123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611 |
- """Tests for polynomial module.
- """
- from functools import reduce
- import numpy as np
- import numpy.polynomial.polynomial as poly
- import pickle
- from copy import deepcopy
- from numpy.testing import (
- assert_almost_equal, assert_raises, assert_equal, assert_,
- assert_warns, assert_array_equal, assert_raises_regex)
- def trim(x):
- return poly.polytrim(x, tol=1e-6)
- T0 = [1]
- T1 = [0, 1]
- T2 = [-1, 0, 2]
- T3 = [0, -3, 0, 4]
- T4 = [1, 0, -8, 0, 8]
- T5 = [0, 5, 0, -20, 0, 16]
- T6 = [-1, 0, 18, 0, -48, 0, 32]
- T7 = [0, -7, 0, 56, 0, -112, 0, 64]
- T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
- T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
- Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
- class TestConstants:
- def test_polydomain(self):
- assert_equal(poly.polydomain, [-1, 1])
- def test_polyzero(self):
- assert_equal(poly.polyzero, [0])
- def test_polyone(self):
- assert_equal(poly.polyone, [1])
- def test_polyx(self):
- assert_equal(poly.polyx, [0, 1])
- def test_copy(self):
- x = poly.Polynomial([1, 2, 3])
- y = deepcopy(x)
- assert_equal(x, y)
- def test_pickle(self):
- x = poly.Polynomial([1, 2, 3])
- y = pickle.loads(pickle.dumps(x))
- assert_equal(x, y)
- class TestArithmetic:
- def test_polyadd(self):
- for i in range(5):
- for j in range(5):
- msg = f"At i={i}, j={j}"
- tgt = np.zeros(max(i, j) + 1)
- tgt[i] += 1
- tgt[j] += 1
- res = poly.polyadd([0]*i + [1], [0]*j + [1])
- assert_equal(trim(res), trim(tgt), err_msg=msg)
- def test_polysub(self):
- for i in range(5):
- for j in range(5):
- msg = f"At i={i}, j={j}"
- tgt = np.zeros(max(i, j) + 1)
- tgt[i] += 1
- tgt[j] -= 1
- res = poly.polysub([0]*i + [1], [0]*j + [1])
- assert_equal(trim(res), trim(tgt), err_msg=msg)
- def test_polymulx(self):
- assert_equal(poly.polymulx([0]), [0])
- assert_equal(poly.polymulx([1]), [0, 1])
- for i in range(1, 5):
- ser = [0]*i + [1]
- tgt = [0]*(i + 1) + [1]
- assert_equal(poly.polymulx(ser), tgt)
- def test_polymul(self):
- for i in range(5):
- for j in range(5):
- msg = f"At i={i}, j={j}"
- tgt = np.zeros(i + j + 1)
- tgt[i + j] += 1
- res = poly.polymul([0]*i + [1], [0]*j + [1])
- assert_equal(trim(res), trim(tgt), err_msg=msg)
- def test_polydiv(self):
- # check zero division
- assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])
- # check scalar division
- quo, rem = poly.polydiv([2], [2])
- assert_equal((quo, rem), (1, 0))
- quo, rem = poly.polydiv([2, 2], [2])
- assert_equal((quo, rem), ((1, 1), 0))
- # check rest.
- for i in range(5):
- for j in range(5):
- msg = f"At i={i}, j={j}"
- ci = [0]*i + [1, 2]
- cj = [0]*j + [1, 2]
- tgt = poly.polyadd(ci, cj)
- quo, rem = poly.polydiv(tgt, ci)
- res = poly.polyadd(poly.polymul(quo, ci), rem)
- assert_equal(res, tgt, err_msg=msg)
- def test_polypow(self):
- for i in range(5):
- for j in range(5):
- msg = f"At i={i}, j={j}"
- c = np.arange(i + 1)
- tgt = reduce(poly.polymul, [c]*j, np.array([1]))
- res = poly.polypow(c, j)
- assert_equal(trim(res), trim(tgt), err_msg=msg)
- class TestEvaluation:
- # coefficients of 1 + 2*x + 3*x**2
- c1d = np.array([1., 2., 3.])
