123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- """Tests of interaction of matrix with other parts of numpy.
- Note that tests with MaskedArray and linalg are done in separate files.
- """
- import pytest
- import textwrap
- import warnings
- import numpy as np
- from numpy.testing import (assert_, assert_equal, assert_raises,
- assert_raises_regex, assert_array_equal,
- assert_almost_equal, assert_array_almost_equal)
- def test_fancy_indexing():
- # The matrix class messes with the shape. While this is always
- # weird (getitem is not used, it does not have setitem nor knows
- # about fancy indexing), this tests gh-3110
- # 2018-04-29: moved here from core.tests.test_index.
- m = np.matrix([[1, 2], [3, 4]])
- assert_(isinstance(m[[0, 1, 0], :], np.matrix))
- # gh-3110. Note the transpose currently because matrices do *not*
- # support dimension fixing for fancy indexing correctly.
- x = np.asmatrix(np.arange(50).reshape(5, 10))
- assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
- def test_polynomial_mapdomain():
- # test that polynomial preserved matrix subtype.
- # 2018-04-29: moved here from polynomial.tests.polyutils.
- dom1 = [0, 4]
- dom2 = [1, 3]
- x = np.matrix([dom1, dom1])
- res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
- assert_(isinstance(res, np.matrix))
- def test_sort_matrix_none():
- # 2018-04-29: moved here from core.tests.test_multiarray
- a = np.matrix([[2, 1, 0]])
- actual = np.sort(a, axis=None)
- expected = np.matrix([[0, 1, 2]])
- assert_equal(actual, expected)
- assert_(type(expected) is np.matrix)
- def test_partition_matrix_none():
- # gh-4301
- # 2018-04-29: moved here from core.tests.test_multiarray
- a = np.matrix([[2, 1, 0]])
- actual = np.partition(a, 1, axis=None)
- expected = np.matrix([[0, 1, 2]])
- assert_equal(actual, expected)
- assert_(type(expected) is np.matrix)
- def test_dot_scalar_and_matrix_of_objects():
- # Ticket #2469
- # 2018-04-29: moved here from core.tests.test_multiarray
- arr = np.matrix([1, 2], dtype=object)
- desired = np.matrix([[3, 6]], dtype=object)
- assert_equal(np.dot(arr, 3), desired)
- assert_equal(np.dot(3, arr), desired)
- def test_inner_scalar_and_matrix():
- # 2018-04-29: moved here from core.tests.test_multiarray
- for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
- sca = np.array(3, dtype=dt)[()]
- arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
- desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
- assert_equal(np.inner(arr, sca), desired)
- assert_equal(np.inner(sca, arr), desired)
- def test_inner_scalar_and_matrix_of_objects():
- # Ticket #4482
- # 2018-04-29: moved here from core.tests.test_multiarray
- arr = np.matrix([1, 2], dtype=object)
- desired = np.matrix([[3, 6]], dtype=object)
- assert_equal(np.inner(arr, 3), desired)
- assert_equal(np.inner(3, arr), desired)
- def test_iter_allocate_output_subtype():
- # Make sure that the subtype with priority wins
- # 2018-04-29: moved here from core.tests.test_nditer, given the
- # matrix specific shape test.
- # matrix vs ndarray
- a = np.matrix([[1, 2], [3, 4]])
- b = np.arange(4).reshape(2, 2).T
- i = np.nditer([a, b, None], [],
- [['readonly'], ['readonly'], ['writeonly', 'allocate']])
- assert_(type(i.operands[2]) is np.matrix)
- assert_(type(i.operands[2]) is not np.ndarray)
- assert_equal(i.operands[2].shape, (2, 2))
- # matrix always wants things to be 2D
- b = np.arange(4).reshape(1, 2, 2)
- assert_raises(RuntimeError, np.nditer, [a, b, None], [],
- [['readonly'], ['readonly'], ['writeonly', 'allocate']])
- # but if subtypes are disabled, the result can still work
- i = np.nditer([a, b, None], [],
- [['readonly'], ['readonly'],
- ['writeonly', 'allocate', 'no_subtype']])
- assert_(type(i.operands[2]) is np.ndarray)
- assert_(type(i.operands[2]) is not np.matrix)
- assert_equal(i.operands[2].shape, (1, 2, 2))
- def like_function():
- # 2018-04-29: moved here from core.tests.test_numeric
- a = np.matrix([[1, 2], [3, 4]])
- for like_function in np.zeros_like, np.ones_like, np.empty_like:
- b = like_function(a)
- assert_(type(b) is np.matrix)
- c = like_function(a, subok=False)
- assert_(type(c) is not np.matrix)
- def test_array_astype():
- # 2018-04-29: copied here from core.tests.test_api
- # subok=True passes through a matrix
- a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
- b = a.astype('f4', subok=True, copy=False)
- assert_(a is b)
- # subok=True is default, and creates a subtype on a cast
- b = a.astype('i4', copy=False)
- assert_equal(a, b)
- assert_equal(type(b), np.matrix)
- # subok=False never returns a matrix
- b = a.astype('f4', subok=False, copy=False)
- assert_equal(a, b)
- assert_(not (a is b))
- assert_(type(b) is not np.matrix)
- def test_stack():
- # 2018-04-29: copied here from core.tests.test_shape_base
- # check np.matrix cannot be stacked
- m = np.matrix([[1, 2], [3, 4]])
- assert_raises_regex(ValueError, 'shape too large to be a matrix',
- np.stack, [m, m])
- def test_object_scalar_multiply():
- # Tickets #2469 and #4482
- # 2018-04-29: moved here from core.tests.test_ufunc
- arr = np.matrix([1, 2], dtype=object)
- desired = np.matrix([[3, 6]], dtype=object)
- assert_equal(np.multiply(arr, 3), desired)
- assert_equal(np.multiply(3, arr), desired)
- def test_nanfunctions_matrices():
- # Check that it works and that type and
- # shape are preserved
- # 2018-04-29: moved here from core.tests.test_nanfunctions
- mat = np.matrix(np.eye(3))
- for f in [np.nanmin, np.nanmax]:
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = f(mat)
- assert_(np.isscalar(res))
- # check that rows of nan are dealt with for subclasses (#4628)
- mat[1] = np.nan
- for f in [np.nanmin, np.nanmax]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(not np.any(np.isnan(res)))
- assert_(len(w) == 0)
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
- and not np.isnan(res[2, 0]))
- assert_(len(w) == 1, 'no warning raised')
- assert_(issubclass(w[0].category, RuntimeWarning))
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- res = f(mat)
- assert_(np.isscalar(res))
- assert_(res != np.nan)
- assert_(len(w) == 0)
- def test_nanfunctions_matrices_general():
- # Check that it works and that type and
- # shape are preserved
- # 2018-04-29: moved here from core.tests.test_nanfunctions
- mat = np.matrix(np.eye(3))
- for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
- np.nanmean, np.nanvar, np.nanstd):
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 1))
- res = f(mat)
- assert_(np.isscalar(res))
- for f in np.nancumsum, np.nancumprod:
- res = f(mat, axis=0)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 3))
- res = f(mat, axis=1)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (3, 3))
- res = f(mat)
- assert_(isinstance(res, np.matrix))
- assert_(res.shape == (1, 3*3))
- def test_average_matrix():
- # 2018-04-29: moved here from core.tests.test_function_base.
