123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450 |
- # pylint: disable-msg=W0611, W0612, W0511,R0201
- """Tests suite for MaskedArray & subclassing.
- :author: Pierre Gerard-Marchant
- :contact: pierregm_at_uga_dot_edu
- :version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
- """
- import numpy as np
- from numpy.lib.mixins import NDArrayOperatorsMixin
- from numpy.testing import assert_, assert_raises
- from numpy.ma.testutils import assert_equal
- from numpy.ma.core import (
- array, arange, masked, MaskedArray, masked_array, log, add, hypot,
- divide, asarray, asanyarray, nomask
- )
- # from numpy.ma.core import (
- def assert_startswith(a, b):
- # produces a better error message than assert_(a.startswith(b))
- assert_equal(a[:len(b)], b)
- class SubArray(np.ndarray):
- # Defines a generic np.ndarray subclass, that stores some metadata
- # in the dictionary `info`.
- def __new__(cls,arr,info={}):
- x = np.asanyarray(arr).view(cls)
- x.info = info.copy()
- return x
- def __array_finalize__(self, obj):
- super().__array_finalize__(obj)
- self.info = getattr(obj, 'info', {}).copy()
- return
- def __add__(self, other):
- result = super().__add__(other)
- result.info['added'] = result.info.get('added', 0) + 1
- return result
- def __iadd__(self, other):
- result = super().__iadd__(other)
- result.info['iadded'] = result.info.get('iadded', 0) + 1
- return result
- subarray = SubArray
- class SubMaskedArray(MaskedArray):
- """Pure subclass of MaskedArray, keeping some info on subclass."""
- def __new__(cls, info=None, **kwargs):
- obj = super().__new__(cls, **kwargs)
- obj._optinfo['info'] = info
- return obj
- class MSubArray(SubArray, MaskedArray):
- def __new__(cls, data, info={}, mask=nomask):
- subarr = SubArray(data, info)
- _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
- _data.info = subarr.info
- return _data
- @property
- def _series(self):
- _view = self.view(MaskedArray)
- _view._sharedmask = False
- return _view
- msubarray = MSubArray
- # Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
- # setting to non-class values (and thus np.ma.core.masked_print_option)
- # and overrides __array_wrap__, updating the info dict, to check that this
- # doesn't get destroyed by MaskedArray._update_from. But this one also needs
- # its own iterator...
- class CSAIterator:
- """
- Flat iterator object that uses its own setter/getter
- (works around ndarray.flat not propagating subclass setters/getters
- see https://github.com/numpy/numpy/issues/4564)
- roughly following MaskedIterator
- """
- def __init__(self, a):
- self._original = a
- self._dataiter = a.view(np.ndarray).flat
- def __iter__(self):
- return self
- def __getitem__(self, indx):
- out = self._dataiter.__getitem__(indx)
- if not isinstance(out, np.ndarray):
- out = out.__array__()
- out = out.view(type(self._original))
- return out
- def __setitem__(self, index, value):
- self._dataiter[index] = self._original._validate_input(value)
- def __next__(self):
- return next(self._dataiter).__array__().view(type(self._original))
- class ComplicatedSubArray(SubArray):
- def __str__(self):
- return f'myprefix {self.view(SubArray)} mypostfix'
- def __repr__(self):
- # Return a repr that does not start with 'name('
- return f'<{self.__class__.__name__} {self}>'
- def _validate_input(self, value):
- if not isinstance(value, ComplicatedSubArray):
- raise ValueError("Can only set to MySubArray values")
- return value
- def __setitem__(self, item, value):
- # validation ensures direct assignment with ndarray or
- # masked_print_option will fail
- super().__setitem__(item, self._validate_input(value))
- def __getitem__(self, item):
- # ensure getter returns our own class also for scalars
- value = super().__getitem__(item)
- if not isinstance(value, np.ndarray): # scalar
- value = value.__array__().view(ComplicatedSubArray)
- return value
- @property
- def flat(self):
- return CSAIterator(self)
- @flat.setter
- def flat(self, value):
- y = self.ravel()
- y[:] = value
- def __array_wrap__(self, obj, context=None):
- obj = super().__array_wrap__(obj, context)
- if context is not None and context[0] is np.multiply:
- obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
- return obj
- class WrappedArray(NDArrayOperatorsMixin):
- """
- Wrapping a MaskedArray rather than subclassing to test that
- ufunc deferrals are commutative.
- See: https://github.com/numpy/numpy/issues/15200)
- """
- __array_priority__ = 20
- def __init__(self, array, **attrs):
- self._array = array
- self.attrs = attrs
- def __repr__(self):
- return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
- def __array__(self):
- return np.asarray(self._array)
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- if method == '__call__':
- inputs = [arg._array if isinstance(arg, self.__class__) else arg
- for arg in inputs]
- return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
- else:
- return NotImplemented
- class TestSubclassing:
- # Test suite for masked subclasses of ndarray.
- def setup_method(self):
- x = np.arange(5, dtype='float')
- mx = msubarray(x, mask=[0, 1, 0, 0, 0])
- self.data = (x, mx)
- def test_data_subclassing(self):
- # Tests whether the subclass is kept.
