123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 |
- import numpy as np
- from numpy.testing import assert_warns
- from numpy.ma.testutils import (assert_, assert_equal, assert_raises,
- assert_array_equal)
- from numpy.ma.core import (masked_array, masked_values, masked, allequal,
- MaskType, getmask, MaskedArray, nomask,
- log, add, hypot, divide)
- from numpy.ma.extras import mr_
- from numpy.compat import pickle
- class MMatrix(MaskedArray, np.matrix,):
- def __new__(cls, data, mask=nomask):
- mat = np.matrix(data)
- _data = MaskedArray.__new__(cls, data=mat, mask=mask)
- return _data
- def __array_finalize__(self, obj):
- np.matrix.__array_finalize__(self, obj)
- MaskedArray.__array_finalize__(self, obj)
- return
- @property
- def _series(self):
- _view = self.view(MaskedArray)
- _view._sharedmask = False
- return _view
- class TestMaskedMatrix:
- def test_matrix_indexing(self):
- # Tests conversions and indexing
- x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
- x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
- x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
- x4 = masked_array(x1)
- # test conversion to strings
- str(x2) # raises?
- repr(x2) # raises?
- # tests of indexing
- assert_(type(x2[1, 0]) is type(x1[1, 0]))
- assert_(x1[1, 0] == x2[1, 0])
- assert_(x2[1, 1] is masked)
- assert_equal(x1[0, 2], x2[0, 2])
- assert_equal(x1[0, 1:], x2[0, 1:])
- assert_equal(x1[:, 2], x2[:, 2])
- assert_equal(x1[:], x2[:])
- assert_equal(x1[1:], x3[1:])
- x1[0, 2] = 9
- x2[0, 2] = 9
- assert_equal(x1, x2)
- x1[0, 1:] = 99
- x2[0, 1:] = 99
- assert_equal(x1, x2)
- x2[0, 1] = masked
- assert_equal(x1, x2)
- x2[0, 1:] = masked
- assert_equal(x1, x2)
- x2[0, :] = x1[0, :]
- x2[0, 1] = masked
- assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
- x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
- assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
- assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
- x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
- assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
- assert_(allequal(x4[1], masked_array([1, 2, 3])))
- x1 = np.matrix(np.arange(5) * 1.0)
- x2 = masked_values(x1, 3.0)
- assert_equal(x1, x2)
- assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
- x2.mask))
- assert_equal(3.0, x2.fill_value)
- def test_pickling_subbaseclass(self):
- # Test pickling w/ a subclass of ndarray
- a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
- assert_equal(a_pickled._mask, a._mask)
- assert_equal(a_pickled, a)
- assert_(isinstance(a_pickled._data, np.matrix))
- def test_count_mean_with_matrix(self):
- m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
- assert_equal(m.count(axis=0).shape, (1, 2))
- assert_equal(m.count(axis=1).shape, (2, 1))
- # Make sure broadcasting inside mean and var work
- assert_equal(m.mean(axis=0), [[2., 3.]])
- assert_equal(m.mean(axis=1), [[1.5], [3.5]])
- def test_flat(self):
- # Test that flat can return items even for matrices [#4585, #4615]
- # test simple access
- test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
- assert_equal(test.flat[1], 2)
- assert_equal(test.flat[2], masked)
- assert_(np.all(test.flat[0:2] == test[0, 0:2]))
- # Test flat on masked_matrices
- test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
- test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
- control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
- assert_equal(test, control)
- # Test setting
- test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
- testflat = test.flat
- testflat[:] = testflat[[2, 1, 0]]
- assert_equal(test, control)
- testflat[0] = 9
- # test that matrices keep the correct shape (#4615)
- a = masked_array(np.matrix(np.eye(2)), mask=0)
- b = a.flat
- b01 = b[:2]
- assert_equal(b01.data, np.array([[1., 0.]]))