- c2d = np.einsum('i,j->ij', c1d, c1d)
- c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
- # some random values in [-1, 1)
- x = np.random.random((3, 5))*2 - 1
- y = poly.polyval(x, [1., 2., 3.])
- def test_polyval(self):
- #check empty input
- assert_equal(poly.polyval([], [1]).size, 0)
- #check normal input)
- x = np.linspace(-1, 1)
- y = [x**i for i in range(5)]
- for i in range(5):
- tgt = y[i]
- res = poly.polyval(x, [0]*i + [1])
- assert_almost_equal(res, tgt)
- tgt = x*(x**2 - 1)
- res = poly.polyval(x, [0, -1, 0, 1])
- assert_almost_equal(res, tgt)
- #check that shape is preserved
- for i in range(3):
- dims = [2]*i
- x = np.zeros(dims)
- assert_equal(poly.polyval(x, [1]).shape, dims)
- assert_equal(poly.polyval(x, [1, 0]).shape, dims)
- assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
- #check masked arrays are processed correctly
- mask = [False, True, False]
- mx = np.ma.array([1, 2, 3], mask=mask)
- res = np.polyval([7, 5, 3], mx)
- assert_array_equal(res.mask, mask)
- #check subtypes of ndarray are preserved
- class C(np.ndarray):
- pass
- cx = np.array([1, 2, 3]).view(C)
- assert_equal(type(np.polyval([2, 3, 4], cx)), C)
- def test_polyvalfromroots(self):
- # check exception for broadcasting x values over root array with
- # too few dimensions
- assert_raises(ValueError, poly.polyvalfromroots,
- [1], [1], tensor=False)
- # check empty input
- assert_equal(poly.polyvalfromroots([], [1]).size, 0)
- assert_(poly.polyvalfromroots([], [1]).shape == (0,))
- # check empty input + multidimensional roots
- assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
- assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))
- # check scalar input
- assert_equal(poly.polyvalfromroots(1, 1), 0)
- assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))
- # check normal input)
- x = np.linspace(-1, 1)
- y = [x**i for i in range(5)]
- for i in range(1, 5):
- tgt = y[i]
- res = poly.polyvalfromroots(x, [0]*i)
- assert_almost_equal(res, tgt)
- tgt = x*(x - 1)*(x + 1)
- res = poly.polyvalfromroots(x, [-1, 0, 1])
- assert_almost_equal(res, tgt)
- # check that shape is preserved
- for i in range(3):
- dims = [2]*i
- x = np.zeros(dims)
- assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
- assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
- assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)
- # check compatibility with factorization
- ptest = [15, 2, -16, -2, 1]
- r = poly.polyroots(ptest)
- x = np.linspace(-1, 1)
- assert_almost_equal(poly.polyval(x, ptest),
- poly.polyvalfromroots(x, r))
- # check multidimensional arrays of roots and values
- # check tensor=False
- rshape = (3, 5)
- x = np.arange(-3, 2)
- r = np.random.randint(-5, 5, size=rshape)
- res = poly.polyvalfromroots(x, r, tensor=False)
- tgt = np.empty(r.shape[1:])
- for ii in range(tgt.size):
- tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
- assert_equal(res, tgt)
- # check tensor=True
- x = np.vstack([x, 2*x])
- res = poly.polyvalfromroots(x, r, tensor=True)
- tgt = np.empty(r.shape[1:] + x.shape)
- for ii in range(r.shape[1]):
- for jj in range(x.shape[0]):
- tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
- assert_equal(res, tgt)
- def test_polyval2d(self):
- x1, x2, x3 = self.x
- y1, y2, y3 = self.y
- #test exceptions
- assert_raises_regex(ValueError, 'incompatible',
- poly.polyval2d, x1, x2[:2], self.c2d)
- #test values
- tgt = y1*y2
- res = poly.polyval2d(x1, x2, self.c2d)
- assert_almost_equal(res, tgt)
- #test shape
