123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548 |
- """Test functions for matrix module
- """
- from numpy.testing import (
- assert_equal, assert_array_equal, assert_array_max_ulp,
- assert_array_almost_equal, assert_raises, assert_
- )
- from numpy import (
- arange, add, fliplr, flipud, zeros, ones, eye, array, diag, histogram2d,
- tri, mask_indices, triu_indices, triu_indices_from, tril_indices,
- tril_indices_from, vander,
- )
- import numpy as np
- from numpy.core.tests.test_overrides import requires_array_function
- import pytest
- def get_mat(n):
- data = arange(n)
- data = add.outer(data, data)
- return data
- class TestEye:
- def test_basic(self):
- assert_equal(eye(4),
- array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1]]))
- assert_equal(eye(4, dtype='f'),
- array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1]], 'f'))
- assert_equal(eye(3) == 1,
- eye(3, dtype=bool))
- def test_uint64(self):
-
- assert_equal(eye(np.uint64(2), dtype=int), array([[1, 0], [0, 1]]))
- assert_equal(eye(np.uint64(2), M=np.uint64(4), k=np.uint64(1)),
- array([[0, 1, 0, 0], [0, 0, 1, 0]]))
- def test_diag(self):
- assert_equal(eye(4, k=1),
- array([[0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1],
- [0, 0, 0, 0]]))
- assert_equal(eye(4, k=-1),
- array([[0, 0, 0, 0],
- [1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0]]))
- def test_2d(self):
- assert_equal(eye(4, 3),
- array([[1, 0, 0],
- [0, 1, 0],
- [0, 0, 1],
- [0, 0, 0]]))
- assert_equal(eye(3, 4),
- array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0]]))
- def test_diag2d(self):
- assert_equal(eye(3, 4, k=2),
- array([[0, 0, 1, 0],
- [0, 0, 0, 1],
- [0, 0, 0, 0]]))
- assert_equal(eye(4, 3, k=-2),
- array([[0, 0, 0],
- [0, 0, 0],
- [1, 0, 0],
- [0, 1, 0]]))
- def test_eye_bounds(self):
- assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]])
- assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]])
- assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]])
- assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]])
- assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]])
- assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]])
- assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]])
- assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]])
- assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]])
- def test_strings(self):
- assert_equal(eye(2, 2, dtype='S3'),
- [[b'1', b''], [b'', b'1']])
- def test_bool(self):
- assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]])
- def test_order(self):
- mat_c = eye(4, 3, k=-1)
- mat_f = eye(4, 3, k=-1, order='F')
- assert_equal(mat_c, mat_f)
- assert mat_c.flags.c_contiguous
- assert not mat_c.flags.f_contiguous
- assert not mat_f.flags.c_contiguous
- assert mat_f.flags.f_contiguous
- class TestDiag:
- def test_vector(self):
- vals = (100 * arange(5)).astype('l')
- b = zeros((5, 5))
- for k in range(5):
- b[k, k] = vals[k]
- assert_equal(diag(vals), b)
- b = zeros((7, 7))
- c = b.copy()
- for k in range(5):
- b[k, k + 2] = vals[k]
- c[k + 2, k] = vals[k]
- assert_equal(diag(vals, k=2), b)
- assert_equal(diag(vals, k=-2), c)
- def test_matrix(self, vals=None):
- if vals is None:
- vals = (100 * get_mat(5) + 1).astype('l')
- b = zeros((5,))
- for k in range(5):
- b[k] = vals[k, k]
- assert_equal(diag(vals), b)
- b = b * 0
- for k in range(3):
- b[k] = vals[k, k + 2]
