123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- import abc
- from threading import Lock
- from collections.abc import Callable, Mapping, Sequence
- from typing import (
- Any,
- NamedTuple,
- TypedDict,
- TypeVar,
- Union,
- overload,
- Literal,
- )
- from numpy import dtype, ndarray, uint32, uint64
- from numpy._typing import _ArrayLikeInt_co, _ShapeLike, _SupportsDType, _UInt32Codes, _UInt64Codes
- _T = TypeVar("_T")
- _DTypeLikeUint32 = Union[
- dtype[uint32],
- _SupportsDType[dtype[uint32]],
- type[uint32],
- _UInt32Codes,
- ]
- _DTypeLikeUint64 = Union[
- dtype[uint64],
- _SupportsDType[dtype[uint64]],
- type[uint64],
- _UInt64Codes,
- ]
- class _SeedSeqState(TypedDict):
- entropy: None | int | Sequence[int]
- spawn_key: tuple[int, ...]
- pool_size: int
- n_children_spawned: int
- class _Interface(NamedTuple):
- state_address: Any
- state: Any
- next_uint64: Any
- next_uint32: Any
- next_double: Any
- bit_generator: Any
- class ISeedSequence(abc.ABC):
- @abc.abstractmethod
- def generate_state(
- self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
- ) -> ndarray[Any, dtype[uint32 | uint64]]: ...
- class ISpawnableSeedSequence(ISeedSequence):
- @abc.abstractmethod
- def spawn(self: _T, n_children: int) -> list[_T]: ...
- class SeedlessSeedSequence(ISpawnableSeedSequence):
- def generate_state(
- self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
- ) -> ndarray[Any, dtype[uint32 | uint64]]: ...
- def spawn(self: _T, n_children: int) -> list[_T]: ...
- class SeedSequence(ISpawnableSeedSequence):
- entropy: None | int | Sequence[int]
- spawn_key: tuple[int, ...]
- pool_size: int
- n_children_spawned: int
- pool: ndarray[Any, dtype[uint32]]
- def __init__(
- self,
- entropy: None | int | Sequence[int] | _ArrayLikeInt_co = ...,
- *,
- spawn_key: Sequence[int] = ...,
- pool_size: int = ...,
- n_children_spawned: int = ...,
- ) -> None: ...
- def __repr__(self) -> str: ...
- @property
- def state(
- self,
- ) -> _SeedSeqState: ...
- def generate_state(
- self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
- ) -> ndarray[Any, dtype[uint32 | uint64]]: ...
- def spawn(self, n_children: int) -> list[SeedSequence]: ...
- class BitGenerator(abc.ABC):
- lock: Lock
- def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
- def __getstate__(self) -> dict[str, Any]: ...
- def __setstate__(self, state: dict[str, Any]) -> None: ...
- def __reduce__(
- self,
- ) -> tuple[Callable[[str], BitGenerator], tuple[str], tuple[dict[str, Any]]]: ...
- @abc.abstractmethod
- @property
- def state(self) -> Mapping[str, Any]: ...
- @state.setter
- def state(self, value: Mapping[str, Any]) -> None: ...
- @overload
- def random_raw(self, size: None = ..., output: Literal[True] = ...) -> int: ... # type: ignore[misc]
- @overload
- def random_raw(self, size: _ShapeLike = ..., output: Literal[True] = ...) -> ndarray[Any, dtype[uint64]]: ... # type: ignore[misc]
- @overload
- def random_raw(self, size: None | _ShapeLike = ..., output: Literal[False] = ...) -> None: ... # type: ignore[misc]
- def _benchmark(self, cnt: int, method: str = ...) -> None: ...
- @property
- def ctypes(self) -> _Interface: ...
- @property
- def cffi(self) -> _Interface: ...
|