1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566 |
- # pylint: disable-msg=W0400,W0511,W0611,W0612,W0614,R0201,E1102
- """Tests suite for MaskedArray & subclassing.
- :author: Pierre Gerard-Marchant
- :contact: pierregm_at_uga_dot_edu
- """
- __author__ = "Pierre GF Gerard-Marchant"
- import sys
- import warnings
- import operator
- import itertools
- import textwrap
- import pytest
- from functools import reduce
- import numpy as np
- import numpy.ma.core
- import numpy.core.fromnumeric as fromnumeric
- import numpy.core.umath as umath
- from numpy.testing import (
- assert_raises, assert_warns, suppress_warnings, IS_WASM
- )
- from numpy.testing._private.utils import requires_memory
- from numpy import ndarray
- from numpy.compat import asbytes
- from numpy.ma.testutils import (
- assert_, assert_array_equal, assert_equal, assert_almost_equal,
- assert_equal_records, fail_if_equal, assert_not_equal,
- assert_mask_equal
- )
- from numpy.ma.core import (
- MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all,
- allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2,
- arcsin, arctan, argsort, array, asarray, choose, concatenate,
- conjugate, cos, cosh, count, default_fill_value, diag, divide, doc_note,
- empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid,
- flatten_structured_array, fromflex, getmask, getmaskarray, greater,
- greater_equal, identity, inner, isMaskedArray, less, less_equal, log,
- log10, make_mask, make_mask_descr, mask_or, masked, masked_array,
- masked_equal, masked_greater, masked_greater_equal, masked_inside,
- masked_less, masked_less_equal, masked_not_equal, masked_outside,
- masked_print_option, masked_values, masked_where, max, maximum,
- maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply,
- mvoid, nomask, not_equal, ones, ones_like, outer, power, product, put,
- putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort,
- sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, zeros_like,
- )
- from numpy.compat import pickle
- pi = np.pi
- suppress_copy_mask_on_assignment = suppress_warnings()
- suppress_copy_mask_on_assignment.filter(
- numpy.ma.core.MaskedArrayFutureWarning,
- "setting an item on a masked array which has a shared mask will not copy")
- # For parametrized numeric testing
- num_dts = [np.dtype(dt_) for dt_ in '?bhilqBHILQefdgFD']
- num_ids = [dt_.char for dt_ in num_dts]
- class TestMaskedArray:
- # Base test class for MaskedArrays.
- def setup_method(self):
- # Base data definition.
- x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
- y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
- a10 = 10.
- m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
- m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
- xm = masked_array(x, mask=m1)
- ym = masked_array(y, mask=m2)
- z = np.array([-.5, 0., .5, .8])
- zm = masked_array(z, mask=[0, 1, 0, 0])
- xf = np.where(m1, 1e+20, x)
- xm.set_fill_value(1e+20)
- self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
- def test_basicattributes(self):
- # Tests some basic array attributes.
- a = array([1, 3, 2])
- b = array([1, 3, 2], mask=[1, 0, 1])
- assert_equal(a.ndim, 1)
- assert_equal(b.ndim, 1)
- assert_equal(a.size, 3)
- assert_equal(b.size, 3)
- assert_equal(a.shape, (3,))
- assert_equal(b.shape, (3,))
- def test_basic0d(self):
- # Checks masking a scalar
- x = masked_array(0)
- assert_equal(str(x), '0')
- x = masked_array(0, mask=True)
- assert_equal(str(x), str(masked_print_option))
- x = masked_array(0, mask=False)
- assert_equal(str(x), '0')
- x = array(0, mask=1)
- assert_(x.filled().dtype is x._data.dtype)
- def test_basic1d(self):
- # Test of basic array creation and properties in 1 dimension.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- assert_(not isMaskedArray(x))
- assert_(isMaskedArray(xm))
- assert_((xm - ym).filled(0).any())
- fail_if_equal(xm.mask.astype(int), ym.mask.astype(int))
- s = x.shape
- assert_equal(np.shape(xm), s)
- assert_equal(xm.shape, s)
- assert_equal(xm.dtype, x.dtype)
- assert_equal(zm.dtype, z.dtype)
- assert_equal(xm.size, reduce(lambda x, y:x * y, s))
- assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
- assert_array_equal(xm, xf)
- assert_array_equal(filled(xm, 1.e20), xf)
- assert_array_equal(x, xm)
- def test_basic2d(self):
- # Test of basic array creation and properties in 2 dimensions.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- for s in [(4, 3), (6, 2)]:
- x.shape = s
- y.shape = s
- xm.shape = s
- ym.shape = s
- xf.shape = s
- assert_(not isMaskedArray(x))
- assert_(isMaskedArray(xm))
- assert_equal(shape(xm), s)
- assert_equal(xm.shape, s)
- assert_equal(xm.size, reduce(lambda x, y:x * y, s))
- assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
- assert_equal(xm, xf)
- assert_equal(filled(xm, 1.e20), xf)
- assert_equal(x, xm)
- def test_concatenate_basic(self):
- # Tests concatenations.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- # basic concatenation
- assert_equal(np.concatenate((x, y)), concatenate((xm, ym)))
- assert_equal(np.concatenate((x, y)), concatenate((x, y)))
- assert_equal(np.concatenate((x, y)), concatenate((xm, y)))
- assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x)))
- def test_concatenate_alongaxis(self):
- # Tests concatenations.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- # Concatenation along an axis
- s = (3, 4)
- x.shape = y.shape = xm.shape = ym.shape = s
- assert_equal(xm.mask, np.reshape(m1, s))
- assert_equal(ym.mask, np.reshape(m2, s))
- xmym = concatenate((xm, ym), 1)
- assert_equal(np.concatenate((x, y), 1), xmym)
- assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask)
- x = zeros(2)
- y = array(ones(2), mask=[False, True])
- z = concatenate((x, y))
- assert_array_equal(z, [0, 0, 1, 1])
- assert_array_equal(z.mask, [False, False, False, True])
- z = concatenate((y, x))
- assert_array_equal(z, [1, 1, 0, 0])
- assert_array_equal(z.mask, [False, True, False, False])
- def test_concatenate_flexible(self):
- # Tests the concatenation on flexible arrays.
- data = masked_array(list(zip(np.random.rand(10),
- np.arange(10))),
- dtype=[('a', float), ('b', int)])
- test = concatenate([data[:5], data[5:]])
- assert_equal_records(test, data)
- def test_creation_ndmin(self):
- # Check the use of ndmin
- x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2)
- assert_equal(x.shape, (1, 3))
- assert_equal(x._data, [[1, 2, 3]])
- assert_equal(x._mask, [[1, 0, 0]])
- def test_creation_ndmin_from_maskedarray(self):
- # Make sure we're not losing the original mask w/ ndmin
- x = array([1, 2, 3])
- x[-1] = masked
- xx = array(x, ndmin=2, dtype=float)
- assert_equal(x.shape, x._mask.shape)
- assert_equal(xx.shape, xx._mask.shape)
- def test_creation_maskcreation(self):
- # Tests how masks are initialized at the creation of Maskedarrays.
- data = arange(24, dtype=float)
- data[[3, 6, 15]] = masked
- dma_1 = MaskedArray(data)
- assert_equal(dma_1.mask, data.mask)
- dma_2 = MaskedArray(dma_1)
- assert_equal(dma_2.mask, dma_1.mask)
- dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6)
- fail_if_equal(dma_3.mask, dma_1.mask)
- x = array([1, 2, 3], mask=True)
- assert_equal(x._mask, [True, True, True])
- x = array([1, 2, 3], mask=False)
- assert_equal(x._mask, [False, False, False])
- y = array([1, 2, 3], mask=x._mask, copy=False)
- assert_(np.may_share_memory(x.mask, y.mask))
- y = array([1, 2, 3], mask=x._mask, copy=True)
- assert_(not np.may_share_memory(x.mask, y.mask))
- def test_masked_singleton_array_creation_warns(self):
- # The first works, but should not (ideally), there may be no way
- # to solve this, however, as long as `np.ma.masked` is an ndarray.
- np.array(np.ma.masked)
- with pytest.warns(UserWarning):
- # Tries to create a float array, using `float(np.ma.masked)`.
- # We may want to define this is invalid behaviour in the future!
- # (requiring np.ma.masked to be a known NumPy scalar probably
- # with a DType.)
- np.array([3., np.ma.masked])
- def test_creation_with_list_of_maskedarrays(self):
- # Tests creating a masked array from a list of masked arrays.
- x = array(np.arange(5), mask=[1, 0, 0, 0, 0])
- data = array((x, x[::-1]))
- assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
- assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
- x.mask = nomask
- data = array((x, x[::-1]))
- assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
- assert_(data.mask is nomask)
- def test_creation_with_list_of_maskedarrays_no_bool_cast(self):
- # Tests the regression in gh-18551
- masked_str = np.ma.masked_array(['a', 'b'], mask=[True, False])
- normal_int = np.arange(2)
- res = np.ma.asarray([masked_str, normal_int], dtype="U21")
- assert_array_equal(res.mask, [[True, False], [False, False]])
- # The above only failed due a long chain of oddity, try also with
- # an object array that cannot be converted to bool always:
- class NotBool():
- def __bool__(self):
- raise ValueError("not a bool!")
- masked_obj = np.ma.masked_array([NotBool(), 'b'], mask=[True, False])
- # Check that the NotBool actually fails like we would expect:
- with pytest.raises(ValueError, match="not a bool!"):
- np.asarray([masked_obj], dtype=bool)
- res = np.ma.asarray([masked_obj, normal_int])
- assert_array_equal(res.mask, [[True, False], [False, False]])
- def test_creation_from_ndarray_with_padding(self):
- x = np.array([('A', 0)], dtype={'names':['f0','f1'],
- 'formats':['S4','i8'],
- 'offsets':[0,8]})
- array(x) # used to fail due to 'V' padding field in x.dtype.descr
- def test_unknown_keyword_parameter(self):
- with pytest.raises(TypeError, match="unexpected keyword argument"):
- MaskedArray([1, 2, 3], maks=[0, 1, 0]) # `mask` is misspelled.
- def test_asarray(self):
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- xm.fill_value = -9999
- xm._hardmask = True
- xmm = asarray(xm)
- assert_equal(xmm._data, xm._data)
- assert_equal(xmm._mask, xm._mask)
- assert_equal(xmm.fill_value, xm.fill_value)
- assert_equal(xmm._hardmask, xm._hardmask)
- def test_asarray_default_order(self):
- # See Issue #6646
- m = np.eye(3).T
- assert_(not m.flags.c_contiguous)
- new_m = asarray(m)
- assert_(new_m.flags.c_contiguous)
- def test_asarray_enforce_order(self):
- # See Issue #6646
- m = np.eye(3).T
- assert_(not m.flags.c_contiguous)
- new_m = asarray(m, order='C')
- assert_(new_m.flags.c_contiguous)
- def test_fix_invalid(self):
- # Checks fix_invalid.
- with np.errstate(invalid='ignore'):
- data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1])
- data_fixed = fix_invalid(data)
- assert_equal(data_fixed._data, [data.fill_value, 0., 1.])
- assert_equal(data_fixed._mask, [1., 0., 1.])
- def test_maskedelement(self):
- # Test of masked element
- x = arange(6)
- x[1] = masked
- assert_(str(masked) == '--')
- assert_(x[1] is masked)
- assert_equal(filled(x[1], 0), 0)
- def test_set_element_as_object(self):
- # Tests setting elements with object
- a = empty(1, dtype=object)
- x = (1, 2, 3, 4, 5)
- a[0] = x
- assert_equal(a[0], x)
- assert_(a[0] is x)
- import datetime
- dt = datetime.datetime.now()
- a[0] = dt
- assert_(a[0] is dt)
- def test_indexing(self):
- # Tests conversions and indexing
- x1 = np.array([1, 2, 4, 3])
- x2 = array(x1, mask=[1, 0, 0, 0])
- x3 = array(x1, mask=[0, 1, 0, 1])
- x4 = array(x1)
- # test conversion to strings
- str(x2) # raises?
- repr(x2) # raises?
- assert_equal(np.sort(x1), sort(x2, endwith=False))
- # tests of indexing
- assert_(type(x2[1]) is type(x1[1]))
- assert_(x1[1] == x2[1])
- assert_(x2[0] is masked)
- assert_equal(x1[2], x2[2])
- assert_equal(x1[2:5], x2[2:5])
- assert_equal(x1[:], x2[:])
- assert_equal(x1[1:], x3[1:])
- x1[2] = 9
- x2[2] = 9
- assert_equal(x1, x2)
- x1[1:3] = 99
- x2[1:3] = 99
- assert_equal(x1, x2)
- x2[1] = masked
- assert_equal(x1, x2)
- x2[1:3] = masked
- assert_equal(x1, x2)
- x2[:] = x1
- x2[1] = masked
- assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
- x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
- assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
- x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
- assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
- assert_(allequal(x4, array([1, 2, 3, 4])))
- x1 = np.arange(5) * 1.0
- x2 = masked_values(x1, 3.0)
- assert_equal(x1, x2)
- assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
- assert_equal(3.0, x2.fill_value)
- x1 = array([1, 'hello', 2, 3], object)
- x2 = np.array([1, 'hello', 2, 3], object)
- s1 = x1[1]
- s2 = x2[1]
- assert_equal(type(s2), str)
- assert_equal(type(s1), str)
- assert_equal(s1, s2)
- assert_(x1[1:1].shape == (0,))
- def test_setitem_no_warning(self):
- # Setitem shouldn't warn, because the assignment might be masked
- # and warning for a masked assignment is weird (see gh-23000)
- # (When the value is masked, otherwise a warning would be acceptable
- # but is not given currently.)
- x = np.ma.arange(60).reshape((6, 10))
- index = (slice(1, 5, 2), [7, 5])
- value = np.ma.masked_all((2, 2))
- value._data[...] = np.inf # not a valid integer...
- x[index] = value
- # The masked scalar is special cased, but test anyway (it's NaN):
- x[...] = np.ma.masked
- # Finally, a large value that cannot be cast to the float32 `x`
- x = np.ma.arange(3., dtype=np.float32)
- value = np.ma.array([2e234, 1, 1], mask=[True, False, False])
- x[...] = value
- x[[0, 1, 2]] = value
- @suppress_copy_mask_on_assignment
- def test_copy(self):
- # Tests of some subtle points of copying and sizing.
- n = [0, 0, 1, 0, 0]
- m = make_mask(n)
- m2 = make_mask(m)
- assert_(m is m2)
- m3 = make_mask(m, copy=True)
- assert_(m is not m3)
- x1 = np.arange(5)
- y1 = array(x1, mask=m)
- assert_equal(y1._data.__array_interface__, x1.__array_interface__)
- assert_(allequal(x1, y1.data))
- assert_equal(y1._mask.__array_interface__, m.__array_interface__)
- y1a = array(y1)
- # Default for masked array is not to copy; see gh-10318.
- assert_(y1a._data.__array_interface__ ==
- y1._data.__array_interface__)
- assert_(y1a._mask.__array_interface__ ==
- y1._mask.__array_interface__)
- y2 = array(x1, mask=m3)
- assert_(y2._data.__array_interface__ == x1.__array_interface__)
- assert_(y2._mask.__array_interface__ == m3.__array_interface__)
- assert_(y2[2] is masked)
- y2[2] = 9
- assert_(y2[2] is not masked)
- assert_(y2._mask.__array_interface__ == m3.__array_interface__)
- assert_(allequal(y2.mask, 0))
- y2a = array(x1, mask=m, copy=1)
- assert_(y2a._data.__array_interface__ != x1.__array_interface__)
- #assert_( y2a._mask is not m)
- assert_(y2a._mask.__array_interface__ != m.__array_interface__)
- assert_(y2a[2] is masked)
- y2a[2] = 9
- assert_(y2a[2] is not masked)
- #assert_( y2a._mask is not m)
- assert_(y2a._mask.__array_interface__ != m.__array_interface__)
- assert_(allequal(y2a.mask, 0))
- y3 = array(x1 * 1.0, mask=m)
- assert_(filled(y3).dtype is (x1 * 1.0).dtype)
- x4 = arange(4)
- x4[2] = masked
- y4 = resize(x4, (8,))
- assert_equal(concatenate([x4, x4]), y4)
- assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])
- y5 = repeat(x4, (2, 2, 2, 2), axis=0)
- assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3])
- y6 = repeat(x4, 2, axis=0)
- assert_equal(y5, y6)
- y7 = x4.repeat((2, 2, 2, 2), axis=0)
- assert_equal(y5, y7)
- y8 = x4.repeat(2, 0)
- assert_equal(y5, y8)
- y9 = x4.copy()
- assert_equal(y9._data, x4._data)
- assert_equal(y9._mask, x4._mask)
- x = masked_array([1, 2, 3], mask=[0, 1, 0])
- # Copy is False by default
- y = masked_array(x)
- assert_equal(y._data.ctypes.data, x._data.ctypes.data)
- assert_equal(y._mask.ctypes.data, x._mask.ctypes.data)
- y = masked_array(x, copy=True)
- assert_not_equal(y._data.ctypes.data, x._data.ctypes.data)
- assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data)
- def test_copy_0d(self):
- # gh-9430
- x = np.ma.array(43, mask=True)
- xc = x.copy()
- assert_equal(xc.mask, True)
- def test_copy_on_python_builtins(self):
- # Tests copy works on python builtins (issue#8019)
- assert_(isMaskedArray(np.ma.copy([1,2,3])))
- assert_(isMaskedArray(np.ma.copy((1,2,3))))
- def test_copy_immutable(self):
- # Tests that the copy method is immutable, GitHub issue #5247
- a = np.ma.array([1, 2, 3])
- b = np.ma.array([4, 5, 6])
- a_copy_method = a.copy
- b.copy
- assert_equal(a_copy_method(), [1, 2, 3])
- def test_deepcopy(self):
- from copy import deepcopy
- a = array([0, 1, 2], mask=[False, True, False])
- copied = deepcopy(a)
- assert_equal(copied.mask, a.mask)
- assert_not_equal(id(a._mask), id(copied._mask))
- copied[1] = 1
- assert_equal(copied.mask, [0, 0, 0])
- assert_equal(a.mask, [0, 1, 0])
- copied = deepcopy(a)
- assert_equal(copied.mask, a.mask)
- copied.mask[1] = False
- assert_equal(copied.mask, [0, 0, 0])
- assert_equal(a.mask, [0, 1, 0])
- def test_format(self):
- a = array([0, 1, 2], mask=[False, True, False])
- assert_equal(format(a), "[0 -- 2]")
- assert_equal(format(masked), "--")
- assert_equal(format(masked, ""), "--")
- # Postponed from PR #15410, perhaps address in the future.
- # assert_equal(format(masked, " >5"), " --")
- # assert_equal(format(masked, " <5"), "-- ")
- # Expect a FutureWarning for using format_spec with MaskedElement
- with assert_warns(FutureWarning):
- with_format_string = format(masked, " >5")
- assert_equal(with_format_string, "--")
- def test_str_repr(self):
- a = array([0, 1, 2], mask=[False, True, False])
- assert_equal(str(a), '[0 -- 2]')
- assert_equal(
- repr(a),
- textwrap.dedent('''\
- masked_array(data=[0, --, 2],
- mask=[False, True, False],
- fill_value=999999)''')
- )
- # arrays with a continuation
- a = np.ma.arange(2000)
- a[1:50] = np.ma.masked
- assert_equal(
- repr(a),
- textwrap.dedent('''\
- masked_array(data=[0, --, --, ..., 1997, 1998, 1999],
- mask=[False, True, True, ..., False, False, False],
- fill_value=999999)''')
- )
- # line-wrapped 1d arrays are correctly aligned
- a = np.ma.arange(20)
- assert_equal(
- repr(a),
- textwrap.dedent('''\
- masked_array(data=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
- 14, 15, 16, 17, 18, 19],
- mask=False,
- fill_value=999999)''')
- )
- # 2d arrays cause wrapping
- a = array([[1, 2, 3], [4, 5, 6]], dtype=np.int8)
- a[1,1] = np.ma.masked
- assert_equal(
- repr(a),
- textwrap.dedent('''\
- masked_array(
- data=[[1, 2, 3],
- [4, --, 6]],
- mask=[[False, False, False],
- [False, True, False]],
- fill_value=999999,
- dtype=int8)''')
- )
- # but not it they're a row vector
- assert_equal(
- repr(a[:1]),
- textwrap.dedent('''\
- masked_array(data=[[1, 2, 3]],
- mask=[[False, False, False]],
- fill_value=999999,
- dtype=int8)''')
- )
- # dtype=int is implied, so not shown
- assert_equal(
- repr(a.astype(int)),
- textwrap.dedent('''\
- masked_array(
- data=[[1, 2, 3],
- [4, --, 6]],
- mask=[[False, False, False],
- [False, True, False]],
- fill_value=999999)''')
- )
- def test_str_repr_legacy(self):
- oldopts = np.get_printoptions()
- np.set_printoptions(legacy='1.13')
- try:
- a = array([0, 1, 2], mask=[False, True, False])
- assert_equal(str(a), '[0 -- 2]')
- assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n'
- ' mask = [False True False],\n'
- ' fill_value = 999999)\n')
- a = np.ma.arange(2000)
- a[1:50] = np.ma.masked
- assert_equal(
- repr(a),
- 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n'
- ' mask = [False True True ..., False False False],\n'
- ' fill_value = 999999)\n'
- )
- finally:
- np.set_printoptions(**oldopts)
- def test_0d_unicode(self):
- u = 'caf\xe9'
- utype = type(u)
- arr_nomask = np.ma.array(u)
- arr_masked = np.ma.array(u, mask=True)
- assert_equal(utype(arr_nomask), u)
- assert_equal(utype(arr_masked), '--')
- def test_pickling(self):
- # Tests pickling
- for dtype in (int, float, str, object):
- a = arange(10).astype(dtype)
- a.fill_value = 999
- masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked
- True, # Fully masked
- False) # Fully unmasked
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- for mask in masks:
- a.mask = mask
- a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
- assert_equal(a_pickled._mask, a._mask)
- assert_equal(a_pickled._data, a._data)
- if dtype in (object, int):
- assert_equal(a_pickled.fill_value, 999)
- else:
- assert_equal(a_pickled.fill_value, dtype(999))
- assert_array_equal(a_pickled.mask, mask)
- def test_pickling_subbaseclass(self):
- # Test pickling w/ a subclass of ndarray
- x = np.array([(1.0, 2), (3.0, 4)],
- dtype=[('x', float), ('y', int)]).view(np.recarray)
- a = masked_array(x, mask=[(True, False), (False, True)])
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
- assert_equal(a_pickled._mask, a._mask)
- assert_equal(a_pickled, a)
- assert_(isinstance(a_pickled._data, np.recarray))
- def test_pickling_maskedconstant(self):
- # Test pickling MaskedConstant
- mc = np.ma.masked
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- mc_pickled = pickle.loads(pickle.dumps(mc, protocol=proto))
- assert_equal(mc_pickled._baseclass, mc._baseclass)
- assert_equal(mc_pickled._mask, mc._mask)
- assert_equal(mc_pickled._data, mc._data)
- def test_pickling_wstructured(self):
- # Tests pickling w/ structured array
- a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)],
- dtype=[('a', int), ('b', float)])
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
- assert_equal(a_pickled._mask, a._mask)
- assert_equal(a_pickled, a)
- def test_pickling_keepalignment(self):
- # Tests pickling w/ F_CONTIGUOUS arrays
- a = arange(10)
- a.shape = (-1, 2)
- b = a.T
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- test = pickle.loads(pickle.dumps(b, protocol=proto))
- assert_equal(test, b)
- def test_single_element_subscript(self):
- # Tests single element subscripts of Maskedarrays.
- a = array([1, 3, 2])
- b = array([1, 3, 2], mask=[1, 0, 1])
- assert_equal(a[0].shape, ())
- assert_equal(b[0].shape, ())
- assert_equal(b[1].shape, ())
- def test_topython(self):
- # Tests some communication issues with Python.