- assert_equal(diag(vals, 2), b[:3])
- for k in range(3):
- b[k] = vals[k + 2, k]
- assert_equal(diag(vals, -2), b[:3])
- def test_fortran_order(self):
- vals = array((100 * get_mat(5) + 1), order='F', dtype='l')
- self.test_matrix(vals)
- def test_diag_bounds(self):
- A = [[1, 2], [3, 4], [5, 6]]
- assert_equal(diag(A, k=2), [])
- assert_equal(diag(A, k=1), [2])
- assert_equal(diag(A, k=0), [1, 4])
- assert_equal(diag(A, k=-1), [3, 6])
- assert_equal(diag(A, k=-2), [5])
- assert_equal(diag(A, k=-3), [])
- def test_failure(self):
- assert_raises(ValueError, diag, [[[1]]])
- class TestFliplr:
- def test_basic(self):
- assert_raises(ValueError, fliplr, ones(4))
- a = get_mat(4)
- b = a[:, ::-1]
- assert_equal(fliplr(a), b)
- a = [[0, 1, 2],
- [3, 4, 5]]
- b = [[2, 1, 0],
- [5, 4, 3]]
- assert_equal(fliplr(a), b)
- class TestFlipud:
- def test_basic(self):
- a = get_mat(4)
- b = a[::-1, :]
- assert_equal(flipud(a), b)
- a = [[0, 1, 2],
- [3, 4, 5]]
- b = [[3, 4, 5],
- [0, 1, 2]]
- assert_equal(flipud(a), b)
- class TestHistogram2d:
- def test_simple(self):
- x = array(
- [0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891])
- y = array(
- [0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
- xedges = np.linspace(0, 1, 10)
- yedges = np.linspace(0, 1, 10)
- H = histogram2d(x, y, (xedges, yedges))[0]
- answer = array(
- [[0, 0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]])
- assert_array_equal(H.T, answer)
- H = histogram2d(x, y, xedges)[0]
- assert_array_equal(H.T, answer)
- H, xedges, yedges = histogram2d(list(range(10)), list(range(10)))
- assert_array_equal(H, eye(10, 10))
- assert_array_equal(xedges, np.linspace(0, 9, 11))
- assert_array_equal(yedges, np.linspace(0, 9, 11))
- def test_asym(self):
- x = array([1, 1, 2, 3, 4, 4, 4, 5])
- y = array([1, 3, 2, 0, 1, 2, 3, 4])
- H, xed, yed = histogram2d(
- x, y, (6, 5), range=[[0, 6], [0, 5]], density=True)
- answer = array(
- [[0., 0, 0, 0, 0],
- [0, 1, 0, 1, 0],
- [0, 0, 1, 0, 0],
- [1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 1]])
- assert_array_almost_equal(H, answer/8., 3)
- assert_array_equal(xed, np.linspace(0, 6, 7))
- assert_array_equal(yed, np.linspace(0, 5, 6))
- def test_density(self):
- x = array([1, 2, 3, 1, 2, 3, 1, 2, 3])
- y = array([1, 1, 1, 2, 2, 2, 3, 3, 3])
- H, xed, yed = histogram2d(
- x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], density=True)
- answer = array([[1, 1, .5],
- [1, 1, .5],
- [.5, .5, .25]])/9.
- assert_array_almost_equal(H, answer, 3)
- def test_all_outliers(self):
- r = np.random.rand(100) + 1. + 1e6
- H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1]))
- assert_array_equal(H, 0)
- def test_empty(self):
- a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1]))
- assert_array_max_ulp(a, array([[0.]]))
- a, edge1, edge2 = histogram2d([], [], bins=4)
- assert_array_max_ulp(a, np.zeros((4, 4)))
- def test_binparameter_combination(self):
- x = array(
- [0, 0.09207008, 0.64575234, 0.12875982, 0.47390599,
- 0.59944483, 1])
- y = array(
- [0, 0.14344267, 0.48988575, 0.30558665, 0.44700682,
- 0.15886423, 1])
- edges = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
- H, xe, ye = histogram2d(x, y, (edges, 4))
- answer = array(
- [[2., 0., 0., 0.],
- [0., 1., 0., 0.],
- [0., 0., 0., 0.],
- [0., 0., 0., 0.],
- [0., 1., 0., 0.],
- [1., 0., 0., 0.],
- [0., 1., 0., 0.],
- [0., 0., 0., 0.],
- [0., 0., 0., 0.],
- [0., 0., 0., 1.]])