- assert_equal(b01.mask, np.array([[False, False]]))
- def test_allany_onmatrices(self):
- x = np.array([[0.13, 0.26, 0.90],
- [0.28, 0.33, 0.63],
- [0.31, 0.87, 0.70]])
- X = np.matrix(x)
- m = np.array([[True, False, False],
- [False, False, False],
- [True, True, False]], dtype=np.bool_)
- mX = masked_array(X, mask=m)
- mXbig = (mX > 0.5)
- mXsmall = (mX < 0.5)
- assert_(not mXbig.all())
- assert_(mXbig.any())
- assert_equal(mXbig.all(0), np.matrix([False, False, True]))
- assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
- assert_equal(mXbig.any(0), np.matrix([False, False, True]))
- assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
- assert_(not mXsmall.all())
- assert_(mXsmall.any())
- assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
- assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
- assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
- assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
- def test_compressed(self):
- a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
- b = a.compressed()
- assert_equal(b, a)
- assert_(isinstance(b, np.matrix))
- a[0, 0] = masked
- b = a.compressed()
- assert_equal(b, [[2, 3, 4]])
- def test_ravel(self):
- a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
- aravel = a.ravel()
- assert_equal(aravel.shape, (1, 5))
- assert_equal(aravel._mask.shape, a.shape)
- def test_view(self):
- # Test view w/ flexible dtype
- iterator = list(zip(np.arange(10), np.random.rand(10)))
- data = np.array(iterator)
- a = masked_array(iterator, dtype=[('a', float), ('b', float)])
- a.mask[0] = (1, 0)
- test = a.view((float, 2), np.matrix)
- assert_equal(test, data)
- assert_(isinstance(test, np.matrix))
- assert_(not isinstance(test, MaskedArray))
- class TestSubclassing:
- # Test suite for masked subclasses of ndarray.
- def setup_method(self):
- x = np.arange(5, dtype='float')
- mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
- self.data = (x, mx)
- def test_maskedarray_subclassing(self):
- # Tests subclassing MaskedArray
- (x, mx) = self.data
- assert_(isinstance(mx._data, np.matrix))
- def test_masked_unary_operations(self):
- # Tests masked_unary_operation
- (x, mx) = self.data
- with np.errstate(divide='ignore'):
- assert_(isinstance(log(mx), MMatrix))
- assert_equal(log(x), np.log(x))
- def test_masked_binary_operations(self):
- # Tests masked_binary_operation
- (x, mx) = self.data
- # Result should be a MMatrix
- assert_(isinstance(add(mx, mx), MMatrix))
- assert_(isinstance(add(mx, x), MMatrix))
- # Result should work
- assert_equal(add(mx, x), mx+x)
- assert_(isinstance(add(mx, mx)._data, np.matrix))
- with assert_warns(DeprecationWarning):
- assert_(isinstance(add.outer(mx, mx), MMatrix))
- assert_(isinstance(hypot(mx, mx), MMatrix))
- assert_(isinstance(hypot(mx, x), MMatrix))
- def test_masked_binary_operations2(self):
- # Tests domained_masked_binary_operation
- (x, mx) = self.data
- xmx = masked_array(mx.data.__array__(), mask=mx.mask)
- assert_(isinstance(divide(mx, mx), MMatrix))
- assert_(isinstance(divide(mx, x), MMatrix))
- assert_equal(divide(mx, mx), divide(xmx, xmx))
- class TestConcatenator:
- # Tests for mr_, the equivalent of r_ for masked arrays.
- def test_matrix_builder(self):
- assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])
- def test_matrix(self):
- # Test consistency with unmasked version. If we ever deprecate
- # matrix, this test should either still pass, or both actual and
- # expected should fail to be build.
- actual = mr_['r', 1, 2, 3]
- expected = np.ma.array(np.r_['r', 1, 2, 3])
- assert_array_equal(actual, expected)
- # outer type is masked array, inner type is matrix
- assert_equal(type(actual), type(expected))
- assert_equal(type(actual.data), type(expected.data))
|