- assert_equal(1, int(array(1)))
- assert_equal(1.0, float(array(1)))
- assert_equal(1, int(array([[[1]]])))
- assert_equal(1.0, float(array([[1]])))
- assert_raises(TypeError, float, array([1, 1]))
- with suppress_warnings() as sup:
- sup.filter(UserWarning, 'Warning: converting a masked element')
- assert_(np.isnan(float(array([1], mask=[1]))))
- a = array([1, 2, 3], mask=[1, 0, 0])
- assert_raises(TypeError, lambda: float(a))
- assert_equal(float(a[-1]), 3.)
- assert_(np.isnan(float(a[0])))
- assert_raises(TypeError, int, a)
- assert_equal(int(a[-1]), 3)
- assert_raises(MAError, lambda:int(a[0]))
- def test_oddfeatures_1(self):
- # Test of other odd features
- x = arange(20)
- x = x.reshape(4, 5)
- x.flat[5] = 12
- assert_(x[1, 0] == 12)
- z = x + 10j * x
- assert_equal(z.real, x)
- assert_equal(z.imag, 10 * x)
- assert_equal((z * conjugate(z)).real, 101 * x * x)
- z.imag[...] = 0.0
- x = arange(10)
- x[3] = masked
- assert_(str(x[3]) == str(masked))
- c = x >= 8
- assert_(count(where(c, masked, masked)) == 0)
- assert_(shape(where(c, masked, masked)) == c.shape)
- z = masked_where(c, x)
- assert_(z.dtype is x.dtype)
- assert_(z[3] is masked)
- assert_(z[4] is not masked)
- assert_(z[7] is not masked)
- assert_(z[8] is masked)
- assert_(z[9] is masked)
- assert_equal(x, z)
- def test_oddfeatures_2(self):
- # Tests some more features.
- x = array([1., 2., 3., 4., 5.])
- c = array([1, 1, 1, 0, 0])
- x[2] = masked
- z = where(c, x, -x)
- assert_equal(z, [1., 2., 0., -4., -5])
- c[0] = masked
- z = where(c, x, -x)
- assert_equal(z, [1., 2., 0., -4., -5])
- assert_(z[0] is masked)
- assert_(z[1] is not masked)
- assert_(z[2] is masked)
- @suppress_copy_mask_on_assignment
- def test_oddfeatures_3(self):
- # Tests some generic features
- atest = array([10], mask=True)
- btest = array([20])
- idx = atest.mask
- atest[idx] = btest[idx]
- assert_equal(atest, [20])
- def test_filled_with_object_dtype(self):
- a = np.ma.masked_all(1, dtype='O')
- assert_equal(a.filled('x')[0], 'x')
- def test_filled_with_flexible_dtype(self):
- # Test filled w/ flexible dtype
- flexi = array([(1, 1, 1)],
- dtype=[('i', int), ('s', '|S8'), ('f', float)])
- flexi[0] = masked
- assert_equal(flexi.filled(),
- np.array([(default_fill_value(0),
- default_fill_value('0'),
- default_fill_value(0.),)], dtype=flexi.dtype))
- flexi[0] = masked
- assert_equal(flexi.filled(1),
- np.array([(1, '1', 1.)], dtype=flexi.dtype))
- def test_filled_with_mvoid(self):
- # Test filled w/ mvoid
- ndtype = [('a', int), ('b', float)]
- a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype)
- # Filled using default
- test = a.filled()
- assert_equal(tuple(test), (1, default_fill_value(1.)))
- # Explicit fill_value
- test = a.filled((-1, -1))
- assert_equal(tuple(test), (1, -1))
- # Using predefined filling values
- a.fill_value = (-999, -999)
- assert_equal(tuple(a.filled()), (1, -999))
- def test_filled_with_nested_dtype(self):
- # Test filled w/ nested dtype
- ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
- a = array([(1, (1, 1)), (2, (2, 2))],
- mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype)
- test = a.filled(0)
- control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype)
- assert_equal(test, control)
- test = a['B'].filled(0)
- control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype)
- assert_equal(test, control)
- # test if mask gets set correctly (see #6760)
- Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))]))
- assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)),
- ('f1', 'i1', (2, 2))], (2, 2))]))
- assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)),
- ('f1', '?', (2, 2))], (2, 2))]))
- def test_filled_with_f_order(self):
- # Test filled w/ F-contiguous array
- a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'),
- mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'),
- order='F') # this is currently ignored
- assert_(a.flags['F_CONTIGUOUS'])
- assert_(a.filled(0).flags['F_CONTIGUOUS'])
- def test_optinfo_propagation(self):
- # Checks that _optinfo dictionary isn't back-propagated
- x = array([1, 2, 3, ], dtype=float)
- x._optinfo['info'] = '???'
- y = x.copy()
- assert_equal(y._optinfo['info'], '???')
- y._optinfo['info'] = '!!!'
- assert_equal(x._optinfo['info'], '???')
- def test_optinfo_forward_propagation(self):
- a = array([1,2,2,4])
- a._optinfo["key"] = "value"
- assert_equal(a._optinfo["key"], (a == 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a != 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a > 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a >= 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a <= 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a + 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a - 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a * 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], (a / 2)._optinfo["key"])
- assert_equal(a._optinfo["key"], a[:2]._optinfo["key"])
- assert_equal(a._optinfo["key"], a[[0,0,2]]._optinfo["key"])
- assert_equal(a._optinfo["key"], np.exp(a)._optinfo["key"])
- assert_equal(a._optinfo["key"], np.abs(a)._optinfo["key"])
- assert_equal(a._optinfo["key"], array(a, copy=True)._optinfo["key"])
- assert_equal(a._optinfo["key"], np.zeros_like(a)._optinfo["key"])
- def test_fancy_printoptions(self):
- # Test printing a masked array w/ fancy dtype.
- fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
- test = array([(1, (2, 3.0)), (4, (5, 6.0))],
- mask=[(1, (0, 1)), (0, (1, 0))],
- dtype=fancydtype)
- control = "[(--, (2, --)) (4, (--, 6.0))]"
- assert_equal(str(test), control)
- # Test 0-d array with multi-dimensional dtype
- t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0],
- [0.0, 0.0, 0.0]],
- 0.0),
- mask = (False, [[True, False, True],
- [False, False, True]],
- False),
- dtype = "int, (2,3)float, float")
- control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)"
- assert_equal(str(t_2d0), control)
- def test_flatten_structured_array(self):
- # Test flatten_structured_array on arrays
- # On ndarray
- ndtype = [('a', int), ('b', float)]
- a = np.array([(1, 1), (2, 2)], dtype=ndtype)
- test = flatten_structured_array(a)
- control = np.array([[1., 1.], [2., 2.]], dtype=float)
- assert_equal(test, control)
- assert_equal(test.dtype, control.dtype)
- # On masked_array
- a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
- test = flatten_structured_array(a)
- control = array([[1., 1.], [2., 2.]],
- mask=[[0, 1], [1, 0]], dtype=float)
- assert_equal(test, control)
- assert_equal(test.dtype, control.dtype)
- assert_equal(test.mask, control.mask)
- # On masked array with nested structure
- ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])]
- a = array([(1, (1, 1.1)), (2, (2, 2.2))],
- mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype)
- test = flatten_structured_array(a)
- control = array([[1., 1., 1.1], [2., 2., 2.2]],
- mask=[[0, 1, 0], [1, 0, 1]], dtype=float)
- assert_equal(test, control)
- assert_equal(test.dtype, control.dtype)
- assert_equal(test.mask, control.mask)
- # Keeping the initial shape
- ndtype = [('a', int), ('b', float)]
- a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype)
- test = flatten_structured_array(a)
- control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=float)
- assert_equal(test, control)
- assert_equal(test.dtype, control.dtype)
- def test_void0d(self):
- # Test creating a mvoid object
- ndtype = [('a', int), ('b', int)]
- a = np.array([(1, 2,)], dtype=ndtype)[0]
- f = mvoid(a)
- assert_(isinstance(f, mvoid))
- a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0]
- assert_(isinstance(a, mvoid))
- a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
- f = mvoid(a._data[0], a._mask[0])
- assert_(isinstance(f, mvoid))
- def test_mvoid_getitem(self):
- # Test mvoid.__getitem__
- ndtype = [('a', int), ('b', int)]
- a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
- dtype=ndtype)
- # w/o mask
- f = a[0]
- assert_(isinstance(f, mvoid))
- assert_equal((f[0], f['a']), (1, 1))
- assert_equal(f['b'], 2)
- # w/ mask
- f = a[1]
- assert_(isinstance(f, mvoid))
- assert_(f[0] is masked)
- assert_(f['a'] is masked)
- assert_equal(f[1], 4)
- # exotic dtype
- A = masked_array(data=[([0,1],)],
- mask=[([True, False],)],
- dtype=[("A", ">i2", (2,))])
- assert_equal(A[0]["A"], A["A"][0])
- assert_equal(A[0]["A"], masked_array(data=[0, 1],
- mask=[True, False], dtype=">i2"))
- def test_mvoid_iter(self):
- # Test iteration on __getitem__
- ndtype = [('a', int), ('b', int)]
- a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)],
- dtype=ndtype)
- # w/o mask
- assert_equal(list(a[0]), [1, 2])
- # w/ mask
- assert_equal(list(a[1]), [masked, 4])
- def test_mvoid_print(self):
- # Test printing a mvoid
- mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)])
- assert_equal(str(mx[0]), "(1, 1)")
- mx['b'][0] = masked
- ini_display = masked_print_option._display
- masked_print_option.set_display("-X-")
- try:
- assert_equal(str(mx[0]), "(1, -X-)")
- assert_equal(repr(mx[0]), "(1, -X-)")
- finally:
- masked_print_option.set_display(ini_display)
- # also check if there are object datatypes (see gh-7493)
- mx = array([(1,), (2,)], dtype=[('a', 'O')])
- assert_equal(str(mx[0]), "(1,)")
- def test_mvoid_multidim_print(self):
- # regression test for gh-6019
- t_ma = masked_array(data = [([1, 2, 3],)],
- mask = [([False, True, False],)],
- fill_value = ([999999, 999999, 999999],),
- dtype = [('a', '<i4', (3,))])
- assert_(str(t_ma[0]) == "([1, --, 3],)")
- assert_(repr(t_ma[0]) == "([1, --, 3],)")
- # additional tests with structured arrays
- t_2d = masked_array(data = [([[1, 2], [3,4]],)],
- mask = [([[False, True], [True, False]],)],
- dtype = [('a', '<i4', (2,2))])
- assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)")
- assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)")
- t_0d = masked_array(data = [(1,2)],
- mask = [(True,False)],
- dtype = [('a', '<i4'), ('b', '<i4')])
- assert_(str(t_0d[0]) == "(--, 2)")
- assert_(repr(t_0d[0]) == "(--, 2)")
- t_2d = masked_array(data = [([[1, 2], [3,4]], 1)],
- mask = [([[False, True], [True, False]], False)],
- dtype = [('a', '<i4', (2,2)), ('b', float)])
- assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
- assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)")
- t_ne = masked_array(data=[(1, (1, 1))],
- mask=[(True, (True, False))],
- dtype = [('a', '<i4'), ('b', 'i4,i4')])
- assert_(str(t_ne[0]) == "(--, (--, 1))")
- assert_(repr(t_ne[0]) == "(--, (--, 1))")
- def test_object_with_array(self):
- mx1 = masked_array([1.], mask=[True])
- mx2 = masked_array([1., 2.])
- mx = masked_array([mx1, mx2], mask=[False, True], dtype=object)
- assert_(mx[0] is mx1)
- assert_(mx[1] is not mx2)
- assert_(np.all(mx[1].data == mx2.data))
- assert_(np.all(mx[1].mask))
- # check that we return a view.
- mx[1].data[0] = 0.
- assert_(mx2[0] == 0.)
- class TestMaskedArrayArithmetic:
- # Base test class for MaskedArrays.
- def setup_method(self):
- # Base data definition.
- x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
- y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
- a10 = 10.
- m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
- m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
- xm = masked_array(x, mask=m1)
- ym = masked_array(y, mask=m2)
- z = np.array([-.5, 0., .5, .8])
- zm = masked_array(z, mask=[0, 1, 0, 0])
- xf = np.where(m1, 1e+20, x)
- xm.set_fill_value(1e+20)
- self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
- self.err_status = np.geterr()
- np.seterr(divide='ignore', invalid='ignore')
- def teardown_method(self):
- np.seterr(**self.err_status)
- def test_basic_arithmetic(self):
- # Test of basic arithmetic.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- a2d = array([[1, 2], [0, 4]])
- a2dm = masked_array(a2d, [[0, 0], [1, 0]])
- assert_equal(a2d * a2d, a2d * a2dm)
- assert_equal(a2d + a2d, a2d + a2dm)
- assert_equal(a2d - a2d, a2d - a2dm)
- for s in [(12,), (4, 3), (2, 6)]:
- x = x.reshape(s)
- y = y.reshape(s)
- xm = xm.reshape(s)
- ym = ym.reshape(s)
- xf = xf.reshape(s)
- assert_equal(-x, -xm)
- assert_equal(x + y, xm + ym)
- assert_equal(x - y, xm - ym)
- assert_equal(x * y, xm * ym)
- assert_equal(x / y, xm / ym)
- assert_equal(a10 + y, a10 + ym)
- assert_equal(a10 - y, a10 - ym)
- assert_equal(a10 * y, a10 * ym)
- assert_equal(a10 / y, a10 / ym)
- assert_equal(x + a10, xm + a10)
- assert_equal(x - a10, xm - a10)
- assert_equal(x * a10, xm * a10)
- assert_equal(x / a10, xm / a10)
- assert_equal(x ** 2, xm ** 2)
- assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5)
- assert_equal(x ** y, xm ** ym)
- assert_equal(np.add(x, y), add(xm, ym))
- assert_equal(np.subtract(x, y), subtract(xm, ym))
- assert_equal(np.multiply(x, y), multiply(xm, ym))
- assert_equal(np.divide(x, y), divide(xm, ym))
- def test_divide_on_different_shapes(self):
- x = arange(6, dtype=float)
- x.shape = (2, 3)
- y = arange(3, dtype=float)
- z = x / y
- assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
- assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
- z = x / y[None,:]
- assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]])
- assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]])
- y = arange(2, dtype=float)
- z = x / y[:, None]
- assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]])
- assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]])
- def test_mixed_arithmetic(self):
- # Tests mixed arithmetic.
- na = np.array([1])
- ma = array([1])
- assert_(isinstance(na + ma, MaskedArray))
- assert_(isinstance(ma + na, MaskedArray))
- def test_limits_arithmetic(self):
- tiny = np.finfo(float).tiny
- a = array([tiny, 1. / tiny, 0.])
- assert_equal(getmaskarray(a / 2), [0, 0, 0])
- assert_equal(getmaskarray(2 / a), [1, 0, 1])
- def test_masked_singleton_arithmetic(self):
- # Tests some scalar arithmetic on MaskedArrays.
- # Masked singleton should remain masked no matter what
- xm = array(0, mask=1)
- assert_((1 / array(0)).mask)
- assert_((1 + xm).mask)
- assert_((-xm).mask)
- assert_(maximum(xm, xm).mask)
- assert_(minimum(xm, xm).mask)
- def test_masked_singleton_equality(self):
- # Tests (in)equality on masked singleton
- a = array([1, 2, 3], mask=[1, 1, 0])
- assert_((a[0] == 0) is masked)
- assert_((a[0] != 0) is masked)
- assert_equal((a[-1] == 0), False)
- assert_equal((a[-1] != 0), True)
- def test_arithmetic_with_masked_singleton(self):
- # Checks that there's no collapsing to masked
- x = masked_array([1, 2])
- y = x * masked
- assert_equal(y.shape, x.shape)
- assert_equal(y._mask, [True, True])
- y = x[0] * masked
- assert_(y is masked)
- y = x + masked
- assert_equal(y.shape, x.shape)
- assert_equal(y._mask, [True, True])
- def test_arithmetic_with_masked_singleton_on_1d_singleton(self):
- # Check that we're not losing the shape of a singleton
- x = masked_array([1, ])
- y = x + masked
- assert_equal(y.shape, x.shape)
- assert_equal(y.mask, [True, ])
- def test_scalar_arithmetic(self):
- x = array(0, mask=0)
- assert_equal(x.filled().ctypes.data, x.ctypes.data)
- # Make sure we don't lose the shape in some circumstances
- xm = array((0, 0)) / 0.
- assert_equal(xm.shape, (2,))
- assert_equal(xm.mask, [1, 1])
- def test_basic_ufuncs(self):
- # Test various functions such as sin, cos.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- assert_equal(np.cos(x), cos(xm))
- assert_equal(np.cosh(x), cosh(xm))
- assert_equal(np.sin(x), sin(xm))
- assert_equal(np.sinh(x), sinh(xm))
- assert_equal(np.tan(x), tan(xm))
- assert_equal(np.tanh(x), tanh(xm))
- assert_equal(np.sqrt(abs(x)), sqrt(xm))
- assert_equal(np.log(abs(x)), log(xm))
- assert_equal(np.log10(abs(x)), log10(xm))
- assert_equal(np.exp(x), exp(xm))
- assert_equal(np.arcsin(z), arcsin(zm))
- assert_equal(np.arccos(z), arccos(zm))
- assert_equal(np.arctan(z), arctan(zm))
- assert_equal(np.arctan2(x, y), arctan2(xm, ym))
- assert_equal(np.absolute(x), absolute(xm))
- assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym))
- assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True))
- assert_equal(np.equal(x, y), equal(xm, ym))
- assert_equal(np.not_equal(x, y), not_equal(xm, ym))
- assert_equal(np.less(x, y), less(xm, ym))
- assert_equal(np.greater(x, y), greater(xm, ym))
- assert_equal(np.less_equal(x, y), less_equal(xm, ym))
- assert_equal(np.greater_equal(x, y), greater_equal(xm, ym))
- assert_equal(np.conjugate(x), conjugate(xm))
- def test_count_func(self):
- # Tests count
- assert_equal(1, count(1))
- assert_equal(0, array(1, mask=[1]))
- ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
- res = count(ott)
- assert_(res.dtype.type is np.intp)
- assert_equal(3, res)
- ott = ott.reshape((2, 2))
- res = count(ott)
- assert_(res.dtype.type is np.intp)
- assert_equal(3, res)
- res = count(ott, 0)
- assert_(isinstance(res, ndarray))
- assert_equal([1, 2], res)
- assert_(getmask(res) is nomask)
- ott = array([0., 1., 2., 3.])
- res = count(ott, 0)
- assert_(isinstance(res, ndarray))
- assert_(res.dtype.type is np.intp)
- assert_raises(np.AxisError, ott.count, axis=1)
- def test_count_on_python_builtins(self):
- # Tests count works on python builtins (issue#8019)
- assert_equal(3, count([1,2,3]))
- assert_equal(2, count((1,2)))
- def test_minmax_func(self):
- # Tests minimum and maximum.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- # max doesn't work if shaped
- xr = np.ravel(x)
- xmr = ravel(xm)
- # following are true because of careful selection of data
- assert_equal(max(xr), maximum.reduce(xmr))
- assert_equal(min(xr), minimum.reduce(xmr))
- assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
- assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
- x = arange(5)
- y = arange(5) - 2
- x[3] = masked
- y[0] = masked
- assert_equal(minimum(x, y), where(less(x, y), x, y))
- assert_equal(maximum(x, y), where(greater(x, y), x, y))
- assert_(minimum.reduce(x) == 0)
- assert_(maximum.reduce(x) == 4)
- x = arange(4).reshape(2, 2)
- x[-1, -1] = masked
- assert_equal(maximum.reduce(x, axis=None), 2)
- def test_minimummaximum_func(self):
- a = np.ones((2, 2))
- aminimum = minimum(a, a)
- assert_(isinstance(aminimum, MaskedArray))
- assert_equal(aminimum, np.minimum(a, a))
- aminimum = minimum.outer(a, a)
- assert_(isinstance(aminimum, MaskedArray))
- assert_equal(aminimum, np.minimum.outer(a, a))
- amaximum = maximum(a, a)
- assert_(isinstance(amaximum, MaskedArray))
- assert_equal(amaximum, np.maximum(a, a))
- amaximum = maximum.outer(a, a)
- assert_(isinstance(amaximum, MaskedArray))
- assert_equal(amaximum, np.maximum.outer(a, a))
- def test_minmax_reduce(self):
- # Test np.min/maximum.reduce on array w/ full False mask
- a = array([1, 2, 3], mask=[False, False, False])
- b = np.maximum.reduce(a)
- assert_equal(b, 3)
- def test_minmax_funcs_with_output(self):
- # Tests the min/max functions with explicit outputs
- mask = np.random.rand(12).round()
- xm = array(np.random.uniform(0, 10, 12), mask=mask)
- xm.shape = (3, 4)
- for funcname in ('min', 'max'):
- # Initialize
- npfunc = getattr(np, funcname)
- mafunc = getattr(numpy.ma.core, funcname)
- # Use the np version
- nout = np.empty((4,), dtype=int)
- try:
- result = npfunc(xm, axis=0, out=nout)
- except MaskError:
- pass
- nout = np.empty((4,), dtype=float)
- result = npfunc(xm, axis=0, out=nout)
- assert_(result is nout)
- # Use the ma version
- nout.fill(-999)
- result = mafunc(xm, axis=0, out=nout)
- assert_(result is nout)
- def test_minmax_methods(self):
- # Additional tests on max/min
- (_, _, _, _, _, xm, _, _, _, _) = self.d
- xm.shape = (xm.size,)
- assert_equal(xm.max(), 10)
- assert_(xm[0].max() is masked)
- assert_(xm[0].max(0) is masked)
- assert_(xm[0].max(-1) is masked)
- assert_equal(xm.min(), -10.)
- assert_(xm[0].min() is masked)
- assert_(xm[0].min(0) is masked)
- assert_(xm[0].min(-1) is masked)
- assert_equal(xm.ptp(), 20.)
- assert_(xm[0].ptp() is masked)
- assert_(xm[0].ptp(0) is masked)
- assert_(xm[0].ptp(-1) is masked)
- x = array([1, 2, 3], mask=True)
- assert_(x.min() is masked)
- assert_(x.max() is masked)
- assert_(x.ptp() is masked)
- def test_minmax_dtypes(self):
- # Additional tests on max/min for non-standard float and complex dtypes
- x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
- a10 = 10.
- an10 = -10.0
- m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
- xm = masked_array(x, mask=m1)
- xm.set_fill_value(1e+20)
- float_dtypes = [np.half, np.single, np.double,
- np.longdouble, np.cfloat, np.cdouble, np.clongdouble]
- for float_dtype in float_dtypes:
- assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(),
- float_dtype(a10))
- assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(),
- float_dtype(an10))
- assert_equal(xm.min(), an10)
- assert_equal(xm.max(), a10)
- # Non-complex type only test
- for float_dtype in float_dtypes[:4]:
- assert_equal(masked_array(x, mask=m1, dtype=float_dtype).max(),
- float_dtype(a10))
- assert_equal(masked_array(x, mask=m1, dtype=float_dtype).min(),
- float_dtype(an10))
- # Complex types only test
- for float_dtype in float_dtypes[-3:]:
- ym = masked_array([1e20+1j, 1e20-2j, 1e20-1j], mask=[0, 1, 0],
- dtype=float_dtype)
- assert_equal(ym.min(), float_dtype(1e20-1j))
- assert_equal(ym.max(), float_dtype(1e20+1j))
- zm = masked_array([np.inf+2j, np.inf+3j, -np.inf-1j], mask=[0, 1, 0],
- dtype=float_dtype)
- assert_equal(zm.min(), float_dtype(-np.inf-1j))
- assert_equal(zm.max(), float_dtype(np.inf+2j))
- cmax = np.inf - 1j * np.finfo(np.float64).max
- assert masked_array([-cmax, 0], mask=[0, 1]).max() == -cmax
- assert masked_array([cmax, 0], mask=[0, 1]).min() == cmax
- def test_addsumprod(self):
- # Tests add, sum, product.