- z = np.ones((2, 3))
- res = poly.polyval2d(z, z, self.c2d)
- assert_(res.shape == (2, 3))
- def test_polyval3d(self):
- x1, x2, x3 = self.x
- y1, y2, y3 = self.y
- #test exceptions
- assert_raises_regex(ValueError, 'incompatible',
- poly.polyval3d, x1, x2, x3[:2], self.c3d)
- #test values
- tgt = y1*y2*y3
- res = poly.polyval3d(x1, x2, x3, self.c3d)
- assert_almost_equal(res, tgt)
- #test shape
- z = np.ones((2, 3))
- res = poly.polyval3d(z, z, z, self.c3d)
- assert_(res.shape == (2, 3))
- def test_polygrid2d(self):
- x1, x2, x3 = self.x
- y1, y2, y3 = self.y
- #test values
- tgt = np.einsum('i,j->ij', y1, y2)
- res = poly.polygrid2d(x1, x2, self.c2d)
- assert_almost_equal(res, tgt)
- #test shape
- z = np.ones((2, 3))
- res = poly.polygrid2d(z, z, self.c2d)
- assert_(res.shape == (2, 3)*2)
- def test_polygrid3d(self):
- x1, x2, x3 = self.x
- y1, y2, y3 = self.y
- #test values
- tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
- res = poly.polygrid3d(x1, x2, x3, self.c3d)
- assert_almost_equal(res, tgt)
- #test shape
- z = np.ones((2, 3))
- res = poly.polygrid3d(z, z, z, self.c3d)
- assert_(res.shape == (2, 3)*3)
- class TestIntegral:
- def test_polyint(self):
- # check exceptions
- assert_raises(TypeError, poly.polyint, [0], .5)
- assert_raises(ValueError, poly.polyint, [0], -1)
- assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
- assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
- assert_raises(ValueError, poly.polyint, [0], scl=[0])
- assert_raises(TypeError, poly.polyint, [0], axis=.5)
- with assert_warns(DeprecationWarning):
- poly.polyint([1, 1], 1.)
- # test integration of zero polynomial
- for i in range(2, 5):
- k = [0]*(i - 2) + [1]
- res = poly.polyint([0], m=i, k=k)
- assert_almost_equal(res, [0, 1])
- # check single integration with integration constant
- for i in range(5):
- scl = i + 1
- pol = [0]*i + [1]
- tgt = [i] + [0]*i + [1/scl]
- res = poly.polyint(pol, m=1, k=[i])
- assert_almost_equal(trim(res), trim(tgt))
- # check single integration with integration constant and lbnd
- for i in range(5):
- scl = i + 1
- pol = [0]*i + [1]
- res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
- assert_almost_equal(poly.polyval(-1, res), i)
- # check single integration with integration constant and scaling
- for i in range(5):
- scl = i + 1
- pol = [0]*i + [1]
- tgt = [i] + [0]*i + [2/scl]
- res = poly.polyint(pol, m=1, k=[i], scl=2)
- assert_almost_equal(trim(res), trim(tgt))
- # check multiple integrations with default k
- for i in range(5):
- for j in range(2, 5):
- pol = [0]*i + [1]
- tgt = pol[:]
- for k in range(j):
- tgt = poly.polyint(tgt, m=1)
- res = poly.polyint(pol, m=j)
- assert_almost_equal(trim(res), trim(tgt))
- # check multiple integrations with defined k
- for i in range(5):
- for j in range(2, 5):
- pol = [0]*i + [1]
- tgt = pol[:]
- for k in range(j):
- tgt = poly.polyint(tgt, m=1, k=[k])
- res = poly.polyint(pol, m=j, k=list(range(j)))
- assert_almost_equal(trim(res), trim(tgt))
- # check multiple integrations with lbnd
- for i in range(5):
- for j in range(2, 5):
- pol = [0]*i + [1]
- tgt = pol[:]
- for k in range(j):
- tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
- res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
- assert_almost_equal(trim(res), trim(tgt))
- # check multiple integrations with scaling
- for i in range(5):
- for j in range(2, 5):
- pol = [0]*i + [1]
- tgt = pol[:]
- for k in range(j):
- tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
