123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- from collections.abc import Callable, Sequence
- from typing import (
- Any,
- overload,
- TypeVar,
- Union,
- )
- from numpy import (
- generic,
- number,
- bool_,
- timedelta64,
- datetime64,
- int_,
- intp,
- float64,
- signedinteger,
- floating,
- complexfloating,
- object_,
- _OrderCF,
- )
- from numpy._typing import (
- DTypeLike,
- _DTypeLike,
- ArrayLike,
- _ArrayLike,
- NDArray,
- _SupportsArrayFunc,
- _ArrayLikeInt_co,
- _ArrayLikeFloat_co,
- _ArrayLikeComplex_co,
- _ArrayLikeObject_co,
- )
- _T = TypeVar("_T")
- _SCT = TypeVar("_SCT", bound=generic)
- # The returned arrays dtype must be compatible with `np.equal`
- _MaskFunc = Callable[
- [NDArray[int_], _T],
- NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]],
- ]
- __all__: list[str]
- @overload
- def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
- @overload
- def fliplr(m: ArrayLike) -> NDArray[Any]: ...
- @overload
- def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
- @overload
- def flipud(m: ArrayLike) -> NDArray[Any]: ...
- @overload
- def eye(
- N: int,
- M: None | int = ...,
- k: int = ...,
- dtype: None = ...,
- order: _OrderCF = ...,
- *,
- like: None | _SupportsArrayFunc = ...,
- ) -> NDArray[float64]: ...
- @overload
- def eye(
- N: int,
- M: None | int = ...,
- k: int = ...,
- dtype: _DTypeLike[_SCT] = ...,
- order: _OrderCF = ...,
- *,
- like: None | _SupportsArrayFunc = ...,
- ) -> NDArray[_SCT]: ...
- @overload
- def eye(
- N: int,
- M: None | int = ...,
- k: int = ...,
- dtype: DTypeLike = ...,
- order: _OrderCF = ...,
- *,
- like: None | _SupportsArrayFunc = ...,
- ) -> NDArray[Any]: ...
- @overload
- def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
- @overload
- def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
- @overload
- def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
- @overload
- def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
- @overload
- def tri(
- N: int,
- M: None | int = ...,
- k: int = ...,
- dtype: None = ...,
- *,
- like: None | _SupportsArrayFunc = ...
- ) -> NDArray[float64]: ...
- @overload
- def tri(
- N: int,
- M: None | int = ...,
- k: int = ...,
- dtype: _DTypeLike[_SCT] = ...,
- *,
- like: None | _SupportsArrayFunc = ...
- ) -> NDArray[_SCT]: ...
- @overload
- def tri(
- N: int,
- M: None | int = ...,
- k: int = ...,
- dtype: DTypeLike = ...,
- *,
- like: None | _SupportsArrayFunc = ...
- ) -> NDArray[Any]: ...
- @overload
- def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
- @overload
- def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
- @overload
- def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
- @overload
- def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
- @overload
- def vander( # type: ignore[misc]
- x: _ArrayLikeInt_co,
- N: None | int = ...,
- increasing: bool = ...,
- ) -> NDArray[signedinteger[Any]]: ...
- @overload
- def vander( # type: ignore[misc]
- x: _ArrayLikeFloat_co,
- N: None | int = ...,
- increasing: bool = ...,
- ) -> NDArray[floating[Any]]: ...
- @overload
- def vander(
- x: _ArrayLikeComplex_co,
- N: None | int = ...,
- increasing: bool = ...,
- ) -> NDArray[complexfloating[Any, Any]]: ...
- @overload
- def vander(
- x: _ArrayLikeObject_co,
- N: None | int = ...,
- increasing: bool = ...,
- ) -> NDArray[object_]: ...
- @overload
- def histogram2d( # type: ignore[misc]
- x: _ArrayLikeFloat_co,
- y: _ArrayLikeFloat_co,
- bins: int | Sequence[int] = ...,
- range: None | _ArrayLikeFloat_co = ...,
- density: None | bool = ...,
- weights: None | _ArrayLikeFloat_co = ...,
- ) -> tuple[
- NDArray[float64],
- NDArray[floating[Any]],
- NDArray[floating[Any]],
- ]: ...
- @overload
- def histogram2d(
- x: _ArrayLikeComplex_co,
- y: _ArrayLikeComplex_co,
- bins: int | Sequence[int] = ...,
- range: None | _ArrayLikeFloat_co = ...,
- density: None | bool = ...,
- weights: None | _ArrayLikeFloat_co = ...,
- ) -> tuple[
- NDArray[float64],
- NDArray[complexfloating[Any, Any]],
- NDArray[complexfloating[Any, Any]],
- ]: ...
- @overload # TODO: Sort out `bins`
- def histogram2d(
- x: _ArrayLikeComplex_co,
- y: _ArrayLikeComplex_co,
- bins: Sequence[_ArrayLikeInt_co],
- range: None | _ArrayLikeFloat_co = ...,
- density: None | bool = ...,
- weights: None | _ArrayLikeFloat_co = ...,
- ) -> tuple[
- NDArray[float64],
- NDArray[Any],
- NDArray[Any],
- ]: ...
- # NOTE: we're assuming/demanding here the `mask_func` returns
- # an ndarray of shape `(n, n)`; otherwise there is the possibility
- # of the output tuple having more or less than 2 elements
- @overload
- def mask_indices(
- n: int,
- mask_func: _MaskFunc[int],
- k: int = ...,
- ) -> tuple[NDArray[intp], NDArray[intp]]: ...
- @overload
- def mask_indices(
- n: int,
- mask_func: _MaskFunc[_T],
- k: _T,
- ) -> tuple[NDArray[intp], NDArray[intp]]: ...
- def tril_indices(
- n: int,
- k: int = ...,
- m: None | int = ...,
- ) -> tuple[NDArray[int_], NDArray[int_]]: ...
- def tril_indices_from(
- arr: NDArray[Any],
- k: int = ...,
- ) -> tuple[NDArray[int_], NDArray[int_]]: ...
- def triu_indices(
- n: int,
- k: int = ...,
- m: None | int = ...,
- ) -> tuple[NDArray[int_], NDArray[int_]]: ...
- def triu_indices_from(
- arr: NDArray[Any],
- k: int = ...,
- ) -> tuple[NDArray[int_], NDArray[int_]]: ...
|