def test_reset_state_uint32(self):
- rg = Generator(self.bit_generator(*self.seed))
- rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
- state = rg.bit_generator.state
- n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
- rg2 = Generator(self.bit_generator())
- rg2.bit_generator.state = state
- n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
- assert_array_equal(n1, n2)
- def test_reset_state_float(self):
- rg = Generator(self.bit_generator(*self.seed))
- rg.random(dtype='float32')
- state = rg.bit_generator.state
- n1 = rg.random(size=10, dtype='float32')
- rg2 = Generator(self.bit_generator())
- rg2.bit_generator.state = state
- n2 = rg2.random(size=10, dtype='float32')
- assert_((n1 == n2).all())
- def test_shuffle(self):
- original = np.arange(200, 0, -1)
- permuted = self.rg.permutation(original)
- assert_((original != permuted).any())
- def test_permutation(self):
- original = np.arange(200, 0, -1)
- permuted = self.rg.permutation(original)
- assert_((original != permuted).any())
- def test_beta(self):
- vals = self.rg.beta(2.0, 2.0, 10)
- assert_(len(vals) == 10)
- vals = self.rg.beta(np.array([2.0] * 10), 2.0)
- assert_(len(vals) == 10)
- vals = self.rg.beta(2.0, np.array([2.0] * 10))
- assert_(len(vals) == 10)
- vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
- assert_(len(vals) == 10)
- vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
- assert_(vals.shape == (10, 10))
- def test_bytes(self):
- vals = self.rg.bytes(10)
- assert_(len(vals) == 10)
- def test_chisquare(self):
- vals = self.rg.chisquare(2.0, 10)
- assert_(len(vals) == 10)
- params_1(self.rg.chisquare)
- def test_exponential(self):
- vals = self.rg.exponential(2.0, 10)
- assert_(len(vals) == 10)
- params_1(self.rg.exponential)
- def test_f(self):
- vals = self.rg.f(3, 1000, 10)
- assert_(len(vals) == 10)
- def test_gamma(self):
- vals = self.rg.gamma(3, 2, 10)
- assert_(len(vals) == 10)
- def test_geometric(self):
- vals = self.rg.geometric(0.5, 10)
- assert_(len(vals) == 10)
- params_1(self.rg.exponential, bounded=True)
- def test_gumbel(self):
- vals = self.rg.gumbel(2.0, 2.0, 10)
- assert_(len(vals) == 10)
- def test_laplace(self):
- vals = self.rg.laplace(2.0, 2.0, 10)
- assert_(len(vals) == 10)
- def test_logitic(self):
- vals = self.rg.logistic(2.0, 2.0, 10)
- assert_(len(vals) == 10)
- def test_logseries(self):
- vals = self.rg.logseries(0.5, 10)
- assert_(len(vals) == 10)
- def test_negative_binomial(self):
- vals = self.rg.negative_binomial(10, 0.2, 10)
- assert_(len(vals) == 10)
- def test_noncentral_chisquare(self):
- vals = self.rg.noncentral_chisquare(10, 2, 10)
- assert_(len(vals) == 10)
- def test_noncentral_f(self):
- vals = self.rg.noncentral_f(3, 1000, 2, 10)
- assert_(len(vals) == 10)
- vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
- assert_(len(vals) == 10)
- vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
- assert_(len(vals) == 10)
- vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
- assert_(len(vals) == 10)
- def test_normal(self):
- vals = self.rg.normal(10, 0.2, 10)
- assert_(len(vals) == 10)
- def test_pareto(self):
- vals = self.rg.pareto(3.0, 10)
- assert_(len(vals) == 10)
- def test_poisson(self):
- vals = self.rg.poisson(10, 10)
- assert_(len(vals) == 10)
- vals = self.rg.poisson(np.array([10] * 10))
- assert_(len(vals) == 10)
- params_1(self.rg.poisson)
- def test_power(self):
- vals = self.rg.power(0.2, 10)
- assert_(len(vals) == 10)
- def test_integers(self):
- vals = self.rg.integers(10, 20, 10)
- assert_(len(vals) == 10)
- def test_rayleigh(self):
- vals = self.rg.rayleigh(0.2, 10)
- assert_(len(vals) == 10)
- params_1(self.rg.rayleigh, bounded=True)
- def test_vonmises(self):
- vals = self.rg.vonmises(10, 0.2, 10)
- assert_(len(vals) == 10)
- def test_wald(self):
- vals = self.rg.wald(1.0, 1.0, 10)
- assert_(len(vals) == 10)
- def test_weibull(self):
- vals = self.rg.weibull(1.0, 10)
- assert_(len(vals) == 10)
- def test_zipf(self):
- vals = self.rg.zipf(10, 10)
- assert_(len(vals) == 10)
- vals = self.rg.zipf(self.vec_1d)
- assert_(len(vals) == 100)
- vals = self.rg.zipf(self.vec_2d)
- assert_(vals.shape == (1, 100))
- vals = self.rg.zipf(self.mat)
- assert_(vals.shape == (100, 100))