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- assert_equal(np.add.reduce(x), add.reduce(x))
- assert_equal(np.add.accumulate(x), add.accumulate(x))
- assert_equal(4, sum(array(4), axis=0))
- assert_equal(4, sum(array(4), axis=0))
- assert_equal(np.sum(x, axis=0), sum(x, axis=0))
- assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))
- assert_equal(np.sum(x, 0), sum(x, 0))
- assert_equal(np.product(x, axis=0), product(x, axis=0))
- assert_equal(np.product(x, 0), product(x, 0))
- assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0))
- s = (3, 4)
- x.shape = y.shape = xm.shape = ym.shape = s
- if len(s) > 1:
- assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1))
- assert_equal(np.add.reduce(x, 1), add.reduce(x, 1))
- assert_equal(np.sum(x, 1), sum(x, 1))
- assert_equal(np.product(x, 1), product(x, 1))
- def test_binops_d2D(self):
- # Test binary operations on 2D data
- a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
- b = array([[2., 3.], [4., 5.], [6., 7.]])
- test = a * b
- control = array([[2., 3.], [2., 2.], [3., 3.]],
- mask=[[0, 0], [1, 1], [1, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- test = b * a
- control = array([[2., 3.], [4., 5.], [6., 7.]],
- mask=[[0, 0], [1, 1], [1, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- a = array([[1.], [2.], [3.]])
- b = array([[2., 3.], [4., 5.], [6., 7.]],
- mask=[[0, 0], [0, 0], [0, 1]])
- test = a * b
- control = array([[2, 3], [8, 10], [18, 3]],
- mask=[[0, 0], [0, 0], [0, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- test = b * a
- control = array([[2, 3], [8, 10], [18, 7]],
- mask=[[0, 0], [0, 0], [0, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- def test_domained_binops_d2D(self):
- # Test domained binary operations on 2D data
- a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]])
- b = array([[2., 3.], [4., 5.], [6., 7.]])
- test = a / b
- control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]],
- mask=[[0, 0], [1, 1], [1, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- test = b / a
- control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]],
- mask=[[0, 0], [1, 1], [1, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- a = array([[1.], [2.], [3.]])
- b = array([[2., 3.], [4., 5.], [6., 7.]],
- mask=[[0, 0], [0, 0], [0, 1]])
- test = a / b
- control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]],
- mask=[[0, 0], [0, 0], [0, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- test = b / a
- control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]],
- mask=[[0, 0], [0, 0], [0, 1]])
- assert_equal(test, control)
- assert_equal(test.data, control.data)
- assert_equal(test.mask, control.mask)
- def test_noshrinking(self):
- # Check that we don't shrink a mask when not wanted
- # Binary operations
- a = masked_array([1., 2., 3.], mask=[False, False, False],
- shrink=False)
- b = a + 1
- assert_equal(b.mask, [0, 0, 0])
- # In place binary operation
- a += 1
- assert_equal(a.mask, [0, 0, 0])
- # Domained binary operation
- b = a / 1.
- assert_equal(b.mask, [0, 0, 0])
- # In place binary operation
- a /= 1.
- assert_equal(a.mask, [0, 0, 0])
- def test_ufunc_nomask(self):
- # check the case ufuncs should set the mask to false
- m = np.ma.array([1])
- # check we don't get array([False], dtype=bool)
- assert_equal(np.true_divide(m, 5).mask.shape, ())
- def test_noshink_on_creation(self):
- # Check that the mask is not shrunk on array creation when not wanted
- a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False)
- assert_equal(a.mask, [0, 0, 0])
- def test_mod(self):
- # Tests mod
- (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- assert_equal(mod(x, y), mod(xm, ym))
- test = mod(ym, xm)
- assert_equal(test, np.mod(ym, xm))
- assert_equal(test.mask, mask_or(xm.mask, ym.mask))
- test = mod(xm, ym)
- assert_equal(test, np.mod(xm, ym))
- assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0)))
- def test_TakeTransposeInnerOuter(self):
- # Test of take, transpose, inner, outer products
- x = arange(24)
- y = np.arange(24)
- x[5:6] = masked
- x = x.reshape(2, 3, 4)
- y = y.reshape(2, 3, 4)
- assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))
- assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))
- assert_equal(np.inner(filled(x, 0), filled(y, 0)),
- inner(x, y))
- assert_equal(np.outer(filled(x, 0), filled(y, 0)),
- outer(x, y))
- y = array(['abc', 1, 'def', 2, 3], object)
- y[2] = masked
- t = take(y, [0, 3, 4])
- assert_(t[0] == 'abc')
- assert_(t[1] == 2)
- assert_(t[2] == 3)
- def test_imag_real(self):
- # Check complex
- xx = array([1 + 10j, 20 + 2j], mask=[1, 0])
- assert_equal(xx.imag, [10, 2])
- assert_equal(xx.imag.filled(), [1e+20, 2])
- assert_equal(xx.imag.dtype, xx._data.imag.dtype)
- assert_equal(xx.real, [1, 20])
- assert_equal(xx.real.filled(), [1e+20, 20])
- assert_equal(xx.real.dtype, xx._data.real.dtype)
- def test_methods_with_output(self):
- xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
- xm[:, 0] = xm[0] = xm[-1, -1] = masked
- funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',)
- for funcname in funclist:
- npfunc = getattr(np, funcname)
- xmmeth = getattr(xm, funcname)
- # A ndarray as explicit input
- output = np.empty(4, dtype=float)
- output.fill(-9999)
- result = npfunc(xm, axis=0, out=output)
- # ... the result should be the given output
- assert_(result is output)
- assert_equal(result, xmmeth(axis=0, out=output))
- output = empty(4, dtype=int)
- result = xmmeth(axis=0, out=output)
- assert_(result is output)
- assert_(output[0] is masked)
- def test_eq_on_structured(self):
- # Test the equality of structured arrays
- ndtype = [('A', int), ('B', int)]
- a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
- test = (a == a)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [False, False])
- assert_(test.fill_value == True)
- test = (a == a[0])
- assert_equal(test.data, [True, False])
- assert_equal(test.mask, [False, False])
- assert_(test.fill_value == True)
- b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
- test = (a == b)
- assert_equal(test.data, [False, True])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = (a[0] == b)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
- test = (a == b)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [False, False])
- assert_(test.fill_value == True)
- # complicated dtype, 2-dimensional array.
- ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
- a = array([[(1, (1, 1)), (2, (2, 2))],
- [(3, (3, 3)), (4, (4, 4))]],
- mask=[[(0, (1, 0)), (0, (0, 1))],
- [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype)
- test = (a[0, 0] == a)
- assert_equal(test.data, [[True, False], [False, False]])
- assert_equal(test.mask, [[False, False], [False, True]])
- assert_(test.fill_value == True)
- def test_ne_on_structured(self):
- # Test the equality of structured arrays
- ndtype = [('A', int), ('B', int)]
- a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)
- test = (a != a)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [False, False])
- assert_(test.fill_value == True)
- test = (a != a[0])
- assert_equal(test.data, [False, True])
- assert_equal(test.mask, [False, False])
- assert_(test.fill_value == True)
- b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)
- test = (a != b)
- assert_equal(test.data, [True, False])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = (a[0] != b)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)
- test = (a != b)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [False, False])
- assert_(test.fill_value == True)
- # complicated dtype, 2-dimensional array.
- ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])]
- a = array([[(1, (1, 1)), (2, (2, 2))],
- [(3, (3, 3)), (4, (4, 4))]],
- mask=[[(0, (1, 0)), (0, (0, 1))],
- [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype)
- test = (a[0, 0] != a)
- assert_equal(test.data, [[False, True], [True, True]])
- assert_equal(test.mask, [[False, False], [False, True]])
- assert_(test.fill_value == True)
- def test_eq_ne_structured_extra(self):
- # ensure simple examples are symmetric and make sense.
- # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465
- dt = np.dtype('i4,i4')
- for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt),
- mvoid((1, 2), mask=(0, 1), dtype=dt),
- mvoid((1, 2), mask=(1, 0), dtype=dt),
- mvoid((1, 2), mask=(1, 1), dtype=dt)):
- ma1 = m1.view(MaskedArray)
- r1 = ma1.view('2i4')
- for m2 in (np.array((1, 1), dtype=dt),
- mvoid((1, 1), dtype=dt),
- mvoid((1, 0), mask=(0, 1), dtype=dt),
- mvoid((3, 2), mask=(0, 1), dtype=dt)):
- ma2 = m2.view(MaskedArray)
- r2 = ma2.view('2i4')
- eq_expected = (r1 == r2).all()
- assert_equal(m1 == m2, eq_expected)
- assert_equal(m2 == m1, eq_expected)
- assert_equal(ma1 == m2, eq_expected)
- assert_equal(m1 == ma2, eq_expected)
- assert_equal(ma1 == ma2, eq_expected)
- # Also check it is the same if we do it element by element.
- el_by_el = [m1[name] == m2[name] for name in dt.names]
- assert_equal(array(el_by_el, dtype=bool).all(), eq_expected)
- ne_expected = (r1 != r2).any()
- assert_equal(m1 != m2, ne_expected)
- assert_equal(m2 != m1, ne_expected)
- assert_equal(ma1 != m2, ne_expected)
- assert_equal(m1 != ma2, ne_expected)
- assert_equal(ma1 != ma2, ne_expected)
- el_by_el = [m1[name] != m2[name] for name in dt.names]
- assert_equal(array(el_by_el, dtype=bool).any(), ne_expected)
- @pytest.mark.parametrize('dt', ['S', 'U'])
- @pytest.mark.parametrize('fill', [None, 'A'])
- def test_eq_for_strings(self, dt, fill):
- # Test the equality of structured arrays
- a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill)
- test = (a == a)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- test = (a == a[0])
- assert_equal(test.data, [True, False])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill)
- test = (a == b)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, True])
- assert_(test.fill_value == True)
- test = (a[0] == b)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = (b == a[0])
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- @pytest.mark.parametrize('dt', ['S', 'U'])
- @pytest.mark.parametrize('fill', [None, 'A'])
- def test_ne_for_strings(self, dt, fill):
- # Test the equality of structured arrays
- a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill)
- test = (a != a)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- test = (a != a[0])
- assert_equal(test.data, [False, True])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill)
- test = (a != b)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, True])
- assert_(test.fill_value == True)
- test = (a[0] != b)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = (b != a[0])
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
- @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
- @pytest.mark.parametrize('fill', [None, 1])
- def test_eq_for_numeric(self, dt1, dt2, fill):
- # Test the equality of structured arrays
- a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
- test = (a == a)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- test = (a == a[0])
- assert_equal(test.data, [True, False])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
- test = (a == b)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, True])
- assert_(test.fill_value == True)
- test = (a[0] == b)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = (b == a[0])
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
- @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
- @pytest.mark.parametrize('fill', [None, 1])
- def test_ne_for_numeric(self, dt1, dt2, fill):
- # Test the equality of structured arrays
- a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
- test = (a != a)
- assert_equal(test.data, [False, False])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- test = (a != a[0])
- assert_equal(test.data, [False, True])
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
- test = (a != b)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, True])
- assert_(test.fill_value == True)
- test = (a[0] != b)
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = (b != a[0])
- assert_equal(test.data, [True, True])
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
- @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
- @pytest.mark.parametrize('fill', [None, 1])
- @pytest.mark.parametrize('op',
- [operator.le, operator.lt, operator.ge, operator.gt])
- def test_comparisons_for_numeric(self, op, dt1, dt2, fill):
- # Test the equality of structured arrays
- a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill)
- test = op(a, a)
- assert_equal(test.data, op(a._data, a._data))
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- test = op(a, a[0])
- assert_equal(test.data, op(a._data, a._data[0]))
- assert_equal(test.mask, [False, True])
- assert_(test.fill_value == True)
- b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill)
- test = op(a, b)
- assert_equal(test.data, op(a._data, b._data))
- assert_equal(test.mask, [True, True])
- assert_(test.fill_value == True)
- test = op(a[0], b)
- assert_equal(test.data, op(a._data[0], b._data))
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- test = op(b, a[0])
- assert_equal(test.data, op(b._data, a._data[0]))
- assert_equal(test.mask, [True, False])
- assert_(test.fill_value == True)
- @pytest.mark.parametrize('op',
- [operator.le, operator.lt, operator.ge, operator.gt])
- @pytest.mark.parametrize('fill', [None, "N/A"])
- def test_comparisons_strings(self, op, fill):
- # See gh-21770, mask propagation is broken for strings (and some other
- # cases) so we explicitly test strings here.
- # In principle only == and != may need special handling...
- ma1 = masked_array(["a", "b", "cde"], mask=[0, 1, 0], fill_value=fill)
- ma2 = masked_array(["cde", "b", "a"], mask=[0, 1, 0], fill_value=fill)
- assert_equal(op(ma1, ma2)._data, op(ma1._data, ma2._data))
- def test_eq_with_None(self):
- # Really, comparisons with None should not be done, but check them
- # anyway. Note that pep8 will flag these tests.
- # Deprecation is in place for arrays, and when it happens this
- # test will fail (and have to be changed accordingly).
- # With partial mask
- with suppress_warnings() as sup:
- sup.filter(FutureWarning, "Comparison to `None`")
- a = array([None, 1], mask=[0, 1])
- assert_equal(a == None, array([True, False], mask=[0, 1]))
- assert_equal(a.data == None, [True, False])
- assert_equal(a != None, array([False, True], mask=[0, 1]))
- # With nomask
- a = array([None, 1], mask=False)
- assert_equal(a == None, [True, False])
- assert_equal(a != None, [False, True])
- # With complete mask
- a = array([None, 2], mask=True)
- assert_equal(a == None, array([False, True], mask=True))
- assert_equal(a != None, array([True, False], mask=True))
- # Fully masked, even comparison to None should return "masked"
- a = masked
- assert_equal(a == None, masked)
- def test_eq_with_scalar(self):
- a = array(1)
- assert_equal(a == 1, True)
- assert_equal(a == 0, False)
- assert_equal(a != 1, False)
- assert_equal(a != 0, True)
- b = array(1, mask=True)
- assert_equal(b == 0, masked)
- assert_equal(b == 1, masked)
- assert_equal(b != 0, masked)
- assert_equal(b != 1, masked)
- def test_eq_different_dimensions(self):
- m1 = array([1, 1], mask=[0, 1])
- # test comparison with both masked and regular arrays.
- for m2 in (array([[0, 1], [1, 2]]),
- np.array([[0, 1], [1, 2]])):
- test = (m1 == m2)
- assert_equal(test.data, [[False, False],
- [True, False]])
- assert_equal(test.mask, [[False, True],
- [False, True]])
- def test_numpyarithmetic(self):
- # Check that the mask is not back-propagated when using numpy functions
- a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
- control = masked_array([np.nan, np.nan, 0, np.log(2), -1],
- mask=[1, 1, 0, 0, 1])
- test = log(a)
- assert_equal(test, control)
- assert_equal(test.mask, control.mask)
- assert_equal(a.mask, [0, 0, 0, 0, 1])
- test = np.log(a)
- assert_equal(test, control)
- assert_equal(test.mask, control.mask)
- assert_equal(a.mask, [0, 0, 0, 0, 1])
- class TestMaskedArrayAttributes:
- def test_keepmask(self):
- # Tests the keep mask flag
- x = masked_array([1, 2, 3], mask=[1, 0, 0])
- mx = masked_array(x)
- assert_equal(mx.mask, x.mask)
- mx = masked_array(x, mask=[0, 1, 0], keep_mask=False)
- assert_equal(mx.mask, [0, 1, 0])
- mx = masked_array(x, mask=[0, 1, 0], keep_mask=True)
- assert_equal(mx.mask, [1, 1, 0])
- # We default to true
- mx = masked_array(x, mask=[0, 1, 0])
- assert_equal(mx.mask, [1, 1, 0])
- def test_hardmask(self):
- # Test hard_mask
- d = arange(5)
- n = [0, 0, 0, 1, 1]
- m = make_mask(n)
- xh = array(d, mask=m, hard_mask=True)
- # We need to copy, to avoid updating d in xh !
- xs = array(d, mask=m, hard_mask=False, copy=True)
- xh[[1, 4]] = [10, 40]
- xs[[1, 4]] = [10, 40]
- assert_equal(xh._data, [0, 10, 2, 3, 4])
- assert_equal(xs._data, [0, 10, 2, 3, 40])
- assert_equal(xs.mask, [0, 0, 0, 1, 0])
- assert_(xh._hardmask)
- assert_(not xs._hardmask)
- xh[1:4] = [10, 20, 30]
- xs[1:4] = [10, 20, 30]
- assert_equal(xh._data, [0, 10, 20, 3, 4])
- assert_equal(xs._data, [0, 10, 20, 30, 40])
- assert_equal(xs.mask, nomask)
- xh[0] = masked
- xs[0] = masked
- assert_equal(xh.mask, [1, 0, 0, 1, 1])
- assert_equal(xs.mask, [1, 0, 0, 0, 0])
- xh[:] = 1
- xs[:] = 1
- assert_equal(xh._data, [0, 1, 1, 3, 4])
- assert_equal(xs._data, [1, 1, 1, 1, 1])
- assert_equal(xh.mask, [1, 0, 0, 1, 1])
- assert_equal(xs.mask, nomask)
- # Switch to soft mask
- xh.soften_mask()
- xh[:] = arange(5)
- assert_equal(xh._data, [0, 1, 2, 3, 4])
- assert_equal(xh.mask, nomask)
- # Switch back to hard mask
- xh.harden_mask()
- xh[xh < 3] = masked
- assert_equal(xh._data, [0, 1, 2, 3, 4])
- assert_equal(xh._mask, [1, 1, 1, 0, 0])
- xh[filled(xh > 1, False)] = 5
- assert_equal(xh._data, [0, 1, 2, 5, 5])
- assert_equal(xh._mask, [1, 1, 1, 0, 0])
- xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True)
- xh[0] = 0
- assert_equal(xh._data, [[1, 0], [3, 4]])
- assert_equal(xh._mask, [[1, 0], [0, 0]])
- xh[-1, -1] = 5
- assert_equal(xh._data, [[1, 0], [3, 5]])
- assert_equal(xh._mask, [[1, 0], [0, 0]])
- xh[filled(xh < 5, False)] = 2
- assert_equal(xh._data, [[1, 2], [2, 5]])
- assert_equal(xh._mask, [[1, 0], [0, 0]])
- def test_hardmask_again(self):
- # Another test of hardmask
- d = arange(5)
- n = [0, 0, 0, 1, 1]
- m = make_mask(n)
- xh = array(d, mask=m, hard_mask=True)
- xh[4:5] = 999
- xh[0:1] = 999
- assert_equal(xh._data, [999, 1, 2, 3, 4])
- def test_hardmask_oncemore_yay(self):
- # OK, yet another test of hardmask
- # Make sure that harden_mask/soften_mask//unshare_mask returns self
- a = array([1, 2, 3], mask=[1, 0, 0])
- b = a.harden_mask()
- assert_equal(a, b)
- b[0] = 0
- assert_equal(a, b)
- assert_equal(b, array([1, 2, 3], mask=[1, 0, 0]))
- a = b.soften_mask()
- a[0] = 0
- assert_equal(a, b)
- assert_equal(b, array([0, 2, 3], mask=[0, 0, 0]))
- def test_smallmask(self):
- # Checks the behaviour of _smallmask
- a = arange(10)
- a[1] = masked
- a[1] = 1
- assert_equal(a._mask, nomask)
- a = arange(10)
- a._smallmask = False
- a[1] = masked
- a[1] = 1
- assert_equal(a._mask, zeros(10))
- def test_shrink_mask(self):
- # Tests .shrink_mask()
- a = array([1, 2, 3], mask=[0, 0, 0])
- b = a.shrink_mask()
- assert_equal(a, b)
- assert_equal(a.mask, nomask)
- # Mask cannot be shrunk on structured types, so is a no-op
- a = np.ma.array([(1, 2.0)], [('a', int), ('b', float)])
- b = a.copy()
- a.shrink_mask()
- assert_equal(a.mask, b.mask)
- def test_flat(self):
- # Test that flat can return all types of items [#4585, #4615]
- # test 2-D record array
- # ... on structured array w/ masked records
- x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')],
- [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]],
- dtype=[('a', int), ('b', float), ('c', '|S8')])
- x['a'][0, 1] = masked
- x['b'][1, 0] = masked
- x['c'][0, 2] = masked
- x[-1, -1] = masked
- xflat = x.flat
- assert_equal(xflat[0], x[0, 0])
- assert_equal(xflat[1], x[0, 1])
- assert_equal(xflat[2], x[0, 2])
- assert_equal(xflat[:3], x[0])
- assert_equal(xflat[3], x[1, 0])
- assert_equal(xflat[4], x[1, 1])
- assert_equal(xflat[5], x[1, 2])
- assert_equal(xflat[3:], x[1])
- assert_equal(xflat[-1], x[-1, -1])
- i = 0
- j = 0
- for xf in xflat:
- assert_equal(xf, x[j, i])
- i += 1
- if i >= x.shape[-1]:
- i = 0
- j += 1
- def test_assign_dtype(self):
- # check that the mask's dtype is updated when dtype is changed
- a = np.zeros(4, dtype='f4,i4')
- m = np.ma.array(a)
- m.dtype = np.dtype('f4')
- repr(m) # raises?
- assert_equal(m.dtype, np.dtype('f4'))
- # check that dtype changes that change shape of mask too much
- # are not allowed
- def assign():
- m = np.ma.array(a)
- m.dtype = np.dtype('f8')
- assert_raises(ValueError, assign)
- b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises?
- assert_equal(b.dtype, np.dtype('f4'))
- # check that nomask is preserved
- a = np.zeros(4, dtype='f4')
- m = np.ma.array(a)
- m.dtype = np.dtype('f4,i4')
- assert_equal(m.dtype, np.dtype('f4,i4'))
- assert_equal(m._mask, np.ma.nomask)
- class TestFillingValues:
- def test_check_on_scalar(self):
- # Test _check_fill_value set to valid and invalid values
- _check_fill_value = np.ma.core._check_fill_value
- fval = _check_fill_value(0, int)
- assert_equal(fval, 0)
- fval = _check_fill_value(None, int)
- assert_equal(fval, default_fill_value(0))
- fval = _check_fill_value(0, "|S3")
- assert_equal(fval, b"0")
- fval = _check_fill_value(None, "|S3")
- assert_equal(fval, default_fill_value(b"camelot!"))
- assert_raises(TypeError, _check_fill_value, 1e+20, int)
- assert_raises(TypeError, _check_fill_value, 'stuff', int)
- def test_check_on_fields(self):
- # Tests _check_fill_value with records
- _check_fill_value = np.ma.core._check_fill_value
- ndtype = [('a', int), ('b', float), ('c', "|S3")]
- # A check on a list should return a single record
- fval = _check_fill_value([-999, -12345678.9, "???"], ndtype)
- assert_(isinstance(fval, ndarray))
- assert_equal(fval.item(), [-999, -12345678.9, b"???"])
- # A check on None should output the defaults
- fval = _check_fill_value(None, ndtype)
- assert_(isinstance(fval, ndarray))
- assert_equal(fval.item(), [default_fill_value(0),
- default_fill_value(0.),
- asbytes(default_fill_value("0"))])
- #.....Using a structured type as fill_value should work
- fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype)
- fval = _check_fill_value(fill_val, ndtype)
- assert_(isinstance(fval, ndarray))
- assert_equal(fval.item(), [-999, -12345678.9, b"???"])