- x = np.arange(5)
- m = [0, 0, 1, 0, 0]
- xsub = SubArray(x)
- xmsub = masked_array(xsub, mask=m)
- assert_(isinstance(xmsub, MaskedArray))
- assert_equal(xmsub._data, xsub)
- assert_(isinstance(xmsub._data, SubArray))
- def test_maskedarray_subclassing(self):
- # Tests subclassing MaskedArray
- (x, mx) = self.data
- assert_(isinstance(mx._data, subarray))
- def test_masked_unary_operations(self):
- # Tests masked_unary_operation
- (x, mx) = self.data
- with np.errstate(divide='ignore'):
- assert_(isinstance(log(mx), msubarray))
- assert_equal(log(x), np.log(x))
- def test_masked_binary_operations(self):
- # Tests masked_binary_operation
- (x, mx) = self.data
- # Result should be a msubarray
- assert_(isinstance(add(mx, mx), msubarray))
- assert_(isinstance(add(mx, x), msubarray))
- # Result should work
- assert_equal(add(mx, x), mx+x)
- assert_(isinstance(add(mx, mx)._data, subarray))
- assert_(isinstance(add.outer(mx, mx), msubarray))
- assert_(isinstance(hypot(mx, mx), msubarray))
- assert_(isinstance(hypot(mx, x), msubarray))
- def test_masked_binary_operations2(self):
- # Tests domained_masked_binary_operation
- (x, mx) = self.data
- xmx = masked_array(mx.data.__array__(), mask=mx.mask)
- assert_(isinstance(divide(mx, mx), msubarray))
- assert_(isinstance(divide(mx, x), msubarray))
- assert_equal(divide(mx, mx), divide(xmx, xmx))
- def test_attributepropagation(self):
- x = array(arange(5), mask=[0]+[1]*4)
- my = masked_array(subarray(x))
- ym = msubarray(x)
- #
- z = (my+1)
- assert_(isinstance(z, MaskedArray))
- assert_(not isinstance(z, MSubArray))
- assert_(isinstance(z._data, SubArray))
- assert_equal(z._data.info, {})
- #
- z = (ym+1)
- assert_(isinstance(z, MaskedArray))
- assert_(isinstance(z, MSubArray))
- assert_(isinstance(z._data, SubArray))
- assert_(z._data.info['added'] > 0)
- # Test that inplace methods from data get used (gh-4617)
- ym += 1
- assert_(isinstance(ym, MaskedArray))
- assert_(isinstance(ym, MSubArray))
- assert_(isinstance(ym._data, SubArray))
- assert_(ym._data.info['iadded'] > 0)
- #
- ym._set_mask([1, 0, 0, 0, 1])
- assert_equal(ym._mask, [1, 0, 0, 0, 1])
- ym._series._set_mask([0, 0, 0, 0, 1])
- assert_equal(ym._mask, [0, 0, 0, 0, 1])
- #
- xsub = subarray(x, info={'name':'x'})
- mxsub = masked_array(xsub)
- assert_(hasattr(mxsub, 'info'))
- assert_equal(mxsub.info, xsub.info)
- def test_subclasspreservation(self):
- # Checks that masked_array(...,subok=True) preserves the class.
- x = np.arange(5)
- m = [0, 0, 1, 0, 0]
- xinfo = [(i, j) for (i, j) in zip(x, m)]
- xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
- #
- mxsub = masked_array(xsub, subok=False)
- assert_(not isinstance(mxsub, MSubArray))
- assert_(isinstance(mxsub, MaskedArray))
- assert_equal(mxsub._mask, m)
- #
- mxsub = asarray(xsub)
- assert_(not isinstance(mxsub, MSubArray))
- assert_(isinstance(mxsub, MaskedArray))
- assert_equal(mxsub._mask, m)
- #
- mxsub = masked_array(xsub, subok=True)
- assert_(isinstance(mxsub, MSubArray))
- assert_equal(mxsub.info, xsub.info)
- assert_equal(mxsub._mask, xsub._mask)
- #
- mxsub = asanyarray(xsub)
- assert_(isinstance(mxsub, MSubArray))
- assert_equal(mxsub.info, xsub.info)
- assert_equal(mxsub._mask, m)
- def test_subclass_items(self):
- """test that getter and setter go via baseclass"""
- x = np.arange(5)
- xcsub = ComplicatedSubArray(x)
- mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
- # getter should return a ComplicatedSubArray, even for single item
- # first check we wrote ComplicatedSubArray correctly
- assert_(isinstance(xcsub[1], ComplicatedSubArray))
- assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
- assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
- # now that it propagates inside the MaskedArray
- assert_(isinstance(mxcsub[1], ComplicatedSubArray))
- assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
- assert_(mxcsub[0] is masked)
- assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
- assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
- # also for flattened version (which goes via MaskedIterator)
- assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
- assert_(mxcsub.flat[0] is masked)
- assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
- # setter should only work with ComplicatedSubArray input
- # first check we wrote ComplicatedSubArray correctly
- assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
- # now that it propagates inside the MaskedArray
- assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
- assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
- mxcsub[1] = xcsub[4]
- mxcsub[1:4] = xcsub[1:4]
- # also for flattened version (which goes via MaskedIterator)
- assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
- assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
- mxcsub.flat[1] = xcsub[4]
- mxcsub.flat[1:4] = xcsub[1:4]
- def test_subclass_nomask_items(self):
- x = np.arange(5)
- xcsub = ComplicatedSubArray(x)
- mxcsub_nomask = masked_array(xcsub)
- assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
- assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
- assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
- assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
- def test_subclass_repr(self):
- """test that repr uses the name of the subclass
- and 'array' for np.ndarray"""
- x = np.arange(5)
- mx = masked_array(x, mask=[True, False, True, False, False])
- assert_startswith(repr(mx), 'masked_array')
- xsub = SubArray(x)
- mxsub = masked_array(xsub, mask=[True, False, True, False, False])
- assert_startswith(repr(mxsub),
- f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
- def test_subclass_str(self):
- """test str with subclass that has overridden str, setitem"""
- # first without override
- x = np.arange(5)
- xsub = SubArray(x)
- mxsub = masked_array(xsub, mask=[True, False, True, False, False])
- assert_equal(str(mxsub), '[-- 1 -- 3 4]')
- xcsub = ComplicatedSubArray(x)
- assert_raises(ValueError, xcsub.__setitem__, 0,
- np.ma.core.masked_print_option)
- mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
- assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
- def test_pure_subclass_info_preservation(self):
- # Test that ufuncs and methods conserve extra information consistently;
- # see gh-7122.
- arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
- arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
- diff1 = np.subtract(arr1, arr2)
- assert_('info' in diff1._optinfo)
- assert_(diff1._optinfo['info'] == 'test')
- diff2 = arr1 - arr2
- assert_('info' in diff2._optinfo)
- assert_(diff2._optinfo['info'] == 'test')
- class ArrayNoInheritance:
- """Quantity-like class that does not inherit from ndarray"""
- def __init__(self, data, units):
- self.magnitude = data
- self.units = units
- def __getattr__(self, attr):
- return getattr(self.magnitude, attr)
- def test_array_no_inheritance():
- data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
- data_masked_units = ArrayNoInheritance(data_masked, 'meters')
- # Get the masked representation of the Quantity-like class
- new_array = np.ma.array(data_masked_units)
- assert_equal(data_masked.data, new_array.data)
- assert_equal(data_masked.mask, new_array.mask)
- # Test sharing the mask
- data_masked.mask = [True, False, False]
- assert_equal(data_masked.mask, new_array.mask)
- assert_(new_array.sharedmask)
- # Get the masked representation of the Quantity-like class
- new_array = np.ma.array(data_masked_units, copy=True)
- assert_equal(data_masked.data, new_array.data)
- assert_equal(data_masked.mask, new_array.mask)
- # Test that the mask is not shared when copy=True
- data_masked.mask = [True, False, True]
- assert_equal([True, False, False], new_array.mask)
- assert_(not new_array.sharedmask)
- # Get the masked representation of the Quantity-like class
- new_array = np.ma.array(data_masked_units, keep_mask=False)
- assert_equal(data_masked.data, new_array.data)
- # The change did not affect the original mask
- assert_equal(data_masked.mask, [True, False, True])
- # Test that the mask is False and not shared when keep_mask=False
- assert_(not new_array.mask)
- assert_(not new_array.sharedmask)
- class TestClassWrapping:
- # Test suite for classes that wrap MaskedArrays
- def setup_method(self):
- m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
- wm = WrappedArray(m)
- self.data = (m, wm)
- def test_masked_unary_operations(self):
- # Tests masked_unary_operation
- (m, wm) = self.data
- with np.errstate(divide='ignore'):
- assert_(isinstance(np.log(wm), WrappedArray))
- def test_masked_binary_operations(self):
- # Tests masked_binary_operation
- (m, wm) = self.data
- # Result should be a WrappedArray
- assert_(isinstance(np.add(wm, wm), WrappedArray))
- assert_(isinstance(np.add(m, wm), WrappedArray))
- assert_(isinstance(np.add(wm, m), WrappedArray))
- # add and '+' should call the same ufunc
- assert_equal(np.add(m, wm), m + wm)
- assert_(isinstance(np.hypot(m, wm), WrappedArray))
- assert_(isinstance(np.hypot(wm, m), WrappedArray))
- # Test domained binary operations
- assert_(isinstance(np.divide(wm, m), WrappedArray))
- assert_(isinstance(np.divide(m, wm), WrappedArray))
- assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
- # Test broadcasting
- m2 = np.stack([m, m])
- assert_(isinstance(np.divide(wm, m2), WrappedArray))
- assert_(isinstance(np.divide(m2, wm), WrappedArray))
- assert_equal(np.divide(m2, wm), np.divide(wm, m2))
|