- def test_hypergeometric(self):
- vals = self.rg.hypergeometric(25, 25, 20)
- assert_(np.isscalar(vals))
- vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
- assert_(vals.shape == (10,))
- def test_triangular(self):
- vals = self.rg.triangular(-5, 0, 5)
- assert_(np.isscalar(vals))
- vals = self.rg.triangular(-5, np.array([0] * 10), 5)
- assert_(vals.shape == (10,))
- def test_multivariate_normal(self):
- mean = [0, 0]
- cov = [[1, 0], [0, 100]] # diagonal covariance
- x = self.rg.multivariate_normal(mean, cov, 5000)
- assert_(x.shape == (5000, 2))
- x_zig = self.rg.multivariate_normal(mean, cov, 5000)
- assert_(x.shape == (5000, 2))
- x_inv = self.rg.multivariate_normal(mean, cov, 5000)
- assert_(x.shape == (5000, 2))
- assert_((x_zig != x_inv).any())
- def test_multinomial(self):
- vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
- assert_(vals.shape == (2,))
- vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
- assert_(vals.shape == (10, 2))
- def test_dirichlet(self):
- s = self.rg.dirichlet((10, 5, 3), 20)
- assert_(s.shape == (20, 3))
- def test_pickle(self):
- pick = pickle.dumps(self.rg)
- unpick = pickle.loads(pick)
- assert_((type(self.rg) == type(unpick)))
- assert_(comp_state(self.rg.bit_generator.state,
- unpick.bit_generator.state))
- pick = pickle.dumps(self.rg)
- unpick = pickle.loads(pick)
- assert_((type(self.rg) == type(unpick)))
- assert_(comp_state(self.rg.bit_generator.state,
- unpick.bit_generator.state))
- def test_seed_array(self):
- if self.seed_vector_bits is None:
- bitgen_name = self.bit_generator.__name__
- pytest.skip(f'Vector seeding is not supported by {bitgen_name}')
- if self.seed_vector_bits == 32:
- dtype = np.uint32
- else:
- dtype = np.uint64
- seed = np.array([1], dtype=dtype)
- bg = self.bit_generator(seed)
- state1 = bg.state
- bg = self.bit_generator(1)
- state2 = bg.state
- assert_(comp_state(state1, state2))
- seed = np.arange(4, dtype=dtype)
- bg = self.bit_generator(seed)
- state1 = bg.state
- bg = self.bit_generator(seed[0])
- state2 = bg.state
- assert_(not comp_state(state1, state2))
- seed = np.arange(1500, dtype=dtype)
- bg = self.bit_generator(seed)
- state1 = bg.state
- bg = self.bit_generator(seed[0])
- state2 = bg.state
- assert_(not comp_state(state1, state2))
- seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
- self.seed_vector_bits - 1) + 1
- bg = self.bit_generator(seed)
- state1 = bg.state
- bg = self.bit_generator(seed[0])
- state2 = bg.state
- assert_(not comp_state(state1, state2))
- def test_uniform_float(self):
- rg = Generator(self.bit_generator(12345))
- warmup(rg)
- state = rg.bit_generator.state
- r1 = rg.random(11, dtype=np.float32)
- rg2 = Generator(self.bit_generator())
- warmup(rg2)
- rg2.bit_generator.state = state
- r2 = rg2.random(11, dtype=np.float32)
- assert_array_equal(r1, r2)
- assert_equal(r1.dtype, np.float32)
- assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
- def test_gamma_floats(self):
- rg = Generator(self.bit_generator())
- warmup(rg)
- state = rg.bit_generator.state
- r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
- rg2 = Generator(self.bit_generator())
- warmup(rg2)
- rg2.bit_generator.state = state
- r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
- assert_array_equal(r1, r2)
- assert_equal(r1.dtype, np.float32)
- assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
- def test_normal_floats(self):
- rg = Generator(self.bit_generator())
- warmup(rg)
- state = rg.bit_generator.state
- r1 = rg.standard_normal(11, dtype=np.float32)
- rg2 = Generator(self.bit_generator())
- warmup(rg2)
- rg2.bit_generator.state = state
- r2 = rg2.standard_normal(11, dtype=np.float32)
- assert_array_equal(r1, r2)
- assert_equal(r1.dtype, np.float32)
- assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
- def test_normal_zig_floats(self):
- rg = Generator(self.bit_generator())
- warmup(rg)
- state = rg.bit_generator.state
- r1 = rg.standard_normal(11, dtype=np.float32)
- rg2 = Generator(self.bit_generator())
- warmup(rg2)
- rg2.bit_generator.state = state
- r2 = rg2.standard_normal(11, dtype=np.float32)
- assert_array_equal(r1, r2)
- assert_equal(r1.dtype, np.float32)
- assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