- #.....Using a flexible type w/ a different type shouldn't matter
- # BEHAVIOR in 1.5 and earlier, and 1.13 and later: match structured
- # types by position
- fill_val = np.array((-999, -12345678.9, "???"),
- dtype=[("A", int), ("B", float), ("C", "|S3")])
- fval = _check_fill_value(fill_val, ndtype)
- assert_(isinstance(fval, ndarray))
- assert_equal(fval.item(), [-999, -12345678.9, b"???"])
- #.....Using an object-array shouldn't matter either
- fill_val = np.ndarray(shape=(1,), dtype=object)
- fill_val[0] = (-999, -12345678.9, b"???")
- fval = _check_fill_value(fill_val, object)
- assert_(isinstance(fval, ndarray))
- assert_equal(fval.item(), [-999, -12345678.9, b"???"])
- # NOTE: This test was never run properly as "fill_value" rather than
- # "fill_val" was assigned. Written properly, it fails.
- #fill_val = np.array((-999, -12345678.9, "???"))
- #fval = _check_fill_value(fill_val, ndtype)
- #assert_(isinstance(fval, ndarray))
- #assert_equal(fval.item(), [-999, -12345678.9, b"???"])
- #.....One-field-only flexible type should work as well
- ndtype = [("a", int)]
- fval = _check_fill_value(-999999999, ndtype)
- assert_(isinstance(fval, ndarray))
- assert_equal(fval.item(), (-999999999,))
- def test_fillvalue_conversion(self):
- # Tests the behavior of fill_value during conversion
- # We had a tailored comment to make sure special attributes are
- # properly dealt with
- a = array([b'3', b'4', b'5'])
- a._optinfo.update({'comment':"updated!"})
- b = array(a, dtype=int)
- assert_equal(b._data, [3, 4, 5])
- assert_equal(b.fill_value, default_fill_value(0))
- b = array(a, dtype=float)
- assert_equal(b._data, [3, 4, 5])
- assert_equal(b.fill_value, default_fill_value(0.))
- b = a.astype(int)
- assert_equal(b._data, [3, 4, 5])
- assert_equal(b.fill_value, default_fill_value(0))
- assert_equal(b._optinfo['comment'], "updated!")
- b = a.astype([('a', '|S3')])
- assert_equal(b['a']._data, a._data)
- assert_equal(b['a'].fill_value, a.fill_value)
- def test_default_fill_value(self):
- # check all calling conventions
- f1 = default_fill_value(1.)
- f2 = default_fill_value(np.array(1.))
- f3 = default_fill_value(np.array(1.).dtype)
- assert_equal(f1, f2)
- assert_equal(f1, f3)
- def test_default_fill_value_structured(self):
- fields = array([(1, 1, 1)],
- dtype=[('i', int), ('s', '|S8'), ('f', float)])
- f1 = default_fill_value(fields)
- f2 = default_fill_value(fields.dtype)
- expected = np.array((default_fill_value(0),
- default_fill_value('0'),
- default_fill_value(0.)), dtype=fields.dtype)
- assert_equal(f1, expected)
- assert_equal(f2, expected)
- def test_default_fill_value_void(self):
- dt = np.dtype([('v', 'V7')])
- f = default_fill_value(dt)
- assert_equal(f['v'], np.array(default_fill_value(dt['v']), dt['v']))
- def test_fillvalue(self):
- # Yet more fun with the fill_value
- data = masked_array([1, 2, 3], fill_value=-999)
- series = data[[0, 2, 1]]
- assert_equal(series._fill_value, data._fill_value)
- mtype = [('f', float), ('s', '|S3')]
- x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype)
- x.fill_value = 999
- assert_equal(x.fill_value.item(), [999., b'999'])
- assert_equal(x['f'].fill_value, 999)
- assert_equal(x['s'].fill_value, b'999')
- x.fill_value = (9, '???')
- assert_equal(x.fill_value.item(), (9, b'???'))
- assert_equal(x['f'].fill_value, 9)
- assert_equal(x['s'].fill_value, b'???')
- x = array([1, 2, 3.1])
- x.fill_value = 999
- assert_equal(np.asarray(x.fill_value).dtype, float)
- assert_equal(x.fill_value, 999.)
- assert_equal(x._fill_value, np.array(999.))
- def test_subarray_fillvalue(self):
- # gh-10483 test multi-field index fill value
- fields = array([(1, 1, 1)],
- dtype=[('i', int), ('s', '|S8'), ('f', float)])
- with suppress_warnings() as sup:
- sup.filter(FutureWarning, "Numpy has detected")
- subfields = fields[['i', 'f']]
- assert_equal(tuple(subfields.fill_value), (999999, 1.e+20))
- # test comparison does not raise:
- subfields[1:] == subfields[:-1]
- def test_fillvalue_exotic_dtype(self):
- # Tests yet more exotic flexible dtypes
- _check_fill_value = np.ma.core._check_fill_value
- ndtype = [('i', int), ('s', '|S8'), ('f', float)]
- control = np.array((default_fill_value(0),
- default_fill_value('0'),
- default_fill_value(0.),),
- dtype=ndtype)
- assert_equal(_check_fill_value(None, ndtype), control)
- # The shape shouldn't matter
- ndtype = [('f0', float, (2, 2))]
- control = np.array((default_fill_value(0.),),
- dtype=[('f0', float)]).astype(ndtype)
- assert_equal(_check_fill_value(None, ndtype), control)
- control = np.array((0,), dtype=[('f0', float)]).astype(ndtype)
- assert_equal(_check_fill_value(0, ndtype), control)
- ndtype = np.dtype("int, (2,3)float, float")
- control = np.array((default_fill_value(0),
- default_fill_value(0.),
- default_fill_value(0.),),
- dtype="int, float, float").astype(ndtype)
- test = _check_fill_value(None, ndtype)
- assert_equal(test, control)
- control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype)
- assert_equal(_check_fill_value(0, ndtype), control)
- # but when indexing, fill value should become scalar not tuple
- # See issue #6723
- M = masked_array(control)
- assert_equal(M["f1"].fill_value.ndim, 0)
- def test_fillvalue_datetime_timedelta(self):
- # Test default fillvalue for datetime64 and timedelta64 types.
- # See issue #4476, this would return '?' which would cause errors
- # elsewhere
- for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m",
- "h", "D", "W", "M", "Y"):
- control = numpy.datetime64("NaT", timecode)
- test = default_fill_value(numpy.dtype("<M8[" + timecode + "]"))
- np.testing.assert_equal(test, control)
- control = numpy.timedelta64("NaT", timecode)
- test = default_fill_value(numpy.dtype("<m8[" + timecode + "]"))
- np.testing.assert_equal(test, control)
- def test_extremum_fill_value(self):
- # Tests extremum fill values for flexible type.
- a = array([(1, (2, 3)), (4, (5, 6))],
- dtype=[('A', int), ('B', [('BA', int), ('BB', int)])])
- test = a.fill_value
- assert_equal(test.dtype, a.dtype)
- assert_equal(test['A'], default_fill_value(a['A']))
- assert_equal(test['B']['BA'], default_fill_value(a['B']['BA']))
- assert_equal(test['B']['BB'], default_fill_value(a['B']['BB']))
- test = minimum_fill_value(a)
- assert_equal(test.dtype, a.dtype)
- assert_equal(test[0], minimum_fill_value(a['A']))
- assert_equal(test[1][0], minimum_fill_value(a['B']['BA']))
- assert_equal(test[1][1], minimum_fill_value(a['B']['BB']))
- assert_equal(test[1], minimum_fill_value(a['B']))
- test = maximum_fill_value(a)
- assert_equal(test.dtype, a.dtype)
- assert_equal(test[0], maximum_fill_value(a['A']))
- assert_equal(test[1][0], maximum_fill_value(a['B']['BA']))
- assert_equal(test[1][1], maximum_fill_value(a['B']['BB']))
- assert_equal(test[1], maximum_fill_value(a['B']))
- def test_extremum_fill_value_subdtype(self):
- a = array(([2, 3, 4],), dtype=[('value', np.int8, 3)])
- test = minimum_fill_value(a)
- assert_equal(test.dtype, a.dtype)
- assert_equal(test[0], np.full(3, minimum_fill_value(a['value'])))
- test = maximum_fill_value(a)
- assert_equal(test.dtype, a.dtype)
- assert_equal(test[0], np.full(3, maximum_fill_value(a['value'])))
- def test_fillvalue_individual_fields(self):
- # Test setting fill_value on individual fields
- ndtype = [('a', int), ('b', int)]
- # Explicit fill_value
- a = array(list(zip([1, 2, 3], [4, 5, 6])),
- fill_value=(-999, -999), dtype=ndtype)
- aa = a['a']
- aa.set_fill_value(10)
- assert_equal(aa._fill_value, np.array(10))
- assert_equal(tuple(a.fill_value), (10, -999))
- a.fill_value['b'] = -10
- assert_equal(tuple(a.fill_value), (10, -10))
- # Implicit fill_value
- t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype)
- tt = t['a']
- tt.set_fill_value(10)
- assert_equal(tt._fill_value, np.array(10))
- assert_equal(tuple(t.fill_value), (10, default_fill_value(0)))
- def test_fillvalue_implicit_structured_array(self):
- # Check that fill_value is always defined for structured arrays
- ndtype = ('b', float)
- adtype = ('a', float)
- a = array([(1.,), (2.,)], mask=[(False,), (False,)],
- fill_value=(np.nan,), dtype=np.dtype([adtype]))
- b = empty(a.shape, dtype=[adtype, ndtype])
- b['a'] = a['a']
- b['a'].set_fill_value(a['a'].fill_value)
- f = b._fill_value[()]
- assert_(np.isnan(f[0]))
- assert_equal(f[-1], default_fill_value(1.))
- def test_fillvalue_as_arguments(self):
- # Test adding a fill_value parameter to empty/ones/zeros
- a = empty(3, fill_value=999.)
- assert_equal(a.fill_value, 999.)
- a = ones(3, fill_value=999., dtype=float)
- assert_equal(a.fill_value, 999.)
- a = zeros(3, fill_value=0., dtype=complex)
- assert_equal(a.fill_value, 0.)
- a = identity(3, fill_value=0., dtype=complex)
- assert_equal(a.fill_value, 0.)
- def test_shape_argument(self):
- # Test that shape can be provides as an argument
- # GH issue 6106
- a = empty(shape=(3, ))
- assert_equal(a.shape, (3, ))
- a = ones(shape=(3, ), dtype=float)
- assert_equal(a.shape, (3, ))
- a = zeros(shape=(3, ), dtype=complex)
- assert_equal(a.shape, (3, ))
- def test_fillvalue_in_view(self):
- # Test the behavior of fill_value in view
- # Create initial masked array
- x = array([1, 2, 3], fill_value=1, dtype=np.int64)
- # Check that fill_value is preserved by default
- y = x.view()
- assert_(y.fill_value == 1)
- # Check that fill_value is preserved if dtype is specified and the
- # dtype is an ndarray sub-class and has a _fill_value attribute
- y = x.view(MaskedArray)
- assert_(y.fill_value == 1)
- # Check that fill_value is preserved if type is specified and the
- # dtype is an ndarray sub-class and has a _fill_value attribute (by
- # default, the first argument is dtype, not type)
- y = x.view(type=MaskedArray)
- assert_(y.fill_value == 1)
- # Check that code does not crash if passed an ndarray sub-class that
- # does not have a _fill_value attribute
- y = x.view(np.ndarray)
- y = x.view(type=np.ndarray)
- # Check that fill_value can be overridden with view
- y = x.view(MaskedArray, fill_value=2)
- assert_(y.fill_value == 2)
- # Check that fill_value can be overridden with view (using type=)
- y = x.view(type=MaskedArray, fill_value=2)
- assert_(y.fill_value == 2)
- # Check that fill_value gets reset if passed a dtype but not a
- # fill_value. This is because even though in some cases one can safely
- # cast the fill_value, e.g. if taking an int64 view of an int32 array,
- # in other cases, this cannot be done (e.g. int32 view of an int64
- # array with a large fill_value).
- y = x.view(dtype=np.int32)
- assert_(y.fill_value == 999999)
- def test_fillvalue_bytes_or_str(self):
- # Test whether fill values work as expected for structured dtypes
- # containing bytes or str. See issue #7259.
- a = empty(shape=(3, ), dtype="(2)3S,(2)3U")
- assert_equal(a["f0"].fill_value, default_fill_value(b"spam"))
- assert_equal(a["f1"].fill_value, default_fill_value("eggs"))
- class TestUfuncs:
- # Test class for the application of ufuncs on MaskedArrays.
- def setup_method(self):
- # Base data definition.
- self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
- array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
- self.err_status = np.geterr()
- np.seterr(divide='ignore', invalid='ignore')
- def teardown_method(self):
- np.seterr(**self.err_status)
- def test_testUfuncRegression(self):
- # Tests new ufuncs on MaskedArrays.
- for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
- 'sin', 'cos', 'tan',
- 'arcsin', 'arccos', 'arctan',
- 'sinh', 'cosh', 'tanh',
- 'arcsinh',
- 'arccosh',
- 'arctanh',
- 'absolute', 'fabs', 'negative',
- 'floor', 'ceil',
- 'logical_not',
- 'add', 'subtract', 'multiply',
- 'divide', 'true_divide', 'floor_divide',
- 'remainder', 'fmod', 'hypot', 'arctan2',
- 'equal', 'not_equal', 'less_equal', 'greater_equal',
- 'less', 'greater',
- 'logical_and', 'logical_or', 'logical_xor',
- ]:
- try:
- uf = getattr(umath, f)
- except AttributeError:
- uf = getattr(fromnumeric, f)
- mf = getattr(numpy.ma.core, f)
- args = self.d[:uf.nin]
- ur = uf(*args)
- mr = mf(*args)
- assert_equal(ur.filled(0), mr.filled(0), f)
- assert_mask_equal(ur.mask, mr.mask, err_msg=f)
- def test_reduce(self):
- # Tests reduce on MaskedArrays.
- a = self.d[0]
- assert_(not alltrue(a, axis=0))
- assert_(sometrue(a, axis=0))
- assert_equal(sum(a[:3], axis=0), 0)
- assert_equal(product(a, axis=0), 0)
- assert_equal(add.reduce(a), pi)
- def test_minmax(self):
- # Tests extrema on MaskedArrays.
- a = arange(1, 13).reshape(3, 4)
- amask = masked_where(a < 5, a)
- assert_equal(amask.max(), a.max())
- assert_equal(amask.min(), 5)
- assert_equal(amask.max(0), a.max(0))
- assert_equal(amask.min(0), [5, 6, 7, 8])
- assert_(amask.max(1)[0].mask)
- assert_(amask.min(1)[0].mask)
- def test_ndarray_mask(self):
- # Check that the mask of the result is a ndarray (not a MaskedArray...)
- a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])
- test = np.sqrt(a)
- control = masked_array([-1, 0, 1, np.sqrt(2), -1],
- mask=[1, 0, 0, 0, 1])
- assert_equal(test, control)
- assert_equal(test.mask, control.mask)
- assert_(not isinstance(test.mask, MaskedArray))
- def test_treatment_of_NotImplemented(self):
- # Check that NotImplemented is returned at appropriate places
- a = masked_array([1., 2.], mask=[1, 0])
- assert_raises(TypeError, operator.mul, a, "abc")
- assert_raises(TypeError, operator.truediv, a, "abc")
- class MyClass:
- __array_priority__ = a.__array_priority__ + 1
- def __mul__(self, other):
- return "My mul"
- def __rmul__(self, other):
- return "My rmul"
- me = MyClass()
- assert_(me * a == "My mul")
- assert_(a * me == "My rmul")
- # and that __array_priority__ is respected
- class MyClass2:
- __array_priority__ = 100
- def __mul__(self, other):
- return "Me2mul"
- def __rmul__(self, other):
- return "Me2rmul"
- def __rdiv__(self, other):
- return "Me2rdiv"
- __rtruediv__ = __rdiv__
- me_too = MyClass2()
- assert_(a.__mul__(me_too) is NotImplemented)
- assert_(all(multiply.outer(a, me_too) == "Me2rmul"))
- assert_(a.__truediv__(me_too) is NotImplemented)
- assert_(me_too * a == "Me2mul")
- assert_(a * me_too == "Me2rmul")
- assert_(a / me_too == "Me2rdiv")
- def test_no_masked_nan_warnings(self):
- # check that a nan in masked position does not
- # cause ufunc warnings
- m = np.ma.array([0.5, np.nan], mask=[0,1])
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- # test unary and binary ufuncs
- exp(m)
- add(m, 1)
- m > 0
- # test different unary domains
- sqrt(m)
- log(m)
- tan(m)
- arcsin(m)
- arccos(m)
- arccosh(m)
- # test binary domains
- divide(m, 2)
- # also check that allclose uses ma ufuncs, to avoid warning
- allclose(m, 0.5)
- class TestMaskedArrayInPlaceArithmetic:
- # Test MaskedArray Arithmetic
- def setup_method(self):
- x = arange(10)
- y = arange(10)
- xm = arange(10)
- xm[2] = masked
- self.intdata = (x, y, xm)
- self.floatdata = (x.astype(float), y.astype(float), xm.astype(float))
- self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
- self.othertypes = [np.dtype(_).type for _ in self.othertypes]
- self.uint8data = (
- x.astype(np.uint8),
- y.astype(np.uint8),
- xm.astype(np.uint8)
- )
- def test_inplace_addition_scalar(self):
- # Test of inplace additions
- (x, y, xm) = self.intdata
- xm[2] = masked
- x += 1
- assert_equal(x, y + 1)
- xm += 1
- assert_equal(xm, y + 1)
- (x, _, xm) = self.floatdata
- id1 = x.data.ctypes.data
- x += 1.
- assert_(id1 == x.data.ctypes.data)
- assert_equal(x, y + 1.)
- def test_inplace_addition_array(self):
- # Test of inplace additions
- (x, y, xm) = self.intdata
- m = xm.mask
- a = arange(10, dtype=np.int16)
- a[-1] = masked
- x += a
- xm += a
- assert_equal(x, y + a)
- assert_equal(xm, y + a)
- assert_equal(xm.mask, mask_or(m, a.mask))
- def test_inplace_subtraction_scalar(self):
- # Test of inplace subtractions
- (x, y, xm) = self.intdata
- x -= 1
- assert_equal(x, y - 1)
- xm -= 1
- assert_equal(xm, y - 1)
- def test_inplace_subtraction_array(self):
- # Test of inplace subtractions
- (x, y, xm) = self.floatdata
- m = xm.mask
- a = arange(10, dtype=float)
- a[-1] = masked
- x -= a
- xm -= a
- assert_equal(x, y - a)
- assert_equal(xm, y - a)
- assert_equal(xm.mask, mask_or(m, a.mask))
- def test_inplace_multiplication_scalar(self):
- # Test of inplace multiplication
- (x, y, xm) = self.floatdata
- x *= 2.0
- assert_equal(x, y * 2)
- xm *= 2.0
- assert_equal(xm, y * 2)
- def test_inplace_multiplication_array(self):
- # Test of inplace multiplication
- (x, y, xm) = self.floatdata
- m = xm.mask
- a = arange(10, dtype=float)
- a[-1] = masked
- x *= a
- xm *= a
- assert_equal(x, y * a)
- assert_equal(xm, y * a)
- assert_equal(xm.mask, mask_or(m, a.mask))
- def test_inplace_division_scalar_int(self):
- # Test of inplace division
- (x, y, xm) = self.intdata
- x = arange(10) * 2
- xm = arange(10) * 2
- xm[2] = masked
- x //= 2
- assert_equal(x, y)
- xm //= 2
- assert_equal(xm, y)
- def test_inplace_division_scalar_float(self):
- # Test of inplace division
- (x, y, xm) = self.floatdata
- x /= 2.0
- assert_equal(x, y / 2.0)
- xm /= arange(10)
- assert_equal(xm, ones((10,)))
- def test_inplace_division_array_float(self):
- # Test of inplace division
- (x, y, xm) = self.floatdata
- m = xm.mask
- a = arange(10, dtype=float)
- a[-1] = masked
- x /= a
- xm /= a
- assert_equal(x, y / a)
- assert_equal(xm, y / a)
- assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0)))
- def test_inplace_division_misc(self):
- x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.]
- y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]
- m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
- m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
- xm = masked_array(x, mask=m1)
- ym = masked_array(y, mask=m2)
- z = xm / ym
- assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
- assert_equal(z._data,
- [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
- xm = xm.copy()
- xm /= ym
- assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])
- assert_equal(z._data,
- [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.])
- def test_datafriendly_add(self):
- # Test keeping data w/ (inplace) addition
- x = array([1, 2, 3], mask=[0, 0, 1])
- # Test add w/ scalar
- xx = x + 1
- assert_equal(xx.data, [2, 3, 3])
- assert_equal(xx.mask, [0, 0, 1])
- # Test iadd w/ scalar
- x += 1
- assert_equal(x.data, [2, 3, 3])
- assert_equal(x.mask, [0, 0, 1])
- # Test add w/ array
- x = array([1, 2, 3], mask=[0, 0, 1])
- xx = x + array([1, 2, 3], mask=[1, 0, 0])
- assert_equal(xx.data, [1, 4, 3])
- assert_equal(xx.mask, [1, 0, 1])
- # Test iadd w/ array
- x = array([1, 2, 3], mask=[0, 0, 1])
- x += array([1, 2, 3], mask=[1, 0, 0])
- assert_equal(x.data, [1, 4, 3])
- assert_equal(x.mask, [1, 0, 1])
- def test_datafriendly_sub(self):
- # Test keeping data w/ (inplace) subtraction
- # Test sub w/ scalar
- x = array([1, 2, 3], mask=[0, 0, 1])
- xx = x - 1
- assert_equal(xx.data, [0, 1, 3])
- assert_equal(xx.mask, [0, 0, 1])
- # Test isub w/ scalar
- x = array([1, 2, 3], mask=[0, 0, 1])
- x -= 1
- assert_equal(x.data, [0, 1, 3])
- assert_equal(x.mask, [0, 0, 1])
- # Test sub w/ array
- x = array([1, 2, 3], mask=[0, 0, 1])
- xx = x - array([1, 2, 3], mask=[1, 0, 0])
- assert_equal(xx.data, [1, 0, 3])
- assert_equal(xx.mask, [1, 0, 1])
- # Test isub w/ array
- x = array([1, 2, 3], mask=[0, 0, 1])
- x -= array([1, 2, 3], mask=[1, 0, 0])
- assert_equal(x.data, [1, 0, 3])
- assert_equal(x.mask, [1, 0, 1])
- def test_datafriendly_mul(self):
- # Test keeping data w/ (inplace) multiplication
- # Test mul w/ scalar
- x = array([1, 2, 3], mask=[0, 0, 1])
- xx = x * 2
- assert_equal(xx.data, [2, 4, 3])
- assert_equal(xx.mask, [0, 0, 1])
- # Test imul w/ scalar
- x = array([1, 2, 3], mask=[0, 0, 1])
- x *= 2
- assert_equal(x.data, [2, 4, 3])
- assert_equal(x.mask, [0, 0, 1])
- # Test mul w/ array
- x = array([1, 2, 3], mask=[0, 0, 1])
- xx = x * array([10, 20, 30], mask=[1, 0, 0])
- assert_equal(xx.data, [1, 40, 3])
- assert_equal(xx.mask, [1, 0, 1])
- # Test imul w/ array
- x = array([1, 2, 3], mask=[0, 0, 1])
- x *= array([10, 20, 30], mask=[1, 0, 0])
- assert_equal(x.data, [1, 40, 3])
- assert_equal(x.mask, [1, 0, 1])
- def test_datafriendly_div(self):
- # Test keeping data w/ (inplace) division
- # Test div on scalar
- x = array([1, 2, 3], mask=[0, 0, 1])
- xx = x / 2.
- assert_equal(xx.data, [1 / 2., 2 / 2., 3])
- assert_equal(xx.mask, [0, 0, 1])
- # Test idiv on scalar
- x = array([1., 2., 3.], mask=[0, 0, 1])
- x /= 2.