- assert_array_equal(H, answer)
- assert_array_equal(ye, array([0., 0.25, 0.5, 0.75, 1]))
- H, xe, ye = histogram2d(x, y, (4, edges))
- answer = array(
- [[1., 1., 0., 1., 0., 0., 0., 0., 0., 0.],
- [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
- [0., 1., 0., 0., 1., 0., 0., 0., 0., 0.],
- [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
- assert_array_equal(H, answer)
- assert_array_equal(xe, array([0., 0.25, 0.5, 0.75, 1]))
- @requires_array_function
- def test_dispatch(self):
- class ShouldDispatch:
- def __array_function__(self, function, types, args, kwargs):
- return types, args, kwargs
- xy = [1, 2]
- s_d = ShouldDispatch()
- r = histogram2d(s_d, xy)
-
- assert_(r == ((ShouldDispatch,), (s_d, xy), {}))
- r = histogram2d(xy, s_d)
- assert_(r == ((ShouldDispatch,), (xy, s_d), {}))
- r = histogram2d(xy, xy, bins=s_d)
- assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=s_d)))
- r = histogram2d(xy, xy, bins=[s_d, 5])
- assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=[s_d, 5])))
- assert_raises(Exception, histogram2d, xy, xy, bins=[s_d])
- r = histogram2d(xy, xy, weights=s_d)
- assert_(r, ((ShouldDispatch,), (xy, xy), dict(weights=s_d)))
- @pytest.mark.parametrize(("x_len", "y_len"), [(10, 11), (20, 19)])
- def test_bad_length(self, x_len, y_len):
- x, y = np.ones(x_len), np.ones(y_len)
- with pytest.raises(ValueError,
- match='x and y must have the same length.'):
- histogram2d(x, y)
- class TestTri:
- def test_dtype(self):
- out = array([[1, 0, 0],
- [1, 1, 0],
- [1, 1, 1]])
- assert_array_equal(tri(3), out)
- assert_array_equal(tri(3, dtype=bool), out.astype(bool))
- def test_tril_triu_ndim2():
- for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
- a = np.ones((2, 2), dtype=dtype)
- b = np.tril(a)
- c = np.triu(a)
- assert_array_equal(b, [[1, 0], [1, 1]])
- assert_array_equal(c, b.T)
-
- assert_equal(b.dtype, a.dtype)
- assert_equal(c.dtype, a.dtype)
- def test_tril_triu_ndim3():
- for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
- a = np.array([
- [[1, 1], [1, 1]],
- [[1, 1], [1, 0]],
- [[1, 1], [0, 0]],
- ], dtype=dtype)
- a_tril_desired = np.array([
- [[1, 0], [1, 1]],
- [[1, 0], [1, 0]],
- [[1, 0], [0, 0]],
- ], dtype=dtype)
- a_triu_desired = np.array([
- [[1, 1], [0, 1]],
- [[1, 1], [0, 0]],
- [[1, 1], [0, 0]],
- ], dtype=dtype)
- a_triu_observed = np.triu(a)
- a_tril_observed = np.tril(a)
- assert_array_equal(a_triu_observed, a_triu_desired)
- assert_array_equal(a_tril_observed, a_tril_desired)
- assert_equal(a_triu_observed.dtype, a.dtype)
- assert_equal(a_tril_observed.dtype, a.dtype)
- def test_tril_triu_with_inf():
-
- arr = np.array([[1, 1, np.inf],
- [1, 1, 1],
- [np.inf, 1, 1]])
- out_tril = np.array([[1, 0, 0],
- [1, 1, 0],
- [np.inf, 1, 1]])
- out_triu = out_tril.T
- assert_array_equal(np.triu(arr), out_triu)
- assert_array_equal(np.tril(arr), out_tril)