- def test_output_fill(self):
- rg = self.rg
- state = rg.bit_generator.state
- size = (31, 7, 97)
- existing = np.empty(size)
- rg.bit_generator.state = state
- rg.standard_normal(out=existing)
- rg.bit_generator.state = state
- direct = rg.standard_normal(size=size)
- assert_equal(direct, existing)
- sized = np.empty(size)
- rg.bit_generator.state = state
- rg.standard_normal(out=sized, size=sized.shape)
- existing = np.empty(size, dtype=np.float32)
- rg.bit_generator.state = state
- rg.standard_normal(out=existing, dtype=np.float32)
- rg.bit_generator.state = state
- direct = rg.standard_normal(size=size, dtype=np.float32)
- assert_equal(direct, existing)
- def test_output_filling_uniform(self):
- rg = self.rg
- state = rg.bit_generator.state
- size = (31, 7, 97)
- existing = np.empty(size)
- rg.bit_generator.state = state
- rg.random(out=existing)
- rg.bit_generator.state = state
- direct = rg.random(size=size)
- assert_equal(direct, existing)
- existing = np.empty(size, dtype=np.float32)
- rg.bit_generator.state = state
- rg.random(out=existing, dtype=np.float32)
- rg.bit_generator.state = state
- direct = rg.random(size=size, dtype=np.float32)
- assert_equal(direct, existing)
- def test_output_filling_exponential(self):
- rg = self.rg
- state = rg.bit_generator.state
- size = (31, 7, 97)
- existing = np.empty(size)
- rg.bit_generator.state = state
- rg.standard_exponential(out=existing)
- rg.bit_generator.state = state
- direct = rg.standard_exponential(size=size)
- assert_equal(direct, existing)
- existing = np.empty(size, dtype=np.float32)
- rg.bit_generator.state = state
- rg.standard_exponential(out=existing, dtype=np.float32)
- rg.bit_generator.state = state
- direct = rg.standard_exponential(size=size, dtype=np.float32)
- assert_equal(direct, existing)
- def test_output_filling_gamma(self):
- rg = self.rg
- state = rg.bit_generator.state
- size = (31, 7, 97)
- existing = np.zeros(size)
- rg.bit_generator.state = state
- rg.standard_gamma(1.0, out=existing)
- rg.bit_generator.state = state
- direct = rg.standard_gamma(1.0, size=size)
- assert_equal(direct, existing)
- existing = np.zeros(size, dtype=np.float32)
- rg.bit_generator.state = state
- rg.standard_gamma(1.0, out=existing, dtype=np.float32)
- rg.bit_generator.state = state
- direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
- assert_equal(direct, existing)
- def test_output_filling_gamma_broadcast(self):
- rg = self.rg
- state = rg.bit_generator.state
- size = (31, 7, 97)
- mu = np.arange(97.0) + 1.0
- existing = np.zeros(size)
- rg.bit_generator.state = state
- rg.standard_gamma(mu, out=existing)
- rg.bit_generator.state = state
- direct = rg.standard_gamma(mu, size=size)
- assert_equal(direct, existing)
- existing = np.zeros(size, dtype=np.float32)
- rg.bit_generator.state = state
- rg.standard_gamma(mu, out=existing, dtype=np.float32)
- rg.bit_generator.state = state
- direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
- assert_equal(direct, existing)
- def test_output_fill_error(self):
- rg = self.rg
- size = (31, 7, 97)
- existing = np.empty(size)
- with pytest.raises(TypeError):
- rg.standard_normal(out=existing, dtype=np.float32)
- with pytest.raises(ValueError):
- rg.standard_normal(out=existing[::3])
- existing = np.empty(size, dtype=np.float32)
- with pytest.raises(TypeError):
- rg.standard_normal(out=existing, dtype=np.float64)
- existing = np.zeros(size, dtype=np.float32)
- with pytest.raises(TypeError):
- rg.standard_gamma(1.0, out=existing, dtype=np.float64)
- with pytest.raises(ValueError):
- rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
- existing = np.zeros(size, dtype=np.float64)
- with pytest.raises(TypeError):
- rg.standard_gamma(1.0, out=existing, dtype=np.float32)
- with pytest.raises(ValueError):
- rg.standard_gamma(1.0, out=existing[::3])
- def test_integers_broadcast(self, dtype):
- if dtype == np.bool_:
- upper = 2
- lower = 0
- else:
- info = np.iinfo(dtype)
- upper = int(info.max) + 1
- lower = info.min
- self._reset_state()
- a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
- self._reset_state()
- b = self.rg.integers([lower] * 10, upper, dtype=dtype)
- assert_equal(a, b)
- self._reset_state()