- assert_equal(x.data, [1 / 2., 2 / 2., 3])
- assert_equal(x.mask, [0, 0, 1])
- # Test div on array
- x = array([1., 2., 3.], mask=[0, 0, 1])
- xx = x / array([10., 20., 30.], mask=[1, 0, 0])
- assert_equal(xx.data, [1., 2. / 20., 3.])
- assert_equal(xx.mask, [1, 0, 1])
- # Test idiv on array
- x = array([1., 2., 3.], mask=[0, 0, 1])
- x /= array([10., 20., 30.], mask=[1, 0, 0])
- assert_equal(x.data, [1., 2 / 20., 3.])
- assert_equal(x.mask, [1, 0, 1])
- def test_datafriendly_pow(self):
- # Test keeping data w/ (inplace) power
- # Test pow on scalar
- x = array([1., 2., 3.], mask=[0, 0, 1])
- xx = x ** 2.5
- assert_equal(xx.data, [1., 2. ** 2.5, 3.])
- assert_equal(xx.mask, [0, 0, 1])
- # Test ipow on scalar
- x **= 2.5
- assert_equal(x.data, [1., 2. ** 2.5, 3])
- assert_equal(x.mask, [0, 0, 1])
- def test_datafriendly_add_arrays(self):
- a = array([[1, 1], [3, 3]])
- b = array([1, 1], mask=[0, 0])
- a += b
- assert_equal(a, [[2, 2], [4, 4]])
- if a.mask is not nomask:
- assert_equal(a.mask, [[0, 0], [0, 0]])
- a = array([[1, 1], [3, 3]])
- b = array([1, 1], mask=[0, 1])
- a += b
- assert_equal(a, [[2, 2], [4, 4]])
- assert_equal(a.mask, [[0, 1], [0, 1]])
- def test_datafriendly_sub_arrays(self):
- a = array([[1, 1], [3, 3]])
- b = array([1, 1], mask=[0, 0])
- a -= b
- assert_equal(a, [[0, 0], [2, 2]])
- if a.mask is not nomask:
- assert_equal(a.mask, [[0, 0], [0, 0]])
- a = array([[1, 1], [3, 3]])
- b = array([1, 1], mask=[0, 1])
- a -= b
- assert_equal(a, [[0, 0], [2, 2]])
- assert_equal(a.mask, [[0, 1], [0, 1]])
- def test_datafriendly_mul_arrays(self):
- a = array([[1, 1], [3, 3]])
- b = array([1, 1], mask=[0, 0])
- a *= b
- assert_equal(a, [[1, 1], [3, 3]])
- if a.mask is not nomask:
- assert_equal(a.mask, [[0, 0], [0, 0]])
- a = array([[1, 1], [3, 3]])
- b = array([1, 1], mask=[0, 1])
- a *= b
- assert_equal(a, [[1, 1], [3, 3]])
- assert_equal(a.mask, [[0, 1], [0, 1]])
- def test_inplace_addition_scalar_type(self):
- # Test of inplace additions
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- xm[2] = masked
- x += t(1)
- assert_equal(x, y + t(1))
- xm += t(1)
- assert_equal(xm, y + t(1))
- def test_inplace_addition_array_type(self):
- # Test of inplace additions
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- m = xm.mask
- a = arange(10, dtype=t)
- a[-1] = masked
- x += a
- xm += a
- assert_equal(x, y + a)
- assert_equal(xm, y + a)
- assert_equal(xm.mask, mask_or(m, a.mask))
- def test_inplace_subtraction_scalar_type(self):
- # Test of inplace subtractions
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- x -= t(1)
- assert_equal(x, y - t(1))
- xm -= t(1)
- assert_equal(xm, y - t(1))
- def test_inplace_subtraction_array_type(self):
- # Test of inplace subtractions
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- m = xm.mask
- a = arange(10, dtype=t)
- a[-1] = masked
- x -= a
- xm -= a
- assert_equal(x, y - a)
- assert_equal(xm, y - a)
- assert_equal(xm.mask, mask_or(m, a.mask))
- def test_inplace_multiplication_scalar_type(self):
- # Test of inplace multiplication
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- x *= t(2)
- assert_equal(x, y * t(2))
- xm *= t(2)
- assert_equal(xm, y * t(2))
- def test_inplace_multiplication_array_type(self):
- # Test of inplace multiplication
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- m = xm.mask
- a = arange(10, dtype=t)
- a[-1] = masked
- x *= a
- xm *= a
- assert_equal(x, y * a)
- assert_equal(xm, y * a)
- assert_equal(xm.mask, mask_or(m, a.mask))
- def test_inplace_floor_division_scalar_type(self):
- # Test of inplace division
- # Check for TypeError in case of unsupported types
- unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]}
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- x = arange(10, dtype=t) * t(2)
- xm = arange(10, dtype=t) * t(2)
- xm[2] = masked
- try:
- x //= t(2)
- xm //= t(2)
- assert_equal(x, y)
- assert_equal(xm, y)
- except TypeError:
- msg = f"Supported type {t} throwing TypeError"
- assert t in unsupported, msg
- def test_inplace_floor_division_array_type(self):
- # Test of inplace division
- # Check for TypeError in case of unsupported types
- unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]}
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- m = xm.mask
- a = arange(10, dtype=t)
- a[-1] = masked
- try:
- x //= a
- xm //= a
- assert_equal(x, y // a)
- assert_equal(xm, y // a)
- assert_equal(
- xm.mask,
- mask_or(mask_or(m, a.mask), (a == t(0)))
- )
- except TypeError:
- msg = f"Supported type {t} throwing TypeError"
- assert t in unsupported, msg
- def test_inplace_division_scalar_type(self):
- # Test of inplace division
- for t in self.othertypes:
- with suppress_warnings() as sup:
- sup.record(UserWarning)
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- x = arange(10, dtype=t) * t(2)
- xm = arange(10, dtype=t) * t(2)
- xm[2] = masked
- # May get a DeprecationWarning or a TypeError.
- #
- # This is a consequence of the fact that this is true divide
- # and will require casting to float for calculation and
- # casting back to the original type. This will only be raised
- # with integers. Whether it is an error or warning is only
- # dependent on how stringent the casting rules are.
- #
- # Will handle the same way.
- try:
- x /= t(2)
- assert_equal(x, y)
- except (DeprecationWarning, TypeError) as e:
- warnings.warn(str(e), stacklevel=1)
- try:
- xm /= t(2)
- assert_equal(xm, y)
- except (DeprecationWarning, TypeError) as e:
- warnings.warn(str(e), stacklevel=1)
- if issubclass(t, np.integer):
- assert_equal(len(sup.log), 2, f'Failed on type={t}.')
- else:
- assert_equal(len(sup.log), 0, f'Failed on type={t}.')
- def test_inplace_division_array_type(self):
- # Test of inplace division
- for t in self.othertypes:
- with suppress_warnings() as sup:
- sup.record(UserWarning)
- (x, y, xm) = (_.astype(t) for _ in self.uint8data)
- m = xm.mask
- a = arange(10, dtype=t)
- a[-1] = masked
- # May get a DeprecationWarning or a TypeError.
- #
- # This is a consequence of the fact that this is true divide
- # and will require casting to float for calculation and
- # casting back to the original type. This will only be raised
- # with integers. Whether it is an error or warning is only
- # dependent on how stringent the casting rules are.
- #
- # Will handle the same way.
- try:
- x /= a
- assert_equal(x, y / a)
- except (DeprecationWarning, TypeError) as e:
- warnings.warn(str(e), stacklevel=1)
- try:
- xm /= a
- assert_equal(xm, y / a)
- assert_equal(
- xm.mask,
- mask_or(mask_or(m, a.mask), (a == t(0)))
- )
- except (DeprecationWarning, TypeError) as e:
- warnings.warn(str(e), stacklevel=1)
- if issubclass(t, np.integer):
- assert_equal(len(sup.log), 2, f'Failed on type={t}.')
- else:
- assert_equal(len(sup.log), 0, f'Failed on type={t}.')
- def test_inplace_pow_type(self):
- # Test keeping data w/ (inplace) power
- for t in self.othertypes:
- with warnings.catch_warnings():
- warnings.filterwarnings("error")
- # Test pow on scalar
- x = array([1, 2, 3], mask=[0, 0, 1], dtype=t)
- xx = x ** t(2)
- xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t)
- assert_equal(xx.data, xx_r.data)
- assert_equal(xx.mask, xx_r.mask)
- # Test ipow on scalar
- x **= t(2)
- assert_equal(x.data, xx_r.data)
- assert_equal(x.mask, xx_r.mask)
- class TestMaskedArrayMethods:
- # Test class for miscellaneous MaskedArrays methods.
- def setup_method(self):
- # Base data definition.
- x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
- 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
- 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
- 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
- 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
- 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
- X = x.reshape(6, 6)
- XX = x.reshape(3, 2, 2, 3)
- m = np.array([0, 1, 0, 1, 0, 0,
- 1, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 0, 0,
- 0, 0, 1, 0, 1, 0])
- mx = array(data=x, mask=m)
- mX = array(data=X, mask=m.reshape(X.shape))
- mXX = array(data=XX, mask=m.reshape(XX.shape))
- m2 = np.array([1, 1, 0, 1, 0, 0,
- 1, 1, 1, 1, 0, 1,
- 0, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 1, 0,
- 0, 0, 1, 0, 1, 1])
- m2x = array(data=x, mask=m2)
- m2X = array(data=X, mask=m2.reshape(X.shape))
- m2XX = array(data=XX, mask=m2.reshape(XX.shape))
- self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
- def test_generic_methods(self):
- # Tests some MaskedArray methods.
- a = array([1, 3, 2])
- assert_equal(a.any(), a._data.any())
- assert_equal(a.all(), a._data.all())
- assert_equal(a.argmax(), a._data.argmax())
- assert_equal(a.argmin(), a._data.argmin())
- assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
- assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
- assert_equal(a.conj(), a._data.conj())
- assert_equal(a.conjugate(), a._data.conjugate())
- m = array([[1, 2], [3, 4]])
- assert_equal(m.diagonal(), m._data.diagonal())
- assert_equal(a.sum(), a._data.sum())
- assert_equal(a.take([1, 2]), a._data.take([1, 2]))
- assert_equal(m.transpose(), m._data.transpose())
- def test_allclose(self):
- # Tests allclose on arrays
- a = np.random.rand(10)
- b = a + np.random.rand(10) * 1e-8
- assert_(allclose(a, b))
- # Test allclose w/ infs
- a[0] = np.inf
- assert_(not allclose(a, b))
- b[0] = np.inf
- assert_(allclose(a, b))
- # Test allclose w/ masked
- a = masked_array(a)
- a[-1] = masked
- assert_(allclose(a, b, masked_equal=True))
- assert_(not allclose(a, b, masked_equal=False))
- # Test comparison w/ scalar
- a *= 1e-8
- a[0] = 0
- assert_(allclose(a, 0, masked_equal=True))
- # Test that the function works for MIN_INT integer typed arrays
- a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
- assert_(allclose(a, a))
- def test_allclose_timedelta(self):
- # Allclose currently works for timedelta64 as long as `atol` is
- # an integer or also a timedelta64
- a = np.array([[1, 2, 3, 4]], dtype="m8[ns]")
- assert allclose(a, a, atol=0)
- assert allclose(a, a, atol=np.timedelta64(1, "ns"))
- def test_allany(self):
- # Checks the any/all methods/functions.
- x = np.array([[0.13, 0.26, 0.90],
- [0.28, 0.33, 0.63],
- [0.31, 0.87, 0.70]])
- m = np.array([[True, False, False],
- [False, False, False],
- [True, True, False]], dtype=np.bool_)
- mx = masked_array(x, mask=m)
- mxbig = (mx > 0.5)
- mxsmall = (mx < 0.5)
- assert_(not mxbig.all())
- assert_(mxbig.any())
- assert_equal(mxbig.all(0), [False, False, True])
- assert_equal(mxbig.all(1), [False, False, True])
- assert_equal(mxbig.any(0), [False, False, True])
- assert_equal(mxbig.any(1), [True, True, True])
- assert_(not mxsmall.all())
- assert_(mxsmall.any())
- assert_equal(mxsmall.all(0), [True, True, False])
- assert_equal(mxsmall.all(1), [False, False, False])
- assert_equal(mxsmall.any(0), [True, True, False])
- assert_equal(mxsmall.any(1), [True, True, False])
- def test_allany_oddities(self):
- # Some fun with all and any
- store = empty((), dtype=bool)
- full = array([1, 2, 3], mask=True)
- assert_(full.all() is masked)
- full.all(out=store)
- assert_(store)
- assert_(store._mask, True)
- assert_(store is not masked)
- store = empty((), dtype=bool)
- assert_(full.any() is masked)
- full.any(out=store)
- assert_(not store)
- assert_(store._mask, True)
- assert_(store is not masked)
- def test_argmax_argmin(self):
- # Tests argmin & argmax on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- assert_equal(mx.argmin(), 35)
- assert_equal(mX.argmin(), 35)
- assert_equal(m2x.argmin(), 4)
- assert_equal(m2X.argmin(), 4)
- assert_equal(mx.argmax(), 28)
- assert_equal(mX.argmax(), 28)
- assert_equal(m2x.argmax(), 31)
- assert_equal(m2X.argmax(), 31)
- assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5])
- assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4])
- assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0])
- assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0])
- assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ])
- assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3])
- assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1])
- assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1])
- def test_clip(self):
- # Tests clip on MaskedArrays.
- x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
- 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
- 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
- 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
- 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
- 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
- m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])
- mx = array(x, mask=m)
- clipped = mx.clip(2, 8)
- assert_equal(clipped.mask, mx.mask)
- assert_equal(clipped._data, x.clip(2, 8))
- assert_equal(clipped._data, mx._data.clip(2, 8))
- def test_clip_out(self):
- # gh-14140
- a = np.arange(10)
- m = np.ma.MaskedArray(a, mask=[0, 1] * 5)
- m.clip(0, 5, out=m)
- assert_equal(m.mask, [0, 1] * 5)
- def test_compress(self):
- # test compress
- a = masked_array([1., 2., 3., 4., 5.], fill_value=9999)
- condition = (a > 1.5) & (a < 3.5)
- assert_equal(a.compress(condition), [2., 3.])
- a[[2, 3]] = masked
- b = a.compress(condition)
- assert_equal(b._data, [2., 3.])
- assert_equal(b._mask, [0, 1])
- assert_equal(b.fill_value, 9999)
- assert_equal(b, a[condition])
- condition = (a < 4.)
- b = a.compress(condition)
- assert_equal(b._data, [1., 2., 3.])
- assert_equal(b._mask, [0, 0, 1])
- assert_equal(b.fill_value, 9999)
- assert_equal(b, a[condition])
- a = masked_array([[10, 20, 30], [40, 50, 60]],
- mask=[[0, 0, 1], [1, 0, 0]])
- b = a.compress(a.ravel() >= 22)
- assert_equal(b._data, [30, 40, 50, 60])
- assert_equal(b._mask, [1, 1, 0, 0])
- x = np.array([3, 1, 2])
- b = a.compress(x >= 2, axis=1)
- assert_equal(b._data, [[10, 30], [40, 60]])
- assert_equal(b._mask, [[0, 1], [1, 0]])
- def test_compressed(self):
- # Tests compressed
- a = array([1, 2, 3, 4], mask=[0, 0, 0, 0])
- b = a.compressed()
- assert_equal(b, a)
- a[0] = masked
- b = a.compressed()
- assert_equal(b, [2, 3, 4])
- def test_empty(self):
- # Tests empty/like
- datatype = [('a', int), ('b', float), ('c', '|S8')]
- a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
- dtype=datatype)
- assert_equal(len(a.fill_value.item()), len(datatype))
- b = empty_like(a)
- assert_equal(b.shape, a.shape)
- assert_equal(b.fill_value, a.fill_value)
- b = empty(len(a), dtype=datatype)
- assert_equal(b.shape, a.shape)
- assert_equal(b.fill_value, a.fill_value)
- # check empty_like mask handling
- a = masked_array([1, 2, 3], mask=[False, True, False])
- b = empty_like(a)
- assert_(not np.may_share_memory(a.mask, b.mask))
- b = a.view(masked_array)
- assert_(np.may_share_memory(a.mask, b.mask))
- def test_zeros(self):
- # Tests zeros/like
- datatype = [('a', int), ('b', float), ('c', '|S8')]
- a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
- dtype=datatype)
- assert_equal(len(a.fill_value.item()), len(datatype))
- b = zeros(len(a), dtype=datatype)
- assert_equal(b.shape, a.shape)
- assert_equal(b.fill_value, a.fill_value)
- b = zeros_like(a)
- assert_equal(b.shape, a.shape)
- assert_equal(b.fill_value, a.fill_value)
- # check zeros_like mask handling
- a = masked_array([1, 2, 3], mask=[False, True, False])
- b = zeros_like(a)
- assert_(not np.may_share_memory(a.mask, b.mask))
- b = a.view()
- assert_(np.may_share_memory(a.mask, b.mask))
- def test_ones(self):
- # Tests ones/like
- datatype = [('a', int), ('b', float), ('c', '|S8')]
- a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')],
- dtype=datatype)
- assert_equal(len(a.fill_value.item()), len(datatype))
- b = ones(len(a), dtype=datatype)
- assert_equal(b.shape, a.shape)
- assert_equal(b.fill_value, a.fill_value)
- b = ones_like(a)
- assert_equal(b.shape, a.shape)
- assert_equal(b.fill_value, a.fill_value)
- # check ones_like mask handling
- a = masked_array([1, 2, 3], mask=[False, True, False])
- b = ones_like(a)
- assert_(not np.may_share_memory(a.mask, b.mask))
- b = a.view()
- assert_(np.may_share_memory(a.mask, b.mask))
- @suppress_copy_mask_on_assignment
- def test_put(self):
- # Tests put.
- d = arange(5)
- n = [0, 0, 0, 1, 1]
- m = make_mask(n)
- x = array(d, mask=m)
- assert_(x[3] is masked)
- assert_(x[4] is masked)
- x[[1, 4]] = [10, 40]
- assert_(x[3] is masked)
- assert_(x[4] is not masked)
- assert_equal(x, [0, 10, 2, -1, 40])
- x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
- i = [0, 2, 4, 6]
- x.put(i, [6, 4, 2, 0])
- assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
- assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
- x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
- assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
- assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
- x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
- put(x, i, [6, 4, 2, 0])
- assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ]))
- assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
- put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0]))
- assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ])
- assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])
- def test_put_nomask(self):
- # GitHub issue 6425
- x = zeros(10)
- z = array([3., -1.], mask=[False, True])
- x.put([1, 2], z)
- assert_(x[0] is not masked)
- assert_equal(x[0], 0)
- assert_(x[1] is not masked)
- assert_equal(x[1], 3)
- assert_(x[2] is masked)
- assert_(x[3] is not masked)
- assert_equal(x[3], 0)
- def test_put_hardmask(self):
- # Tests put on hardmask
- d = arange(5)
- n = [0, 0, 0, 1, 1]
- m = make_mask(n)
- xh = array(d + 1, mask=m, hard_mask=True, copy=True)
- xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5])
- assert_equal(xh._data, [3, 4, 2, 4, 5])
- def test_putmask(self):
- x = arange(6) + 1
- mx = array(x, mask=[0, 0, 0, 1, 1, 1])
- mask = [0, 0, 1, 0, 0, 1]
- # w/o mask, w/o masked values
- xx = x.copy()
- putmask(xx, mask, 99)
- assert_equal(xx, [1, 2, 99, 4, 5, 99])
- # w/ mask, w/o masked values
- mxx = mx.copy()
- putmask(mxx, mask, 99)
- assert_equal(mxx._data, [1, 2, 99, 4, 5, 99])
- assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0])
- # w/o mask, w/ masked values
- values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0])
- xx = x.copy()
- putmask(xx, mask, values)
- assert_equal(xx._data, [1, 2, 30, 4, 5, 60])
- assert_equal(xx._mask, [0, 0, 1, 0, 0, 0])
- # w/ mask, w/ masked values
- mxx = mx.copy()
- putmask(mxx, mask, values)
- assert_equal(mxx._data, [1, 2, 30, 4, 5, 60])
- assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0])
- # w/ mask, w/ masked values + hardmask
- mxx = mx.copy()
- mxx.harden_mask()
- putmask(mxx, mask, values)
- assert_equal(mxx, [1, 2, 30, 4, 5, 60])
- def test_ravel(self):
- # Tests ravel
- a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])
- aravel = a.ravel()
- assert_equal(aravel._mask.shape, aravel.shape)
- a = array([0, 0], mask=[1, 1])
- aravel = a.ravel()
- assert_equal(aravel._mask.shape, a.shape)
- # Checks that small_mask is preserved
- a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)
- assert_equal(a.ravel()._mask, [0, 0, 0, 0])
- # Test that the fill_value is preserved
- a.fill_value = -99
- a.shape = (2, 2)
- ar = a.ravel()
- assert_equal(ar._mask, [0, 0, 0, 0])
- assert_equal(ar._data, [1, 2, 3, 4])
- assert_equal(ar.fill_value, -99)
- # Test index ordering
- assert_equal(a.ravel(order='C'), [1, 2, 3, 4])
- assert_equal(a.ravel(order='F'), [1, 3, 2, 4])
- @pytest.mark.parametrize("order", "AKCF")
- @pytest.mark.parametrize("data_order", "CF")
- def test_ravel_order(self, order, data_order):
- # Ravelling must ravel mask and data in the same order always to avoid
- # misaligning the two in the ravel result.
- arr = np.ones((5, 10), order=data_order)
- arr[0, :] = 0
- mask = np.ones((10, 5), dtype=bool, order=data_order).T
- mask[0, :] = False
- x = array(arr, mask=mask)
- assert x._data.flags.fnc != x._mask.flags.fnc
- assert (x.filled(0) == 0).all()
- raveled = x.ravel(order)
- assert (raveled.filled(0) == 0).all()
- # NOTE: Can be wrong if arr order is neither C nor F and `order="K"`
- assert_array_equal(arr.ravel(order), x.ravel(order)._data)
- def test_reshape(self):
- # Tests reshape
- x = arange(4)
- x[0] = masked
- y = x.reshape(2, 2)
- assert_equal(y.shape, (2, 2,))
- assert_equal(y._mask.shape, (2, 2,))
- assert_equal(x.shape, (4,))
- assert_equal(x._mask.shape, (4,))
- def test_sort(self):
- # Test sort
- x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
- sortedx = sort(x)
- assert_equal(sortedx._data, [1, 2, 3, 4])
- assert_equal(sortedx._mask, [0, 0, 0, 1])
- sortedx = sort(x, endwith=False)
- assert_equal(sortedx._data, [4, 1, 2, 3])
- assert_equal(sortedx._mask, [1, 0, 0, 0])
- x.sort()
- assert_equal(x._data, [1, 2, 3, 4])
- assert_equal(x._mask, [0, 0, 0, 1])
- x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
- x.sort(endwith=False)
- assert_equal(x._data, [4, 1, 2, 3])
- assert_equal(x._mask, [1, 0, 0, 0])
- x = [1, 4, 2, 3]
- sortedx = sort(x)
- assert_(not isinstance(sorted, MaskedArray))
- x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8)
- sortedx = sort(x, endwith=False)
- assert_equal(sortedx._data, [-2, -1, 0, 1, 2])
- x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8)
- sortedx = sort(x, endwith=False)
- assert_equal(sortedx._data, [1, 2, -2, -1, 0])
- assert_equal(sortedx._mask, [1, 1, 0, 0, 0])
- x = array([0, -1], dtype=np.int8)
- sortedx = sort(x, kind="stable")
- assert_equal(sortedx, array([-1, 0], dtype=np.int8))
- def test_stable_sort(self):
- x = array([1, 2, 3, 1, 2, 3], dtype=np.uint8)
- expected = array([0, 3, 1, 4, 2, 5])
- computed = argsort(x, kind='stable')
- assert_equal(computed, expected)
- def test_argsort_matches_sort(self):
- x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)
- for kwargs in [dict(),
- dict(endwith=True),
- dict(endwith=False),
- dict(fill_value=2),
- dict(fill_value=2, endwith=True),
- dict(fill_value=2, endwith=False)]:
- sortedx = sort(x, **kwargs)
- argsortedx = x[argsort(x, **kwargs)]
- assert_equal(sortedx._data, argsortedx._data)
- assert_equal(sortedx._mask, argsortedx._mask)
- def test_sort_2d(self):
- # Check sort of 2D array.