- y = np.matrix(np.random.rand(5, 5))
- assert_array_equal(y.mean(0), np.average(y, 0))
- a = np.matrix([[1, 2], [3, 4]])
- w = np.matrix([[1, 2], [3, 4]])
- r = np.average(a, axis=0, weights=w)
- assert_equal(type(r), np.matrix)
- assert_equal(r, [[2.5, 10.0/3]])
- def test_trapz_matrix():
- # Test to make sure matrices give the same answer as ndarrays
- # 2018-04-29: moved here from core.tests.test_function_base.
- x = np.linspace(0, 5)
- y = x * x
- r = np.trapz(y, x)
- mx = np.matrix(x)
- my = np.matrix(y)
- mr = np.trapz(my, mx)
- assert_almost_equal(mr, r)
- def test_ediff1d_matrix():
- # 2018-04-29: moved here from core.tests.test_arraysetops.
- assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
- assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
- def test_apply_along_axis_matrix():
- # this test is particularly malicious because matrix
- # refuses to become 1d
- # 2018-04-29: moved here from core.tests.test_shape_base.
- def double(row):
- return row * 2
- m = np.matrix([[0, 1], [2, 3]])
- expected = np.matrix([[0, 2], [4, 6]])
- result = np.apply_along_axis(double, 0, m)
- assert_(isinstance(result, np.matrix))
- assert_array_equal(result, expected)
- result = np.apply_along_axis(double, 1, m)
- assert_(isinstance(result, np.matrix))
- assert_array_equal(result, expected)
- def test_kron_matrix():
- # 2018-04-29: moved here from core.tests.test_shape_base.
- a = np.ones([2, 2])
- m = np.asmatrix(a)
- assert_equal(type(np.kron(a, a)), np.ndarray)
- assert_equal(type(np.kron(m, m)), np.matrix)
- assert_equal(type(np.kron(a, m)), np.matrix)
- assert_equal(type(np.kron(m, a)), np.matrix)
- class TestConcatenatorMatrix:
- # 2018-04-29: moved here from core.tests.test_index_tricks.
- def test_matrix(self):
- a = [1, 2]
- b = [3, 4]
- ab_r = np.r_['r', a, b]
- ab_c = np.r_['c', a, b]
- assert_equal(type(ab_r), np.matrix)
- assert_equal(type(ab_c), np.matrix)
- assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
- assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
- assert_raises(ValueError, lambda: np.r_['rc', a, b])
- def test_matrix_scalar(self):
- r = np.r_['r', [1, 2], 3]
- assert_equal(type(r), np.matrix)
- assert_equal(np.array(r), [[1, 2, 3]])
- def test_matrix_builder(self):
- a = np.array([1])
- b = np.array([2])
- c = np.array([3])
- d = np.array([4])
- actual = np.r_['a, b; c, d']
- expected = np.bmat([[a, b], [c, d]])
- assert_equal(actual, expected)
- assert_equal(type(actual), type(expected))
- def test_array_equal_error_message_matrix():
- # 2018-04-29: moved here from testing.tests.test_utils.
- with pytest.raises(AssertionError) as exc_info:
- assert_equal(np.array([1, 2]), np.matrix([1, 2]))
- msg = str(exc_info.value)
- msg_reference = textwrap.dedent("""\
- Arrays are not equal
- (shapes (2,), (1, 2) mismatch)
- x: array([1, 2])
- y: matrix([[1, 2]])""")
- assert_equal(msg, msg_reference)
- def test_array_almost_equal_matrix():
- # Matrix slicing keeps things 2-D, while array does not necessarily.
- # See gh-8452.
- # 2018-04-29: moved here from testing.tests.test_utils.
- m1 = np.matrix([[1., 2.]])
- m2 = np.matrix([[1., np.nan]])
- m3 = np.matrix([[1., -np.inf]])
- m4 = np.matrix([[np.nan, np.inf]])
- m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
- for assert_func in assert_array_almost_equal, assert_almost_equal:
- for m in m1, m2, m3, m4, m5:
- assert_func(m, m)
- a = np.array(m)
- assert_func(a, m)
- assert_func(m, a)
|