- res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
- assert_almost_equal(trim(res), trim(tgt))
- def test_polyint_axis(self):
- # check that axis keyword works
- c2d = np.random.random((3, 4))
- tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
- res = poly.polyint(c2d, axis=0)
- assert_almost_equal(res, tgt)
- tgt = np.vstack([poly.polyint(c) for c in c2d])
- res = poly.polyint(c2d, axis=1)
- assert_almost_equal(res, tgt)
- tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
- res = poly.polyint(c2d, k=3, axis=1)
- assert_almost_equal(res, tgt)
- class TestDerivative:
- def test_polyder(self):
- # check exceptions
- assert_raises(TypeError, poly.polyder, [0], .5)
- assert_raises(ValueError, poly.polyder, [0], -1)
- # check that zeroth derivative does nothing
- for i in range(5):
- tgt = [0]*i + [1]
- res = poly.polyder(tgt, m=0)
- assert_equal(trim(res), trim(tgt))
- # check that derivation is the inverse of integration
- for i in range(5):
- for j in range(2, 5):
- tgt = [0]*i + [1]
- res = poly.polyder(poly.polyint(tgt, m=j), m=j)
- assert_almost_equal(trim(res), trim(tgt))
- # check derivation with scaling
- for i in range(5):
- for j in range(2, 5):
- tgt = [0]*i + [1]
- res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
- assert_almost_equal(trim(res), trim(tgt))
- def test_polyder_axis(self):
- # check that axis keyword works
- c2d = np.random.random((3, 4))
- tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
- res = poly.polyder(c2d, axis=0)
- assert_almost_equal(res, tgt)
- tgt = np.vstack([poly.polyder(c) for c in c2d])
- res = poly.polyder(c2d, axis=1)
- assert_almost_equal(res, tgt)
- class TestVander:
- # some random values in [-1, 1)
- x = np.random.random((3, 5))*2 - 1
- def test_polyvander(self):
- # check for 1d x
- x = np.arange(3)
- v = poly.polyvander(x, 3)
- assert_(v.shape == (3, 4))
- for i in range(4):
- coef = [0]*i + [1]
- assert_almost_equal(v[..., i], poly.polyval(x, coef))
- # check for 2d x
- x = np.array([[1, 2], [3, 4], [5, 6]])
- v = poly.polyvander(x, 3)
- assert_(v.shape == (3, 2, 4))
- for i in range(4):
- coef = [0]*i + [1]
- assert_almost_equal(v[..., i], poly.polyval(x, coef))
- def test_polyvander2d(self):
- # also tests polyval2d for non-square coefficient array
- x1, x2, x3 = self.x
- c = np.random.random((2, 3))
- van = poly.polyvander2d(x1, x2, [1, 2])
- tgt = poly.polyval2d(x1, x2, c)
- res = np.dot(van, c.flat)
- assert_almost_equal(res, tgt)
- # check shape
- van = poly.polyvander2d([x1], [x2], [1, 2])
- assert_(van.shape == (1, 5, 6))
- def test_polyvander3d(self):
- # also tests polyval3d for non-square coefficient array
- x1, x2, x3 = self.x
- c = np.random.random((2, 3, 4))
- van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
- tgt = poly.polyval3d(x1, x2, x3, c)
- res = np.dot(van, c.flat)
- assert_almost_equal(res, tgt)
- # check shape
- van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
- assert_(van.shape == (1, 5, 24))
- def test_polyvandernegdeg(self):
- x = np.arange(3)
- assert_raises(ValueError, poly.polyvander, x, -1)
- class TestCompanion:
- def test_raises(self):
- assert_raises(ValueError, poly.polycompanion, [])
- assert_raises(ValueError, poly.polycompanion, [1])
- def test_dimensions(self):
- for i in range(1, 5):
- coef = [0]*i + [1]
- assert_(poly.polycompanion(coef).shape == (i, i))
- def test_linear_root(self):
- assert_(poly.polycompanion([1, 2])[0, 0] == -.5)
- class TestMisc:
- def test_polyfromroots(self):
- res = poly.polyfromroots([])