- # 2D array w/o mask
- a = masked_array([[8, 4, 1], [2, 0, 9]])
- a.sort(0)
- assert_equal(a, [[2, 0, 1], [8, 4, 9]])
- a = masked_array([[8, 4, 1], [2, 0, 9]])
- a.sort(1)
- assert_equal(a, [[1, 4, 8], [0, 2, 9]])
- # 2D array w/mask
- a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
- a.sort(0)
- assert_equal(a, [[2, 0, 1], [8, 4, 9]])
- assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]])
- a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])
- a.sort(1)
- assert_equal(a, [[1, 4, 8], [0, 2, 9]])
- assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]])
- # 3D
- a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]],
- [[1, 2, 3], [7, 8, 9], [4, 5, 6]],
- [[7, 8, 9], [1, 2, 3], [4, 5, 6]],
- [[4, 5, 6], [1, 2, 3], [7, 8, 9]]])
- a[a % 4 == 0] = masked
- am = a.copy()
- an = a.filled(99)
- am.sort(0)
- an.sort(0)
- assert_equal(am, an)
- am = a.copy()
- an = a.filled(99)
- am.sort(1)
- an.sort(1)
- assert_equal(am, an)
- am = a.copy()
- an = a.filled(99)
- am.sort(2)
- an.sort(2)
- assert_equal(am, an)
- def test_sort_flexible(self):
- # Test sort on structured dtype.
- a = array(
- data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)],
- mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)],
- dtype=[('A', int), ('B', int)])
- mask_last = array(
- data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)],
- mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)],
- dtype=[('A', int), ('B', int)])
- mask_first = array(
- data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)],
- mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)],
- dtype=[('A', int), ('B', int)])
- test = sort(a)
- assert_equal(test, mask_last)
- assert_equal(test.mask, mask_last.mask)
- test = sort(a, endwith=False)
- assert_equal(test, mask_first)
- assert_equal(test.mask, mask_first.mask)
- # Test sort on dtype with subarray (gh-8069)
- # Just check that the sort does not error, structured array subarrays
- # are treated as byte strings and that leads to differing behavior
- # depending on endianness and `endwith`.
- dt = np.dtype([('v', int, 2)])
- a = a.view(dt)
- test = sort(a)
- test = sort(a, endwith=False)
- def test_argsort(self):
- # Test argsort
- a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0])
- assert_equal(np.argsort(a), argsort(a))
- def test_squeeze(self):
- # Check squeeze
- data = masked_array([[1, 2, 3]])
- assert_equal(data.squeeze(), [1, 2, 3])
- data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]])
- assert_equal(data.squeeze(), [1, 2, 3])
- assert_equal(data.squeeze()._mask, [1, 1, 1])
- # normal ndarrays return a view
- arr = np.array([[1]])
- arr_sq = arr.squeeze()
- assert_equal(arr_sq, 1)
- arr_sq[...] = 2
- assert_equal(arr[0,0], 2)
- # so maskedarrays should too
- m_arr = masked_array([[1]], mask=True)
- m_arr_sq = m_arr.squeeze()
- assert_(m_arr_sq is not np.ma.masked)
- assert_equal(m_arr_sq.mask, True)
- m_arr_sq[...] = 2
- assert_equal(m_arr[0,0], 2)
- def test_swapaxes(self):
- # Tests swapaxes on MaskedArrays.
- x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
- 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
- 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
- 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
- 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
- 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
- m = np.array([0, 1, 0, 1, 0, 0,
- 1, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 0, 0,
- 0, 0, 1, 0, 1, 0])
- mX = array(x, mask=m).reshape(6, 6)
- mXX = mX.reshape(3, 2, 2, 3)
- mXswapped = mX.swapaxes(0, 1)
- assert_equal(mXswapped[-1], mX[:, -1])
- mXXswapped = mXX.swapaxes(0, 2)
- assert_equal(mXXswapped.shape, (2, 2, 3, 3))
- def test_take(self):
- # Tests take
- x = masked_array([10, 20, 30, 40], [0, 1, 0, 1])
- assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1]))
- assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]])
- assert_equal(x.take([[0, 1], [0, 1]]),
- masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]]))
- # assert_equal crashes when passed np.ma.mask
- assert_(x[1] is np.ma.masked)
- assert_(x.take(1) is np.ma.masked)
- x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]])
- assert_equal(x.take([0, 2], axis=1),
- array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
- assert_equal(take(x, [0, 2], axis=1),
- array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]]))
- def test_take_masked_indices(self):
- # Test take w/ masked indices
- a = np.array((40, 18, 37, 9, 22))
- indices = np.arange(3)[None,:] + np.arange(5)[:, None]
- mindices = array(indices, mask=(indices >= len(a)))
- # No mask
- test = take(a, mindices, mode='clip')
- ctrl = array([[40, 18, 37],
- [18, 37, 9],
- [37, 9, 22],
- [9, 22, 22],
- [22, 22, 22]])
- assert_equal(test, ctrl)
- # Masked indices
- test = take(a, mindices)
- ctrl = array([[40, 18, 37],
- [18, 37, 9],
- [37, 9, 22],
- [9, 22, 40],
- [22, 40, 40]])
- ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked
- assert_equal(test, ctrl)
- assert_equal(test.mask, ctrl.mask)
- # Masked input + masked indices
- a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0))
- test = take(a, mindices)
- ctrl[0, 1] = ctrl[1, 0] = masked
- assert_equal(test, ctrl)
- assert_equal(test.mask, ctrl.mask)
- def test_tolist(self):
- # Tests to list
- # ... on 1D
- x = array(np.arange(12))
- x[[1, -2]] = masked
- xlist = x.tolist()
- assert_(xlist[1] is None)
- assert_(xlist[-2] is None)
- # ... on 2D
- x.shape = (3, 4)
- xlist = x.tolist()
- ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]]
- assert_equal(xlist[0], [0, None, 2, 3])
- assert_equal(xlist[1], [4, 5, 6, 7])
- assert_equal(xlist[2], [8, 9, None, 11])
- assert_equal(xlist, ctrl)
- # ... on structured array w/ masked records
- x = array(list(zip([1, 2, 3],
- [1.1, 2.2, 3.3],
- ['one', 'two', 'thr'])),
- dtype=[('a', int), ('b', float), ('c', '|S8')])
- x[-1] = masked
- assert_equal(x.tolist(),
- [(1, 1.1, b'one'),
- (2, 2.2, b'two'),
- (None, None, None)])
- # ... on structured array w/ masked fields
- a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)],
- dtype=[('a', int), ('b', int)])
- test = a.tolist()
- assert_equal(test, [[1, None], [3, 4]])
- # ... on mvoid
- a = a[0]
- test = a.tolist()
- assert_equal(test, [1, None])
- def test_tolist_specialcase(self):
- # Test mvoid.tolist: make sure we return a standard Python object
- a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)])
- # w/o mask: each entry is a np.void whose elements are standard Python
- for entry in a:
- for item in entry.tolist():
- assert_(not isinstance(item, np.generic))
- # w/ mask: each entry is a ma.void whose elements should be
- # standard Python
- a.mask[0] = (0, 1)
- for entry in a:
- for item in entry.tolist():
- assert_(not isinstance(item, np.generic))
- def test_toflex(self):
- # Test the conversion to records
- data = arange(10)
- record = data.toflex()
- assert_equal(record['_data'], data._data)
- assert_equal(record['_mask'], data._mask)
- data[[0, 1, 2, -1]] = masked
- record = data.toflex()
- assert_equal(record['_data'], data._data)
- assert_equal(record['_mask'], data._mask)
- ndtype = [('i', int), ('s', '|S3'), ('f', float)]
- data = array([(i, s, f) for (i, s, f) in zip(np.arange(10),
- 'ABCDEFGHIJKLM',
- np.random.rand(10))],
- dtype=ndtype)
- data[[0, 1, 2, -1]] = masked
- record = data.toflex()
- assert_equal(record['_data'], data._data)
- assert_equal(record['_mask'], data._mask)
- ndtype = np.dtype("int, (2,3)float, float")
- data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10),
- np.random.rand(10),
- np.random.rand(10))],
- dtype=ndtype)
- data[[0, 1, 2, -1]] = masked
- record = data.toflex()
- assert_equal_records(record['_data'], data._data)
- assert_equal_records(record['_mask'], data._mask)
- def test_fromflex(self):
- # Test the reconstruction of a masked_array from a record
- a = array([1, 2, 3])
- test = fromflex(a.toflex())
- assert_equal(test, a)
- assert_equal(test.mask, a.mask)
- a = array([1, 2, 3], mask=[0, 0, 1])
- test = fromflex(a.toflex())
- assert_equal(test, a)
- assert_equal(test.mask, a.mask)
- a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)],
- dtype=[('A', int), ('B', float)])
- test = fromflex(a.toflex())
- assert_equal(test, a)
- assert_equal(test.data, a.data)
- def test_arraymethod(self):
- # Test a _arraymethod w/ n argument
- marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0])
- control = masked_array([[1], [2], [3], [4], [5]],
- mask=[0, 0, 1, 0, 0])
- assert_equal(marray.T, control)
- assert_equal(marray.transpose(), control)
- assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0))
- def test_arraymethod_0d(self):
- # gh-9430
- x = np.ma.array(42, mask=True)
- assert_equal(x.T.mask, x.mask)
- assert_equal(x.T.data, x.data)
- def test_transpose_view(self):
- x = np.ma.array([[1, 2, 3], [4, 5, 6]])
- x[0,1] = np.ma.masked
- xt = x.T
- xt[1,0] = 10
- xt[0,1] = np.ma.masked
- assert_equal(x.data, xt.T.data)
- assert_equal(x.mask, xt.T.mask)
- def test_diagonal_view(self):
- x = np.ma.zeros((3,3))
- x[0,0] = 10
- x[1,1] = np.ma.masked
- x[2,2] = 20
- xd = x.diagonal()
- x[1,1] = 15
- assert_equal(xd.mask, x.diagonal().mask)
- assert_equal(xd.data, x.diagonal().data)
- class TestMaskedArrayMathMethods:
- def setup_method(self):
- # Base data definition.
- x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
- 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
- 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
- 6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
- 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
- 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
- X = x.reshape(6, 6)
- XX = x.reshape(3, 2, 2, 3)
- m = np.array([0, 1, 0, 1, 0, 0,
- 1, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 0, 0,
- 0, 0, 1, 0, 1, 0])
- mx = array(data=x, mask=m)
- mX = array(data=X, mask=m.reshape(X.shape))
- mXX = array(data=XX, mask=m.reshape(XX.shape))
- m2 = np.array([1, 1, 0, 1, 0, 0,
- 1, 1, 1, 1, 0, 1,
- 0, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 1, 0,
- 0, 0, 1, 0, 1, 1])
- m2x = array(data=x, mask=m2)
- m2X = array(data=X, mask=m2.reshape(X.shape))
- m2XX = array(data=XX, mask=m2.reshape(XX.shape))
- self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
- def test_cumsumprod(self):
- # Tests cumsum & cumprod on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- mXcp = mX.cumsum(0)
- assert_equal(mXcp._data, mX.filled(0).cumsum(0))
- mXcp = mX.cumsum(1)
- assert_equal(mXcp._data, mX.filled(0).cumsum(1))
- mXcp = mX.cumprod(0)
- assert_equal(mXcp._data, mX.filled(1).cumprod(0))
- mXcp = mX.cumprod(1)
- assert_equal(mXcp._data, mX.filled(1).cumprod(1))
- def test_cumsumprod_with_output(self):
- # Tests cumsum/cumprod w/ output
- xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
- xm[:, 0] = xm[0] = xm[-1, -1] = masked
- for funcname in ('cumsum', 'cumprod'):
- npfunc = getattr(np, funcname)
- xmmeth = getattr(xm, funcname)
- # A ndarray as explicit input
- output = np.empty((3, 4), dtype=float)
- output.fill(-9999)
- result = npfunc(xm, axis=0, out=output)
- # ... the result should be the given output
- assert_(result is output)
- assert_equal(result, xmmeth(axis=0, out=output))
- output = empty((3, 4), dtype=int)
- result = xmmeth(axis=0, out=output)
- assert_(result is output)
- def test_ptp(self):
- # Tests ptp on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- (n, m) = X.shape
- assert_equal(mx.ptp(), mx.compressed().ptp())
- rows = np.zeros(n, float)
- cols = np.zeros(m, float)
- for k in range(m):
- cols[k] = mX[:, k].compressed().ptp()
- for k in range(n):
- rows[k] = mX[k].compressed().ptp()
- assert_equal(mX.ptp(0), cols)
- assert_equal(mX.ptp(1), rows)
- def test_add_object(self):
- x = masked_array(['a', 'b'], mask=[1, 0], dtype=object)
- y = x + 'x'
- assert_equal(y[1], 'bx')
- assert_(y.mask[0])
- def test_sum_object(self):
- # Test sum on object dtype
- a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object)
- assert_equal(a.sum(), 5)
- a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
- assert_equal(a.sum(axis=0), [5, 7, 9])
- def test_prod_object(self):
- # Test prod on object dtype
- a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object)
- assert_equal(a.prod(), 2 * 3)
- a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object)
- assert_equal(a.prod(axis=0), [4, 10, 18])
- def test_meananom_object(self):
- # Test mean/anom on object dtype
- a = masked_array([1, 2, 3], dtype=object)
- assert_equal(a.mean(), 2)
- assert_equal(a.anom(), [-1, 0, 1])
- def test_anom_shape(self):
- a = masked_array([1, 2, 3])
- assert_equal(a.anom().shape, a.shape)
- a.mask = True
- assert_equal(a.anom().shape, a.shape)
- assert_(np.ma.is_masked(a.anom()))
- def test_anom(self):
- a = masked_array(np.arange(1, 7).reshape(2, 3))
- assert_almost_equal(a.anom(),
- [[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]])
- assert_almost_equal(a.anom(axis=0),
- [[-1.5, -1.5, -1.5], [1.5, 1.5, 1.5]])
- assert_almost_equal(a.anom(axis=1),
- [[-1., 0., 1.], [-1., 0., 1.]])
- a.mask = [[0, 0, 1], [0, 1, 0]]
- mval = -99
- assert_almost_equal(a.anom().filled(mval),
- [[-2.25, -1.25, mval], [0.75, mval, 2.75]])
- assert_almost_equal(a.anom(axis=0).filled(mval),
- [[-1.5, 0.0, mval], [1.5, mval, 0.0]])
- assert_almost_equal(a.anom(axis=1).filled(mval),
- [[-0.5, 0.5, mval], [-1.0, mval, 1.0]])
- def test_trace(self):
- # Tests trace on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- mXdiag = mX.diagonal()
- assert_equal(mX.trace(), mX.diagonal().compressed().sum())
- assert_almost_equal(mX.trace(),
- X.trace() - sum(mXdiag.mask * X.diagonal(),
- axis=0))
- assert_equal(np.trace(mX), mX.trace())
- # gh-5560
- arr = np.arange(2*4*4).reshape(2,4,4)
- m_arr = np.ma.masked_array(arr, False)
- assert_equal(arr.trace(axis1=1, axis2=2), m_arr.trace(axis1=1, axis2=2))
- def test_dot(self):
- # Tests dot on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- fx = mx.filled(0)
- r = mx.dot(mx)
- assert_almost_equal(r.filled(0), fx.dot(fx))
- assert_(r.mask is nomask)
- fX = mX.filled(0)
- r = mX.dot(mX)
- assert_almost_equal(r.filled(0), fX.dot(fX))
- assert_(r.mask[1,3])
- r1 = empty_like(r)
- mX.dot(mX, out=r1)
- assert_almost_equal(r, r1)
- mYY = mXX.swapaxes(-1, -2)
- fXX, fYY = mXX.filled(0), mYY.filled(0)
- r = mXX.dot(mYY)
- assert_almost_equal(r.filled(0), fXX.dot(fYY))
- r1 = empty_like(r)
- mXX.dot(mYY, out=r1)
- assert_almost_equal(r, r1)
- def test_dot_shape_mismatch(self):
- # regression test
- x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
- y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]])
- z = masked_array([[0,1],[3,3]])
- x.dot(y, out=z)
- assert_almost_equal(z.filled(0), [[1, 0], [15, 16]])
- assert_almost_equal(z.mask, [[0, 1], [0, 0]])
- def test_varmean_nomask(self):
- # gh-5769
- foo = array([1,2,3,4], dtype='f8')
- bar = array([1,2,3,4], dtype='f8')
- assert_equal(type(foo.mean()), np.float64)
- assert_equal(type(foo.var()), np.float64)
- assert((foo.mean() == bar.mean()) is np.bool_(True))
- # check array type is preserved and out works
- foo = array(np.arange(16).reshape((4,4)), dtype='f8')
- bar = empty(4, dtype='f4')
- assert_equal(type(foo.mean(axis=1)), MaskedArray)
- assert_equal(type(foo.var(axis=1)), MaskedArray)
- assert_(foo.mean(axis=1, out=bar) is bar)
- assert_(foo.var(axis=1, out=bar) is bar)
- def test_varstd(self):
- # Tests var & std on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- assert_almost_equal(mX.var(axis=None), mX.compressed().var())
- assert_almost_equal(mX.std(axis=None), mX.compressed().std())
- assert_almost_equal(mX.std(axis=None, ddof=1),
- mX.compressed().std(ddof=1))
- assert_almost_equal(mX.var(axis=None, ddof=1),
- mX.compressed().var(ddof=1))
- assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
- assert_equal(mX.var().shape, X.var().shape)
- (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
- assert_almost_equal(mX.var(axis=None, ddof=2),
- mX.compressed().var(ddof=2))
- assert_almost_equal(mX.std(axis=None, ddof=2),
- mX.compressed().std(ddof=2))
- for k in range(6):
- assert_almost_equal(mXvar1[k], mX[k].compressed().var())
- assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
- assert_almost_equal(np.sqrt(mXvar0[k]),
- mX[:, k].compressed().std())
- @suppress_copy_mask_on_assignment
- def test_varstd_specialcases(self):
- # Test a special case for var
- nout = np.array(-1, dtype=float)
- mout = array(-1, dtype=float)
- x = array(arange(10), mask=True)
- for methodname in ('var', 'std'):
- method = getattr(x, methodname)
- assert_(method() is masked)
- assert_(method(0) is masked)
- assert_(method(-1) is masked)
- # Using a masked array as explicit output
- method(out=mout)
- assert_(mout is not masked)
- assert_equal(mout.mask, True)
- # Using a ndarray as explicit output
- method(out=nout)
- assert_(np.isnan(nout))
- x = array(arange(10), mask=True)
- x[-1] = 9
- for methodname in ('var', 'std'):
- method = getattr(x, methodname)
- assert_(method(ddof=1) is masked)
- assert_(method(0, ddof=1) is masked)
- assert_(method(-1, ddof=1) is masked)
- # Using a masked array as explicit output
- method(out=mout, ddof=1)
- assert_(mout is not masked)
- assert_equal(mout.mask, True)
- # Using a ndarray as explicit output
- method(out=nout, ddof=1)
- assert_(np.isnan(nout))
- def test_varstd_ddof(self):
- a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]])
- test = a.std(axis=0, ddof=0)
- assert_equal(test.filled(0), [0, 0, 0])
- assert_equal(test.mask, [0, 0, 1])
- test = a.std(axis=0, ddof=1)
- assert_equal(test.filled(0), [0, 0, 0])
- assert_equal(test.mask, [0, 0, 1])
- test = a.std(axis=0, ddof=2)
- assert_equal(test.filled(0), [0, 0, 0])
- assert_equal(test.mask, [1, 1, 1])
- def test_diag(self):
- # Test diag
- x = arange(9).reshape((3, 3))
- x[1, 1] = masked
- out = np.diag(x)
- assert_equal(out, [0, 4, 8])
- out = diag(x)
- assert_equal(out, [0, 4, 8])
- assert_equal(out.mask, [0, 1, 0])
- out = diag(out)
- control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]],
- mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
- assert_equal(out, control)
- def test_axis_methods_nomask(self):
- # Test the combination nomask & methods w/ axis
- a = array([[1, 2, 3], [4, 5, 6]])
- assert_equal(a.sum(0), [5, 7, 9])
- assert_equal(a.sum(-1), [6, 15])
- assert_equal(a.sum(1), [6, 15])
- assert_equal(a.prod(0), [4, 10, 18])
- assert_equal(a.prod(-1), [6, 120])
- assert_equal(a.prod(1), [6, 120])
- assert_equal(a.min(0), [1, 2, 3])
- assert_equal(a.min(-1), [1, 4])
- assert_equal(a.min(1), [1, 4])
- assert_equal(a.max(0), [4, 5, 6])
- assert_equal(a.max(-1), [3, 6])
- assert_equal(a.max(1), [3, 6])
- @requires_memory(free_bytes=2 * 10000 * 1000 * 2)
- def test_mean_overflow(self):
- # Test overflow in masked arrays
- # gh-20272
- a = masked_array(np.full((10000, 10000), 65535, dtype=np.uint16),
- mask=np.zeros((10000, 10000)))
- assert_equal(a.mean(), 65535.0)
- class TestMaskedArrayMathMethodsComplex:
- # Test class for miscellaneous MaskedArrays methods.
- def setup_method(self):
- # Base data definition.
- x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928,
- 8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
- 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
- 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j,
- 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893,
- 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j])
- X = x.reshape(6, 6)
- XX = x.reshape(3, 2, 2, 3)
- m = np.array([0, 1, 0, 1, 0, 0,
- 1, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 0, 0,
- 0, 0, 1, 0, 1, 0])
- mx = array(data=x, mask=m)
- mX = array(data=X, mask=m.reshape(X.shape))
- mXX = array(data=XX, mask=m.reshape(XX.shape))
- m2 = np.array([1, 1, 0, 1, 0, 0,
- 1, 1, 1, 1, 0, 1,
- 0, 0, 1, 1, 0, 1,
- 0, 0, 0, 1, 1, 1,
- 1, 0, 0, 1, 1, 0,
- 0, 0, 1, 0, 1, 1])
- m2x = array(data=x, mask=m2)
- m2X = array(data=X, mask=m2.reshape(X.shape))
- m2XX = array(data=XX, mask=m2.reshape(XX.shape))
- self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX)
- def test_varstd(self):
- # Tests var & std on MaskedArrays.
- (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d
- assert_almost_equal(mX.var(axis=None), mX.compressed().var())
- assert_almost_equal(mX.std(axis=None), mX.compressed().std())
- assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape)
- assert_equal(mX.var().shape, X.var().shape)
- (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
- assert_almost_equal(mX.var(axis=None, ddof=2),
- mX.compressed().var(ddof=2))
- assert_almost_equal(mX.std(axis=None, ddof=2),
- mX.compressed().std(ddof=2))
- for k in range(6):
- assert_almost_equal(mXvar1[k], mX[k].compressed().var())
- assert_almost_equal(mXvar0[k], mX[:, k].compressed().var())
- assert_almost_equal(np.sqrt(mXvar0[k]),
- mX[:, k].compressed().std())
- class TestMaskedArrayFunctions:
- # Test class for miscellaneous functions.