- c = self.rg.integers(lower, upper, size=10, dtype=dtype)
- assert_equal(a, c)
- self._reset_state()
- d = self.rg.integers(np.array(
- [lower] * 10), np.array([upper], dtype=object), size=10,
- dtype=dtype)
- assert_equal(a, d)
- self._reset_state()
- e = self.rg.integers(
- np.array([lower] * 10), np.array([upper] * 10), size=10,
- dtype=dtype)
- assert_equal(a, e)
- self._reset_state()
- a = self.rg.integers(0, upper, size=10, dtype=dtype)
- self._reset_state()
- b = self.rg.integers([upper] * 10, dtype=dtype)
- assert_equal(a, b)
- def test_integers_numpy(self, dtype):
- high = np.array([1])
- low = np.array([0])
- out = self.rg.integers(low, high, dtype=dtype)
- assert out.shape == (1,)
- out = self.rg.integers(low[0], high, dtype=dtype)
- assert out.shape == (1,)
- out = self.rg.integers(low, high[0], dtype=dtype)
- assert out.shape == (1,)
- def test_integers_broadcast_errors(self, dtype):
- if dtype == np.bool_:
- upper = 2
- lower = 0
- else:
- info = np.iinfo(dtype)
- upper = int(info.max) + 1
- lower = info.min
- with pytest.raises(ValueError):
- self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
- with pytest.raises(ValueError):
- self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
- with pytest.raises(ValueError):
- self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
- with pytest.raises(ValueError):
- self.rg.integers([0], [0], dtype=dtype)
- class TestMT19937(RNG):
- @classmethod
- def setup_class(cls):
- cls.bit_generator = MT19937
- cls.advance = None
- cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
- cls.rg = Generator(cls.bit_generator(*cls.seed))
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 32
- cls._extra_setup()
- cls.seed_error = ValueError
- def test_numpy_state(self):
- nprg = np.random.RandomState()
- nprg.standard_normal(99)
- state = nprg.get_state()
- self.rg.bit_generator.state = state
- state2 = self.rg.bit_generator.state
- assert_((state[1] == state2['state']['key']).all())
- assert_((state[2] == state2['state']['pos']))
- class TestPhilox(RNG):
- @classmethod
- def setup_class(cls):
- cls.bit_generator = Philox
- cls.advance = 2**63 + 2**31 + 2**15 + 1
- cls.seed = [12345]
- cls.rg = Generator(cls.bit_generator(*cls.seed))
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 64
- cls._extra_setup()
- class TestSFC64(RNG):
- @classmethod
- def setup_class(cls):
- cls.bit_generator = SFC64
- cls.advance = None
- cls.seed = [12345]
- cls.rg = Generator(cls.bit_generator(*cls.seed))
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 192
- cls._extra_setup()
- class TestPCG64(RNG):
- @classmethod
- def setup_class(cls):
- cls.bit_generator = PCG64
- cls.advance = 2**63 + 2**31 + 2**15 + 1
- cls.seed = [12345]
- cls.rg = Generator(cls.bit_generator(*cls.seed))
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 64
- cls._extra_setup()
- class TestPCG64DXSM(RNG):
- @classmethod
- def setup_class(cls):
- cls.bit_generator = PCG64DXSM
- cls.advance = 2**63 + 2**31 + 2**15 + 1
- cls.seed = [12345]
- cls.rg = Generator(cls.bit_generator(*cls.seed))
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 64
- cls._extra_setup()
- class TestDefaultRNG(RNG):
- @classmethod
- def setup_class(cls):
- # This will duplicate some tests that directly instantiate a fresh
- # Generator(), but that's okay.
- cls.bit_generator = PCG64
- cls.advance = 2**63 + 2**31 + 2**15 + 1
- cls.seed = [12345]
- cls.rg = np.random.default_rng(*cls.seed)
- cls.initial_state = cls.rg.bit_generator.state
- cls.seed_vector_bits = 64
- cls._extra_setup()
- def test_default_is_pcg64(self):
- # In order to change the default BitGenerator, we'll go through
- # a deprecation cycle to move to a different function.
- assert_(isinstance(self.rg.bit_generator, PCG64))
- def test_seed(self):
- np.random.default_rng()
- np.random.default_rng(None)
- np.random.default_rng(12345)
- np.random.default_rng(0)
- np.random.default_rng(43660444402423911716352051725018508569)
- np.random.default_rng([43660444402423911716352051725018508569,
- 279705150948142787361475340226491943209])
- with pytest.raises(ValueError):
- np.random.default_rng(-1)
- with pytest.raises(ValueError):
- np.random.default_rng([12345, -1])
|