- assert_almost_equal(trim(res), [1])
- for i in range(1, 5):
- roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
- tgt = Tlist[i]
- res = poly.polyfromroots(roots)*2**(i-1)
- assert_almost_equal(trim(res), trim(tgt))
- def test_polyroots(self):
- assert_almost_equal(poly.polyroots([1]), [])
- assert_almost_equal(poly.polyroots([1, 2]), [-.5])
- for i in range(2, 5):
- tgt = np.linspace(-1, 1, i)
- res = poly.polyroots(poly.polyfromroots(tgt))
- assert_almost_equal(trim(res), trim(tgt))
- def test_polyfit(self):
- def f(x):
- return x*(x - 1)*(x - 2)
- def f2(x):
- return x**4 + x**2 + 1
- # Test exceptions
- assert_raises(ValueError, poly.polyfit, [1], [1], -1)
- assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
- assert_raises(TypeError, poly.polyfit, [], [1], 0)
- assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
- assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
- assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
- assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
- assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
- assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
- assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
- assert_raises(TypeError, poly.polyfit, [1], [1], [])
- # Test fit
- x = np.linspace(0, 2)
- y = f(x)
- #
- coef3 = poly.polyfit(x, y, 3)
- assert_equal(len(coef3), 4)
- assert_almost_equal(poly.polyval(x, coef3), y)
- coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
- assert_equal(len(coef3), 4)
- assert_almost_equal(poly.polyval(x, coef3), y)
- #
- coef4 = poly.polyfit(x, y, 4)
- assert_equal(len(coef4), 5)
- assert_almost_equal(poly.polyval(x, coef4), y)
- coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
- assert_equal(len(coef4), 5)
- assert_almost_equal(poly.polyval(x, coef4), y)
- #
- coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
- assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
- coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
- assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
- # test weighting
- w = np.zeros_like(x)
- yw = y.copy()
- w[1::2] = 1
- yw[0::2] = 0
- wcoef3 = poly.polyfit(x, yw, 3, w=w)
- assert_almost_equal(wcoef3, coef3)
- wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
- assert_almost_equal(wcoef3, coef3)
- #
- wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
- assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
- wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
- assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
- # test scaling with complex values x points whose square
- # is zero when summed.
- x = [1, 1j, -1, -1j]
- assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
- assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
- # test fitting only even Polyendre polynomials
- x = np.linspace(-1, 1)
- y = f2(x)
- coef1 = poly.polyfit(x, y, 4)
- assert_almost_equal(poly.polyval(x, coef1), y)
- coef2 = poly.polyfit(x, y, [0, 2, 4])
- assert_almost_equal(poly.polyval(x, coef2), y)
- assert_almost_equal(coef1, coef2)
- def test_polytrim(self):
- coef = [2, -1, 1, 0]
- # Test exceptions
- assert_raises(ValueError, poly.polytrim, coef, -1)
- # Test results
- assert_equal(poly.polytrim(coef), coef[:-1])
- assert_equal(poly.polytrim(coef, 1), coef[:-3])
- assert_equal(poly.polytrim(coef, 2), [0])
- def test_polyline(self):
- assert_equal(poly.polyline(3, 4), [3, 4])
- def test_polyline_zero(self):
- assert_equal(poly.polyline(3, 0), [3])
|