- def setup_method(self):
- x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
- y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
- m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
- m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
- xm = masked_array(x, mask=m1)
- ym = masked_array(y, mask=m2)
- xm.set_fill_value(1e+20)
- self.info = (xm, ym)
- def test_masked_where_bool(self):
- x = [1, 2]
- y = masked_where(False, x)
- assert_equal(y, [1, 2])
- assert_equal(y[1], 2)
- def test_masked_equal_wlist(self):
- x = [1, 2, 3]
- mx = masked_equal(x, 3)
- assert_equal(mx, x)
- assert_equal(mx._mask, [0, 0, 1])
- mx = masked_not_equal(x, 3)
- assert_equal(mx, x)
- assert_equal(mx._mask, [1, 1, 0])
- def test_masked_equal_fill_value(self):
- x = [1, 2, 3]
- mx = masked_equal(x, 3)
- assert_equal(mx._mask, [0, 0, 1])
- assert_equal(mx.fill_value, 3)
- def test_masked_where_condition(self):
- # Tests masking functions.
- x = array([1., 2., 3., 4., 5.])
- x[2] = masked
- assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2))
- assert_equal(masked_where(greater_equal(x, 2), x),
- masked_greater_equal(x, 2))
- assert_equal(masked_where(less(x, 2), x), masked_less(x, 2))
- assert_equal(masked_where(less_equal(x, 2), x),
- masked_less_equal(x, 2))
- assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
- assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2))
- assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))
- assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
- [99, 99, 3, 4, 5])
- def test_masked_where_oddities(self):
- # Tests some generic features.
- atest = ones((10, 10, 10), dtype=float)
- btest = zeros(atest.shape, MaskType)
- ctest = masked_where(btest, atest)
- assert_equal(atest, ctest)
- def test_masked_where_shape_constraint(self):
- a = arange(10)
- with assert_raises(IndexError):
- masked_equal(1, a)
- test = masked_equal(a, 1)
- assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
- def test_masked_where_structured(self):
- # test that masked_where on a structured array sets a structured
- # mask (see issue #2972)
- a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")])
- with np.errstate(over="ignore"):
- # NOTE: The float16 "uses" 1e20 as mask, which overflows to inf
- # and warns. Unrelated to this test, but probably undesired.
- # But NumPy previously did not warn for this overflow.
- am = np.ma.masked_where(a["A"] < 5, a)
- assert_equal(am.mask.dtype.names, am.dtype.names)
- assert_equal(am["A"],
- np.ma.masked_array(np.zeros(10), np.ones(10)))
- def test_masked_where_mismatch(self):
- # gh-4520
- x = np.arange(10)
- y = np.arange(5)
- assert_raises(IndexError, np.ma.masked_where, y > 6, x)
- def test_masked_otherfunctions(self):
- assert_equal(masked_inside(list(range(5)), 1, 3),
- [0, 199, 199, 199, 4])
- assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])
- assert_equal(masked_inside(array(list(range(5)),
- mask=[1, 0, 0, 0, 0]), 1, 3).mask,
- [1, 1, 1, 1, 0])
- assert_equal(masked_outside(array(list(range(5)),
- mask=[0, 1, 0, 0, 0]), 1, 3).mask,
- [1, 1, 0, 0, 1])
- assert_equal(masked_equal(array(list(range(5)),
- mask=[1, 0, 0, 0, 0]), 2).mask,
- [1, 0, 1, 0, 0])
- assert_equal(masked_not_equal(array([2, 2, 1, 2, 1],
- mask=[1, 0, 0, 0, 0]), 2).mask,
- [1, 0, 1, 0, 1])
- def test_round(self):
- a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890],
- mask=[0, 1, 0, 0, 0])
- assert_equal(a.round(), [1., 2., 3., 5., 6.])
- assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7])
- assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679])
- b = empty_like(a)
- a.round(out=b)
- assert_equal(b, [1., 2., 3., 5., 6.])
- x = array([1., 2., 3., 4., 5.])
- c = array([1, 1, 1, 0, 0])
- x[2] = masked
- z = where(c, x, -x)
- assert_equal(z, [1., 2., 0., -4., -5])
- c[0] = masked
- z = where(c, x, -x)
- assert_equal(z, [1., 2., 0., -4., -5])
- assert_(z[0] is masked)
- assert_(z[1] is not masked)
- assert_(z[2] is masked)
- def test_round_with_output(self):
- # Testing round with an explicit output
- xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4)
- xm[:, 0] = xm[0] = xm[-1, -1] = masked
- # A ndarray as explicit input
- output = np.empty((3, 4), dtype=float)
- output.fill(-9999)
- result = np.round(xm, decimals=2, out=output)
- # ... the result should be the given output
- assert_(result is output)
- assert_equal(result, xm.round(decimals=2, out=output))
- output = empty((3, 4), dtype=float)
- result = xm.round(decimals=2, out=output)
- assert_(result is output)
- def test_round_with_scalar(self):
- # Testing round with scalar/zero dimension input
- # GH issue 2244
- a = array(1.1, mask=[False])
- assert_equal(a.round(), 1)
- a = array(1.1, mask=[True])
- assert_(a.round() is masked)
- a = array(1.1, mask=[False])
- output = np.empty(1, dtype=float)
- output.fill(-9999)
- a.round(out=output)
- assert_equal(output, 1)
- a = array(1.1, mask=[False])
- output = array(-9999., mask=[True])
- a.round(out=output)
- assert_equal(output[()], 1)
- a = array(1.1, mask=[True])
- output = array(-9999., mask=[False])
- a.round(out=output)
- assert_(output[()] is masked)
- def test_identity(self):
- a = identity(5)
- assert_(isinstance(a, MaskedArray))
- assert_equal(a, np.identity(5))
- def test_power(self):
- x = -1.1
- assert_almost_equal(power(x, 2.), 1.21)
- assert_(power(x, masked) is masked)
- x = array([-1.1, -1.1, 1.1, 1.1, 0.])
- b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1])
- y = power(x, b)
- assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.])
- assert_equal(y._mask, [1, 0, 0, 0, 1])
- b.mask = nomask
- y = power(x, b)
- assert_equal(y._mask, [1, 0, 0, 0, 1])
- z = x ** b
- assert_equal(z._mask, y._mask)
- assert_almost_equal(z, y)
- assert_almost_equal(z._data, y._data)
- x **= b
- assert_equal(x._mask, y._mask)
- assert_almost_equal(x, y)
- assert_almost_equal(x._data, y._data)
- def test_power_with_broadcasting(self):
- # Test power w/ broadcasting
- a2 = np.array([[1., 2., 3.], [4., 5., 6.]])
- a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]])
- b1 = np.array([2, 4, 3])
- b2 = np.array([b1, b1])
- b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]])
- ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]],
- mask=[[1, 1, 0], [0, 1, 1]])
- # No broadcasting, base & exp w/ mask
- test = a2m ** b2m
- assert_equal(test, ctrl)
- assert_equal(test.mask, ctrl.mask)
- # No broadcasting, base w/ mask, exp w/o mask
- test = a2m ** b2
- assert_equal(test, ctrl)
- assert_equal(test.mask, a2m.mask)
- # No broadcasting, base w/o mask, exp w/ mask
- test = a2 ** b2m
- assert_equal(test, ctrl)
- assert_equal(test.mask, b2m.mask)
- ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]],
- mask=[[0, 1, 0], [0, 1, 0]])
- test = b1 ** b2m
- assert_equal(test, ctrl)
- assert_equal(test.mask, ctrl.mask)
- test = b2m ** b1
- assert_equal(test, ctrl)
- assert_equal(test.mask, ctrl.mask)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_where(self):
- # Test the where function
- x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
- y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
- m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
- m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
- xm = masked_array(x, mask=m1)
- ym = masked_array(y, mask=m2)
- xm.set_fill_value(1e+20)
- d = where(xm > 2, xm, -9)
- assert_equal(d, [-9., -9., -9., -9., -9., 4.,
- -9., -9., 10., -9., -9., 3.])
- assert_equal(d._mask, xm._mask)
- d = where(xm > 2, -9, ym)
- assert_equal(d, [5., 0., 3., 2., -1., -9.,
- -9., -10., -9., 1., 0., -9.])
- assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0])
- d = where(xm > 2, xm, masked)
- assert_equal(d, [-9., -9., -9., -9., -9., 4.,
- -9., -9., 10., -9., -9., 3.])
- tmp = xm._mask.copy()
- tmp[(xm <= 2).filled(True)] = True
- assert_equal(d._mask, tmp)
- with np.errstate(invalid="warn"):
- # The fill value is 1e20, it cannot be converted to `int`:
- with pytest.warns(RuntimeWarning, match="invalid value"):
- ixm = xm.astype(int)
- d = where(ixm > 2, ixm, masked)
- assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3])
- assert_equal(d.dtype, ixm.dtype)
- def test_where_object(self):
- a = np.array(None)
- b = masked_array(None)
- r = b.copy()
- assert_equal(np.ma.where(True, a, a), r)
- assert_equal(np.ma.where(True, b, b), r)
- def test_where_with_masked_choice(self):
- x = arange(10)
- x[3] = masked
- c = x >= 8
- # Set False to masked
- z = where(c, x, masked)
- assert_(z.dtype is x.dtype)
- assert_(z[3] is masked)
- assert_(z[4] is masked)
- assert_(z[7] is masked)
- assert_(z[8] is not masked)
- assert_(z[9] is not masked)
- assert_equal(x, z)
- # Set True to masked
- z = where(c, masked, x)
- assert_(z.dtype is x.dtype)
- assert_(z[3] is masked)
- assert_(z[4] is not masked)
- assert_(z[7] is not masked)
- assert_(z[8] is masked)
- assert_(z[9] is masked)
- def test_where_with_masked_condition(self):
- x = array([1., 2., 3., 4., 5.])
- c = array([1, 1, 1, 0, 0])
- x[2] = masked
- z = where(c, x, -x)
- assert_equal(z, [1., 2., 0., -4., -5])
- c[0] = masked
- z = where(c, x, -x)
- assert_equal(z, [1., 2., 0., -4., -5])
- assert_(z[0] is masked)
- assert_(z[1] is not masked)
- assert_(z[2] is masked)
- x = arange(1, 6)
- x[-1] = masked
- y = arange(1, 6) * 10
- y[2] = masked
- c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0])
- cm = c.filled(1)
- z = where(c, x, y)
- zm = where(cm, x, y)
- assert_equal(z, zm)
- assert_(getmask(zm) is nomask)
- assert_equal(zm, [1, 2, 3, 40, 50])
- z = where(c, masked, 1)
- assert_equal(z, [99, 99, 99, 1, 1])
- z = where(c, 1, masked)
- assert_equal(z, [99, 1, 1, 99, 99])
- def test_where_type(self):
- # Test the type conservation with where
- x = np.arange(4, dtype=np.int32)
- y = np.arange(4, dtype=np.float32) * 2.2
- test = where(x > 1.5, y, x).dtype
- control = np.find_common_type([np.int32, np.float32], [])
- assert_equal(test, control)
- def test_where_broadcast(self):
- # Issue 8599
- x = np.arange(9).reshape(3, 3)
- y = np.zeros(3)
- core = np.where([1, 0, 1], x, y)
- ma = where([1, 0, 1], x, y)
- assert_equal(core, ma)
- assert_equal(core.dtype, ma.dtype)
- def test_where_structured(self):
- # Issue 8600
- dt = np.dtype([('a', int), ('b', int)])
- x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt)
- y = np.array((10, 20), dtype=dt)
- core = np.where([0, 1, 1], x, y)
- ma = np.where([0, 1, 1], x, y)
- assert_equal(core, ma)
- assert_equal(core.dtype, ma.dtype)
- def test_where_structured_masked(self):
- dt = np.dtype([('a', int), ('b', int)])
- x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt)
- ma = where([0, 1, 1], x, masked)
- expected = masked_where([1, 0, 0], x)
- assert_equal(ma.dtype, expected.dtype)
- assert_equal(ma, expected)
- assert_equal(ma.mask, expected.mask)
- def test_masked_invalid_error(self):
- a = np.arange(5, dtype=object)
- a[3] = np.PINF
- a[2] = np.NaN
- with pytest.raises(TypeError,
- match="not supported for the input types"):
- np.ma.masked_invalid(a)
- def test_masked_invalid_pandas(self):
- # getdata() used to be bad for pandas series due to its _data
- # attribute. This test is a regression test mainly and may be
- # removed if getdata() is adjusted.
- class Series():
- _data = "nonsense"
- def __array__(self):
- return np.array([5, np.nan, np.inf])
- arr = np.ma.masked_invalid(Series())
- assert_array_equal(arr._data, np.array(Series()))
- assert_array_equal(arr._mask, [False, True, True])
- @pytest.mark.parametrize("copy", [True, False])
- def test_masked_invalid_full_mask(self, copy):
- # Matplotlib relied on masked_invalid always returning a full mask
- # (Also astropy projects, but were ok with it gh-22720 and gh-22842)
- a = np.ma.array([1, 2, 3, 4])
- assert a._mask is nomask
- res = np.ma.masked_invalid(a, copy=copy)
- assert res.mask is not nomask
- # mask of a should not be mutated
- assert a.mask is nomask
- assert np.may_share_memory(a._data, res._data) != copy
- def test_choose(self):
- # Test choose
- choices = [[0, 1, 2, 3], [10, 11, 12, 13],
- [20, 21, 22, 23], [30, 31, 32, 33]]
- chosen = choose([2, 3, 1, 0], choices)
- assert_equal(chosen, array([20, 31, 12, 3]))
- chosen = choose([2, 4, 1, 0], choices, mode='clip')
- assert_equal(chosen, array([20, 31, 12, 3]))
- chosen = choose([2, 4, 1, 0], choices, mode='wrap')
- assert_equal(chosen, array([20, 1, 12, 3]))
- # Check with some masked indices
- indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1])
- chosen = choose(indices_, choices, mode='wrap')
- assert_equal(chosen, array([99, 1, 12, 99]))
- assert_equal(chosen.mask, [1, 0, 0, 1])
- # Check with some masked choices
- choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
- [1, 0, 0, 0], [0, 0, 0, 0]])
- indices_ = [2, 3, 1, 0]
- chosen = choose(indices_, choices, mode='wrap')
- assert_equal(chosen, array([20, 31, 12, 3]))
- assert_equal(chosen.mask, [1, 0, 0, 1])
- def test_choose_with_out(self):
- # Test choose with an explicit out keyword
- choices = [[0, 1, 2, 3], [10, 11, 12, 13],
- [20, 21, 22, 23], [30, 31, 32, 33]]
- store = empty(4, dtype=int)
- chosen = choose([2, 3, 1, 0], choices, out=store)
- assert_equal(store, array([20, 31, 12, 3]))
- assert_(store is chosen)
- # Check with some masked indices + out
- store = empty(4, dtype=int)
- indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1])
- chosen = choose(indices_, choices, mode='wrap', out=store)
- assert_equal(store, array([99, 31, 12, 99]))
- assert_equal(store.mask, [1, 0, 0, 1])
- # Check with some masked choices + out ina ndarray !
- choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1],
- [1, 0, 0, 0], [0, 0, 0, 0]])
- indices_ = [2, 3, 1, 0]
- store = empty(4, dtype=int).view(ndarray)
- chosen = choose(indices_, choices, mode='wrap', out=store)
- assert_equal(store, array([999999, 31, 12, 999999]))
- def test_reshape(self):
- a = arange(10)
- a[0] = masked
- # Try the default
- b = a.reshape((5, 2))
- assert_equal(b.shape, (5, 2))
- assert_(b.flags['C'])
- # Try w/ arguments as list instead of tuple
- b = a.reshape(5, 2)
- assert_equal(b.shape, (5, 2))
- assert_(b.flags['C'])
- # Try w/ order
- b = a.reshape((5, 2), order='F')
- assert_equal(b.shape, (5, 2))
- assert_(b.flags['F'])
- # Try w/ order
- b = a.reshape(5, 2, order='F')
- assert_equal(b.shape, (5, 2))
- assert_(b.flags['F'])
- c = np.reshape(a, (2, 5))
- assert_(isinstance(c, MaskedArray))
- assert_equal(c.shape, (2, 5))
- assert_(c[0, 0] is masked)
- assert_(c.flags['C'])
- def test_make_mask_descr(self):
- # Flexible
- ntype = [('a', float), ('b', float)]
- test = make_mask_descr(ntype)
- assert_equal(test, [('a', bool), ('b', bool)])
- assert_(test is make_mask_descr(test))
- # Standard w/ shape
- ntype = (float, 2)
- test = make_mask_descr(ntype)
- assert_equal(test, (bool, 2))
- assert_(test is make_mask_descr(test))
- # Standard standard
- ntype = float
- test = make_mask_descr(ntype)
- assert_equal(test, np.dtype(bool))
- assert_(test is make_mask_descr(test))
- # Nested
- ntype = [('a', float), ('b', [('ba', float), ('bb', float)])]
- test = make_mask_descr(ntype)
- control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])])
- assert_equal(test, control)
- assert_(test is make_mask_descr(test))
- # Named+ shape
- ntype = [('a', (float, 2))]
- test = make_mask_descr(ntype)
- assert_equal(test, np.dtype([('a', (bool, 2))]))
- assert_(test is make_mask_descr(test))
- # 2 names
- ntype = [(('A', 'a'), float)]
- test = make_mask_descr(ntype)
- assert_equal(test, np.dtype([(('A', 'a'), bool)]))
- assert_(test is make_mask_descr(test))
- # nested boolean types should preserve identity
- base_type = np.dtype([('a', int, 3)])
- base_mtype = make_mask_descr(base_type)
- sub_type = np.dtype([('a', int), ('b', base_mtype)])
- test = make_mask_descr(sub_type)
- assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])]))
- assert_(test.fields['b'][0] is base_mtype)
- def test_make_mask(self):
- # Test make_mask
- # w/ a list as an input
- mask = [0, 1]
- test = make_mask(mask)
- assert_equal(test.dtype, MaskType)
- assert_equal(test, [0, 1])
- # w/ a ndarray as an input
- mask = np.array([0, 1], dtype=bool)
- test = make_mask(mask)
- assert_equal(test.dtype, MaskType)
- assert_equal(test, [0, 1])
- # w/ a flexible-type ndarray as an input - use default
- mdtype = [('a', bool), ('b', bool)]
- mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
- test = make_mask(mask)
- assert_equal(test.dtype, MaskType)
- assert_equal(test, [1, 1])
- # w/ a flexible-type ndarray as an input - use input dtype
- mdtype = [('a', bool), ('b', bool)]
- mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
- test = make_mask(mask, dtype=mask.dtype)
- assert_equal(test.dtype, mdtype)
- assert_equal(test, mask)
- # w/ a flexible-type ndarray as an input - use input dtype
- mdtype = [('a', float), ('b', float)]
- bdtype = [('a', bool), ('b', bool)]
- mask = np.array([(0, 0), (0, 1)], dtype=mdtype)
- test = make_mask(mask, dtype=mask.dtype)
- assert_equal(test.dtype, bdtype)
- assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype))
- # Ensure this also works for void
- mask = np.array((False, True), dtype='?,?')[()]
- assert_(isinstance(mask, np.void))
- test = make_mask(mask, dtype=mask.dtype)
- assert_equal(test, mask)
- assert_(test is not mask)
- mask = np.array((0, 1), dtype='i4,i4')[()]
- test2 = make_mask(mask, dtype=mask.dtype)
- assert_equal(test2, test)
- # test that nomask is returned when m is nomask.
- bools = [True, False]
- dtypes = [MaskType, float]
- msgformat = 'copy=%s, shrink=%s, dtype=%s'
- for cpy, shr, dt in itertools.product(bools, bools, dtypes):
- res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt)
- assert_(res is nomask, msgformat % (cpy, shr, dt))
- def test_mask_or(self):
- # Initialize
- mtype = [('a', bool), ('b', bool)]
- mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype)
- # Test using nomask as input
- test = mask_or(mask, nomask)
- assert_equal(test, mask)
- test = mask_or(nomask, mask)
- assert_equal(test, mask)
- # Using False as input
- test = mask_or(mask, False)
- assert_equal(test, mask)
- # Using another array w / the same dtype
- other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype)
- test = mask_or(mask, other)
- control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype)
- assert_equal(test, control)
- # Using another array w / a different dtype
- othertype = [('A', bool), ('B', bool)]
- other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype)
- try:
- test = mask_or(mask, other)
- except ValueError:
- pass
- # Using nested arrays
- dtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
- amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype)
- bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype)
- cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype)
- assert_equal(mask_or(amask, bmask), cntrl)
- def test_flatten_mask(self):
- # Tests flatten mask
- # Standard dtype
- mask = np.array([0, 0, 1], dtype=bool)
- assert_equal(flatten_mask(mask), mask)
- # Flexible dtype
- mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
- test = flatten_mask(mask)
- control = np.array([0, 0, 0, 1], dtype=bool)
- assert_equal(test, control)
- mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
- data = [(0, (0, 0)), (0, (0, 1))]
- mask = np.array(data, dtype=mdtype)
- test = flatten_mask(mask)
- control = np.array([0, 0, 0, 0, 0, 1], dtype=bool)
- assert_equal(test, control)
- def test_on_ndarray(self):
- # Test functions on ndarrays
- a = np.array([1, 2, 3, 4])
- m = array(a, mask=False)
- test = anom(a)
- assert_equal(test, m.anom())
- test = reshape(a, (2, 2))
- assert_equal(test, m.reshape(2, 2))
- def test_compress(self):
- # Test compress function on ndarray and masked array
- # Address Github #2495.
- arr = np.arange(8)
- arr.shape = 4, 2
- cond = np.array([True, False, True, True])
- control = arr[[0, 2, 3]]
- test = np.ma.compress(cond, arr, axis=0)
- assert_equal(test, control)
- marr = np.ma.array(arr)
- test = np.ma.compress(cond, marr, axis=0)
- assert_equal(test, control)
- def test_compressed(self):
- # Test ma.compressed function.
- # Address gh-4026
- a = np.ma.array([1, 2])
- test = np.ma.compressed(a)
- assert_(type(test) is np.ndarray)
- # Test case when input data is ndarray subclass
- class A(np.ndarray):
- pass
- a = np.ma.array(A(shape=0))
- test = np.ma.compressed(a)
- assert_(type(test) is A)
- # Test that compress flattens
- test = np.ma.compressed([[1],[2]])
- assert_equal(test.ndim, 1)
- test = np.ma.compressed([[[[[1]]]]])
- assert_equal(test.ndim, 1)
- # Test case when input is MaskedArray subclass
- class M(MaskedArray):
- pass
- test = np.ma.compressed(M([[[]], [[]]]))
- assert_equal(test.ndim, 1)
- # with .compressed() overridden
- class M(MaskedArray):
- def compressed(self):
- return 42
- test = np.ma.compressed(M([[[]], [[]]]))
- assert_equal(test, 42)
- def test_convolve(self):
- a = masked_equal(np.arange(5), 2)
- b = np.array([1, 1])
- test = np.ma.convolve(a, b)
- assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1))
- test = np.ma.convolve(a, b, propagate_mask=False)
- assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1))
- test = np.ma.convolve([1, 1], [1, 1, 1])
- assert_equal(test, masked_equal([1, 2, 2, 1], -1))
- a = [1, 1]
- b = masked_equal([1, -1, -1, 1], -1)
- test = np.ma.convolve(a, b, propagate_mask=False)
- assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1))
- test = np.ma.convolve(a, b, propagate_mask=True)
- assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1))
- class TestMaskedFields:
- def setup_method(self):
- ilist = [1, 2, 3, 4, 5]
- flist = [1.1, 2.2, 3.3, 4.4, 5.5]
- slist = ['one', 'two', 'three', 'four', 'five']
- ddtype = [('a', int), ('b', float), ('c', '|S8')]
- mdtype = [('a', bool), ('b', bool), ('c', bool)]
- mask = [0, 1, 0, 0, 1]
- base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
- self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype)
- def test_set_records_masks(self):
- base = self.data['base']
- mdtype = self.data['mdtype']
- # Set w/ nomask or masked
- base.mask = nomask
- assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
- base.mask = masked
- assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
- # Set w/ simple boolean
- base.mask = False
- assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype))
- base.mask = True
- assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype))
- # Set w/ list
- base.mask = [0, 0, 0, 1, 1]
- assert_equal_records(base._mask,
- np.array([(x, x, x) for x in [0, 0, 0, 1, 1]],
- dtype=mdtype))
- def test_set_record_element(self):
- # Check setting an element of a record)
- base = self.data['base']
- (base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
- base[0] = (pi, pi, 'pi')
- assert_equal(base_a.dtype, int)
- assert_equal(base_a._data, [3, 2, 3, 4, 5])
- assert_equal(base_b.dtype, float)
- assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5])
- assert_equal(base_c.dtype, '|S8')
- assert_equal(base_c._data,
- [b'pi', b'two', b'three', b'four', b'five'])
- def test_set_record_slice(self):
- base = self.data['base']
- (base_a, base_b, base_c) = (base['a'], base['b'], base['c'])
- base[:3] = (pi, pi, 'pi')
- assert_equal(base_a.dtype, int)
- assert_equal(base_a._data, [3, 3, 3, 4, 5])
- assert_equal(base_b.dtype, float)
- assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5])
- assert_equal(base_c.dtype, '|S8')
- assert_equal(base_c._data,
- [b'pi', b'pi', b'pi', b'four', b'five'])
- def test_mask_element(self):
- "Check record access"
- base = self.data['base']
- base[0] = masked
- for n in ('a', 'b', 'c'):
- assert_equal(base[n].mask, [1, 1, 0, 0, 1])
- assert_equal(base[n]._data, base._data[n])
- def test_getmaskarray(self):
- # Test getmaskarray on flexible dtype
- ndtype = [('a', int), ('b', float)]
- test = empty(3, dtype=ndtype)
- assert_equal(getmaskarray(test),
- np.array([(0, 0), (0, 0), (0, 0)],
- dtype=[('a', '|b1'), ('b', '|b1')]))
- test[:] = masked
- assert_equal(getmaskarray(test),
- np.array([(1, 1), (1, 1), (1, 1)],
- dtype=[('a', '|b1'), ('b', '|b1')]))
- def test_view(self):
- # Test view w/ flexible dtype
- iterator = list(zip(np.arange(10), np.random.rand(10)))
- data = np.array(iterator)
- a = array(iterator, dtype=[('a', float), ('b', float)])
- a.mask[0] = (1, 0)
- controlmask = np.array([1] + 19 * [0], dtype=bool)
- # Transform globally to simple dtype
- test = a.view(float)
- assert_equal(test, data.ravel())
- assert_equal(test.mask, controlmask)
- # Transform globally to dty
- test = a.view((float, 2))
- assert_equal(test, data)
- assert_equal(test.mask, controlmask.reshape(-1, 2))
- def test_getitem(self):
- ndtype = [('a', float), ('b', float)]
- a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype)
- a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
- [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])),
- dtype=[('a', bool), ('b', bool)])
- def _test_index(i):
- assert_equal(type(a[i]), mvoid)
- assert_equal_records(a[i]._data, a._data[i])
- assert_equal_records(a[i]._mask, a._mask[i])
- assert_equal(type(a[i, ...]), MaskedArray)
- assert_equal_records(a[i,...]._data, a._data[i,...])
- assert_equal_records(a[i,...]._mask, a._mask[i,...])
- _test_index(1) # No mask
- _test_index(0) # One element masked
- _test_index(-2) # All element masked
- def test_setitem(self):
- # Issue 4866: check that one can set individual items in [record][col]
- # and [col][record] order
- ndtype = np.dtype([('a', float), ('b', int)])
- ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype)
- ma['a'][1] = 3.0
- assert_equal(ma['a'], np.array([1.0, 3.0]))
- ma[1]['a'] = 4.0
- assert_equal(ma['a'], np.array([1.0, 4.0]))
- # Issue 2403
- mdtype = np.dtype([('a', bool), ('b', bool)])
- # soft mask
- control = np.array([(False, True), (True, True)], dtype=mdtype)
- a = np.ma.masked_all((2,), dtype=ndtype)
- a['a'][0] = 2
- assert_equal(a.mask, control)
- a = np.ma.masked_all((2,), dtype=ndtype)
- a[0]['a'] = 2
- assert_equal(a.mask, control)
- # hard mask
- control = np.array([(True, True), (True, True)], dtype=mdtype)
- a = np.ma.masked_all((2,), dtype=ndtype)
- a.harden_mask()
- a['a'][0] = 2
- assert_equal(a.mask, control)
- a = np.ma.masked_all((2,), dtype=ndtype)
- a.harden_mask()
- a[0]['a'] = 2
- assert_equal(a.mask, control)
- def test_setitem_scalar(self):
- # 8510
- mask_0d = np.ma.masked_array(1, mask=True)
- arr = np.ma.arange(3)
- arr[0] = mask_0d
- assert_array_equal(arr.mask, [True, False, False])
- def test_element_len(self):
- # check that len() works for mvoid (Github issue #576)
- for rec in self.data['base']:
- assert_equal(len(rec), len(self.data['ddtype']))
- class TestMaskedObjectArray:
- def test_getitem(self):
- arr = np.ma.array([None, None])
- for dt in [float, object]:
- a0 = np.eye(2).astype(dt)
- a1 = np.eye(3).astype(dt)
- arr[0] = a0
- arr[1] = a1
- assert_(arr[0] is a0)
- assert_(arr[1] is a1)
- assert_(isinstance(arr[0,...], MaskedArray))
- assert_(isinstance(arr[1,...], MaskedArray))
- assert_(arr[0,...][()] is a0)
- assert_(arr[1,...][()] is a1)
- arr[0] = np.ma.masked
- assert_(arr[1] is a1)
- assert_(isinstance(arr[0,...], MaskedArray))
- assert_(isinstance(arr[1,...], MaskedArray))
- assert_equal(arr[0,...].mask, True)
- assert_(arr[1,...][()] is a1)
- # gh-5962 - object arrays of arrays do something special
- assert_equal(arr[0].data, a0)
- assert_equal(arr[0].mask, True)
- assert_equal(arr[0,...][()].data, a0)
- assert_equal(arr[0,...][()].mask, True)
- def test_nested_ma(self):
- arr = np.ma.array([None, None])
- # set the first object to be an unmasked masked constant. A little fiddly
- arr[0,...] = np.array([np.ma.masked], object)[0,...]
- # check the above line did what we were aiming for
- assert_(arr.data[0] is np.ma.masked)
- # test that getitem returned the value by identity
- assert_(arr[0] is np.ma.masked)
- # now mask the masked value!
- arr[0] = np.ma.masked
- assert_(arr[0] is np.ma.masked)
- class TestMaskedView:
- def setup_method(self):
- iterator = list(zip(np.arange(10), np.random.rand(10)))
- data = np.array(iterator)
- a = array(iterator, dtype=[('a', float), ('b', float)])
- a.mask[0] = (1, 0)
- controlmask = np.array([1] + 19 * [0], dtype=bool)
- self.data = (data, a, controlmask)
- def test_view_to_nothing(self):
- (data, a, controlmask) = self.data
- test = a.view()
- assert_(isinstance(test, MaskedArray))
- assert_equal(test._data, a._data)
- assert_equal(test._mask, a._mask)
- def test_view_to_type(self):
- (data, a, controlmask) = self.data
- test = a.view(np.ndarray)
- assert_(not isinstance(test, MaskedArray))
- assert_equal(test, a._data)
- assert_equal_records(test, data.view(a.dtype).squeeze())
- def test_view_to_simple_dtype(self):
- (data, a, controlmask) = self.data
- # View globally
- test = a.view(float)
- assert_(isinstance(test, MaskedArray))
- assert_equal(test, data.ravel())
- assert_equal(test.mask, controlmask)
- def test_view_to_flexible_dtype(self):
- (data, a, controlmask) = self.data
- test = a.view([('A', float), ('B', float)])
- assert_equal(test.mask.dtype.names, ('A', 'B'))
- assert_equal(test['A'], a['a'])
- assert_equal(test['B'], a['b'])
- test = a[0].view([('A', float), ('B', float)])
- assert_(isinstance(test, MaskedArray))
- assert_equal(test.mask.dtype.names, ('A', 'B'))
- assert_equal(test['A'], a['a'][0])
- assert_equal(test['B'], a['b'][0])
- test = a[-1].view([('A', float), ('B', float)])
- assert_(isinstance(test, MaskedArray))
- assert_equal(test.dtype.names, ('A', 'B'))
- assert_equal(test['A'], a['a'][-1])
- assert_equal(test['B'], a['b'][-1])
- def test_view_to_subdtype(self):
- (data, a, controlmask) = self.data
- # View globally
- test = a.view((float, 2))
- assert_(isinstance(test, MaskedArray))
- assert_equal(test, data)
- assert_equal(test.mask, controlmask.reshape(-1, 2))
- # View on 1 masked element
- test = a[0].view((float, 2))
- assert_(isinstance(test, MaskedArray))
- assert_equal(test, data[0])
- assert_equal(test.mask, (1, 0))
- # View on 1 unmasked element
- test = a[-1].view((float, 2))
- assert_(isinstance(test, MaskedArray))
- assert_equal(test, data[-1])
- def test_view_to_dtype_and_type(self):
- (data, a, controlmask) = self.data
- test = a.view((float, 2), np.recarray)
- assert_equal(test, data)
- assert_(isinstance(test, np.recarray))
- assert_(not isinstance(test, MaskedArray))
- class TestOptionalArgs:
- def test_ndarrayfuncs(self):
- # test axis arg behaves the same as ndarray (including multiple axes)
- d = np.arange(24.0).reshape((2,3,4))
- m = np.zeros(24, dtype=bool).reshape((2,3,4))
- # mask out last element of last dimension
- m[:,:,-1] = True
- a = np.ma.array(d, mask=m)
- def testaxis(f, a, d):
- numpy_f = numpy.__getattribute__(f)
- ma_f = np.ma.__getattribute__(f)
- # test axis arg
- assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1))
- assert_equal(ma_f(a, axis=(0,1))[...,:-1],
- numpy_f(d[...,:-1], axis=(0,1)))
- def testkeepdims(f, a, d):
- numpy_f = numpy.__getattribute__(f)
- ma_f = np.ma.__getattribute__(f)
- # test keepdims arg
- assert_equal(ma_f(a, keepdims=True).shape,
- numpy_f(d, keepdims=True).shape)
- assert_equal(ma_f(a, keepdims=False).shape,
- numpy_f(d, keepdims=False).shape)
- # test both at once
- assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1],
- numpy_f(d[...,:-1], axis=1, keepdims=True))
- assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1],
- numpy_f(d[...,:-1], axis=(0,1), keepdims=True))
- for f in ['sum', 'prod', 'mean', 'var', 'std']:
- testaxis(f, a, d)
- testkeepdims(f, a, d)
- for f in ['min', 'max']:
- testaxis(f, a, d)
- d = (np.arange(24).reshape((2,3,4))%2 == 0)
- a = np.ma.array(d, mask=m)
- for f in ['all', 'any']:
- testaxis(f, a, d)
- testkeepdims(f, a, d)
- def test_count(self):
- # test np.ma.count specially
- d = np.arange(24.0).reshape((2,3,4))
- m = np.zeros(24, dtype=bool).reshape((2,3,4))
- m[:,0,:] = True
- a = np.ma.array(d, mask=m)
- assert_equal(count(a), 16)
- assert_equal(count(a, axis=1), 2*ones((2,4)))
- assert_equal(count(a, axis=(0,1)), 4*ones((4,)))
- assert_equal(count(a, keepdims=True), 16*ones((1,1,1)))
- assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4)))
- assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4)))
- assert_equal(count(a, axis=-2), 2*ones((2,4)))
- assert_raises(ValueError, count, a, axis=(1,1))
- assert_raises(np.AxisError, count, a, axis=3)
- # check the 'nomask' path
- a = np.ma.array(d, mask=nomask)
- assert_equal(count(a), 24)
- assert_equal(count(a, axis=1), 3*ones((2,4)))
- assert_equal(count(a, axis=(0,1)), 6*ones((4,)))
- assert_equal(count(a, keepdims=True), 24*ones((1,1,1)))
- assert_equal(np.ndim(count(a, keepdims=True)), 3)
- assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4)))
- assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4)))
- assert_equal(count(a, axis=-2), 3*ones((2,4)))
- assert_raises(ValueError, count, a, axis=(1,1))
- assert_raises(np.AxisError, count, a, axis=3)
- # check the 'masked' singleton
- assert_equal(count(np.ma.masked), 0)
- # check 0-d arrays do not allow axis > 0
- assert_raises(np.AxisError, count, np.ma.array(1), axis=1)
- class TestMaskedConstant:
- def _do_add_test(self, add):
- # sanity check
- assert_(add(np.ma.masked, 1) is np.ma.masked)
- # now try with a vector
- vector = np.array([1, 2, 3])
- result = add(np.ma.masked, vector)
- # lots of things could go wrong here
- assert_(result is not np.ma.masked)
- assert_(not isinstance(result, np.ma.core.MaskedConstant))
- assert_equal(result.shape, vector.shape)
- assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool))
- def test_ufunc(self):
- self._do_add_test(np.add)
- def test_operator(self):
- self._do_add_test(lambda a, b: a + b)
- def test_ctor(self):
- m = np.ma.array(np.ma.masked)
- # most importantly, we do not want to create a new MaskedConstant
- # instance
- assert_(not isinstance(m, np.ma.core.MaskedConstant))
- assert_(m is not np.ma.masked)
- def test_repr(self):
- # copies should not exist, but if they do, it should be obvious that
- # something is wrong
- assert_equal(repr(np.ma.masked), 'masked')
- # create a new instance in a weird way
- masked2 = np.ma.MaskedArray.__new__(np.ma.core.MaskedConstant)
- assert_not_equal(repr(masked2), 'masked')
- def test_pickle(self):
- from io import BytesIO
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- with BytesIO() as f:
- pickle.dump(np.ma.masked, f, protocol=proto)
- f.seek(0)
- res = pickle.load(f)
- assert_(res is np.ma.masked)
- def test_copy(self):
- # gh-9328
- # copy is a no-op, like it is with np.True_
- assert_equal(
- np.ma.masked.copy() is np.ma.masked,
- np.True_.copy() is np.True_)
- def test__copy(self):
- import copy
- assert_(
- copy.copy(np.ma.masked) is np.ma.masked)
- def test_deepcopy(self):
- import copy
- assert_(
- copy.deepcopy(np.ma.masked) is np.ma.masked)
- def test_immutable(self):
- orig = np.ma.masked
- assert_raises(np.ma.core.MaskError, operator.setitem, orig, (), 1)
- assert_raises(ValueError,operator.setitem, orig.data, (), 1)
- assert_raises(ValueError, operator.setitem, orig.mask, (), False)
- view = np.ma.masked.view(np.ma.MaskedArray)
- assert_raises(ValueError, operator.setitem, view, (), 1)
- assert_raises(ValueError, operator.setitem, view.data, (), 1)
- assert_raises(ValueError, operator.setitem, view.mask, (), False)
- def test_coercion_int(self):
- a_i = np.zeros((), int)
- assert_raises(MaskError, operator.setitem, a_i, (), np.ma.masked)
- assert_raises(MaskError, int, np.ma.masked)
- def test_coercion_float(self):
- a_f = np.zeros((), float)
- assert_warns(UserWarning, operator.setitem, a_f, (), np.ma.masked)
- assert_(np.isnan(a_f[()]))
- @pytest.mark.xfail(reason="See gh-9750")
- def test_coercion_unicode(self):
- a_u = np.zeros((), 'U10')
- a_u[()] = np.ma.masked
- assert_equal(a_u[()], '--')
- @pytest.mark.xfail(reason="See gh-9750")
- def test_coercion_bytes(self):
- a_b = np.zeros((), 'S10')
- a_b[()] = np.ma.masked
- assert_equal(a_b[()], b'--')
- def test_subclass(self):
- # https://github.com/astropy/astropy/issues/6645
- class Sub(type(np.ma.masked)): pass
- a = Sub()
- assert_(a is Sub())
- assert_(a is not np.ma.masked)
- assert_not_equal(repr(a), 'masked')
- def test_attributes_readonly(self):
- assert_raises(AttributeError, setattr, np.ma.masked, 'shape', (1,))
- assert_raises(AttributeError, setattr, np.ma.masked, 'dtype', np.int64)
- class TestMaskedWhereAliases:
- # TODO: Test masked_object, masked_equal, ...
- def test_masked_values(self):
- res = masked_values(np.array([-32768.0]), np.int16(-32768))
- assert_equal(res.mask, [True])
- res = masked_values(np.inf, np.inf)
- assert_equal(res.mask, True)
- res = np.ma.masked_values(np.inf, -np.inf)
- assert_equal(res.mask, False)
- res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=True)
- assert_(res.mask is np.ma.nomask)
- res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=False)
- assert_equal(res.mask, [False] * 4)
- def test_masked_array():
- a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0])
- assert_equal(np.argwhere(a), [[1], [3]])
- def test_masked_array_no_copy():
- # check nomask array is updated in place
- a = np.ma.array([1, 2, 3, 4])
- _ = np.ma.masked_where(a == 3, a, copy=False)
- assert_array_equal(a.mask, [False, False, True, False])
- # check masked array is updated in place
- a = np.ma.array([1, 2, 3, 4], mask=[1, 0, 0, 0])
- _ = np.ma.masked_where(a == 3, a, copy=False)
- assert_array_equal(a.mask, [True, False, True, False])
- # check masked array with masked_invalid is updated in place
- a = np.ma.array([np.inf, 1, 2, 3, 4])
- _ = np.ma.masked_invalid(a, copy=False)
- assert_array_equal(a.mask, [True, False, False, False, False])
- def test_append_masked_array():
- a = np.ma.masked_equal([1,2,3], value=2)
- b = np.ma.masked_equal([4,3,2], value=2)
- result = np.ma.append(a, b)
- expected_data = [1, 2, 3, 4, 3, 2]
- expected_mask = [False, True, False, False, False, True]
- assert_array_equal(result.data, expected_data)
- assert_array_equal(result.mask, expected_mask)
- a = np.ma.masked_all((2,2))
- b = np.ma.ones((3,1))
- result = np.ma.append(a, b)
- expected_data = [1] * 3
- expected_mask = [True] * 4 + [False] * 3
- assert_array_equal(result.data[-3], expected_data)
- assert_array_equal(result.mask, expected_mask)
- result = np.ma.append(a, b, axis=None)
- assert_array_equal(result.data[-3], expected_data)
- assert_array_equal(result.mask, expected_mask)
- def test_append_masked_array_along_axis():
- a = np.ma.masked_equal([1,2,3], value=2)
- b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
- # When `axis` is specified, `values` must have the correct shape.
- assert_raises(ValueError, np.ma.append, a, b, axis=0)
- result = np.ma.append(a[np.newaxis,:], b, axis=0)
- expected = np.ma.arange(1, 10)
- expected[[1, 6]] = np.ma.masked
- expected = expected.reshape((3,3))
- assert_array_equal(result.data, expected.data)
- assert_array_equal(result.mask, expected.mask)
- def test_default_fill_value_complex():
- # regression test for Python 3, where 'unicode' was not defined
- assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j)
- def test_ufunc_with_output():
- # check that giving an output argument always returns that output.
- # Regression test for gh-8416.
- x = array([1., 2., 3.], mask=[0, 0, 1])
- y = np.add(x, 1., out=x)
- assert_(y is x)
- def test_ufunc_with_out_varied():
- """ Test that masked arrays are immune to gh-10459 """
- # the mask of the output should not affect the result, however it is passed
- a = array([ 1, 2, 3], mask=[1, 0, 0])
- b = array([10, 20, 30], mask=[1, 0, 0])
- out = array([ 0, 0, 0], mask=[0, 0, 1])
- expected = array([11, 22, 33], mask=[1, 0, 0])
- out_pos = out.copy()
- res_pos = np.add(a, b, out_pos)
- out_kw = out.copy()
- res_kw = np.add(a, b, out=out_kw)
- out_tup = out.copy()
- res_tup = np.add(a, b, out=(out_tup,))
- assert_equal(res_kw.mask, expected.mask)
- assert_equal(res_kw.data, expected.data)
- assert_equal(res_tup.mask, expected.mask)
- assert_equal(res_tup.data, expected.data)
- assert_equal(res_pos.mask, expected.mask)
- assert_equal(res_pos.data, expected.data)
- def test_astype_mask_ordering():
- descr = np.dtype([('v', int, 3), ('x', [('y', float)])])
- x = array([
- [([1, 2, 3], (1.0,)), ([1, 2, 3], (2.0,))],
- [([1, 2, 3], (3.0,)), ([1, 2, 3], (4.0,))]], dtype=descr)
- x[0]['v'][0] = np.ma.masked
- x_a = x.astype(descr)
- assert x_a.dtype.names == np.dtype(descr).names
- assert x_a.mask.dtype.names == np.dtype(descr).names
- assert_equal(x, x_a)
- assert_(x is x.astype(x.dtype, copy=False))
- assert_equal(type(x.astype(x.dtype, subok=False)), np.ndarray)
- x_f = x.astype(x.dtype, order='F')
- assert_(x_f.flags.f_contiguous)
- assert_(x_f.mask.flags.f_contiguous)
- # Also test the same indirectly, via np.array
- x_a2 = np.array(x, dtype=descr, subok=True)
- assert x_a2.dtype.names == np.dtype(descr).names
- assert x_a2.mask.dtype.names == np.dtype(descr).names
- assert_equal(x, x_a2)
- assert_(x is np.array(x, dtype=descr, copy=False, subok=True))
- x_f2 = np.array(x, dtype=x.dtype, order='F', subok=True)
- assert_(x_f2.flags.f_contiguous)
- assert_(x_f2.mask.flags.f_contiguous)
- @pytest.mark.parametrize('dt1', num_dts, ids=num_ids)
- @pytest.mark.parametrize('dt2', num_dts, ids=num_ids)
- @pytest.mark.filterwarnings('ignore::numpy.ComplexWarning')
- def test_astype_basic(dt1, dt2):
- # See gh-12070
- src = np.ma.array(ones(3, dt1), fill_value=1)
- dst = src.astype(dt2)
- assert_(src.fill_value == 1)
- assert_(src.dtype == dt1)
- assert_(src.fill_value.dtype == dt1)
- assert_(dst.fill_value == 1)
- assert_(dst.dtype == dt2)
- assert_(dst.fill_value.dtype == dt2)
- assert_equal(src, dst)
- def test_fieldless_void():
- dt = np.dtype([]) # a void dtype with no fields
- x = np.empty(4, dt)
- # these arrays contain no values, so there's little to test - but this
- # shouldn't crash
- mx = np.ma.array(x)
- assert_equal(mx.dtype, x.dtype)
- assert_equal(mx.shape, x.shape)
- mx = np.ma.array(x, mask=x)
- assert_equal(mx.dtype, x.dtype)
- assert_equal(mx.shape, x.shape)
- def test_mask_shape_assignment_does_not_break_masked():
- a = np.ma.masked
- b = np.ma.array(1, mask=a.mask)
- b.shape = (1,)
- assert_equal(a.mask.shape, ())
- @pytest.mark.skipif(sys.flags.optimize > 1,
- reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1")
- def test_doc_note():
- def method(self):
- """This docstring
- Has multiple lines
- And notes
- Notes
- -----
- original note
- """
- pass
- expected_doc = """This docstring
- Has multiple lines
- And notes
- Notes
- -----
- note
- original note"""
- assert_equal(np.ma.core.doc_note(method.__doc__, "note"), expected_doc)
|