- def test_tril_triu_dtype():
-
-
- for c in np.typecodes['All']:
- if c == 'V':
- continue
- arr = np.zeros((3, 3), dtype=c)
- assert_equal(np.triu(arr).dtype, arr.dtype)
- assert_equal(np.tril(arr).dtype, arr.dtype)
-
- arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
- ['2004-01-01T12:00', '2003-01-03T13:45']],
- dtype='datetime64')
- assert_equal(np.triu(arr).dtype, arr.dtype)
- assert_equal(np.tril(arr).dtype, arr.dtype)
- arr = np.zeros((3, 3), dtype='f4,f4')
- assert_equal(np.triu(arr).dtype, arr.dtype)
- assert_equal(np.tril(arr).dtype, arr.dtype)
- def test_mask_indices():
-
- iu = mask_indices(3, np.triu)
- a = np.arange(9).reshape(3, 3)
- assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8]))
-
- iu1 = mask_indices(3, np.triu, 1)
- assert_array_equal(a[iu1], array([1, 2, 5]))
- def test_tril_indices():
-
- il1 = tril_indices(4)
- il2 = tril_indices(4, k=2)
- il3 = tril_indices(4, m=5)
- il4 = tril_indices(4, k=2, m=5)
- a = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [13, 14, 15, 16]])
- b = np.arange(1, 21).reshape(4, 5)
-
- assert_array_equal(a[il1],
- array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16]))
- assert_array_equal(b[il3],
- array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19]))
-
- a[il1] = -1
- assert_array_equal(a,
- array([[-1, 2, 3, 4],
- [-1, -1, 7, 8],
- [-1, -1, -1, 12],
- [-1, -1, -1, -1]]))
- b[il3] = -1
- assert_array_equal(b,
- array([[-1, 2, 3, 4, 5],
- [-1, -1, 8, 9, 10],
- [-1, -1, -1, 14, 15],
- [-1, -1, -1, -1, 20]]))
-
- a[il2] = -10
- assert_array_equal(a,
- array([[-10, -10, -10, 4],
- [-10, -10, -10, -10],
- [-10, -10, -10, -10],
- [-10, -10, -10, -10]]))
- b[il4] = -10
- assert_array_equal(b,
- array([[-10, -10, -10, 4, 5],
- [-10, -10, -10, -10, 10],
- [-10, -10, -10, -10, -10],
- [-10, -10, -10, -10, -10]]))
- class TestTriuIndices:
- def test_triu_indices(self):
- iu1 = triu_indices(4)
- iu2 = triu_indices(4, k=2)
- iu3 = triu_indices(4, m=5)
- iu4 = triu_indices(4, k=2, m=5)
- a = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [13, 14, 15, 16]])
- b = np.arange(1, 21).reshape(4, 5)
-
- assert_array_equal(a[iu1],
- array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16]))
- assert_array_equal(b[iu3],
- array([1, 2, 3, 4, 5, 7, 8, 9,
- 10, 13, 14, 15, 19, 20]))
-
- a[iu1] = -1
- assert_array_equal(a,
- array([[-1, -1, -1, -1],
- [5, -1, -1, -1],
- [9, 10, -1, -1],
- [13, 14, 15, -1]]))
- b[iu3] = -1
- assert_array_equal(b,
- array([[-1, -1, -1, -1, -1],
- [6, -1, -1, -1, -1],
- [11, 12, -1, -1, -1],
- [16, 17, 18, -1, -1]]))
-
-
- a[iu2] = -10
- assert_array_equal(a,
- array([[-1, -1, -10, -10],
- [5, -1, -1, -10],
- [9, 10, -1, -1],
- [13, 14, 15, -1]]))
- b[iu4] = -10
- assert_array_equal(b,
- array([[-1, -1, -10, -10, -10],
- [6, -1, -1, -10, -10],
- [11, 12, -1, -1, -10],
- [16, 17, 18, -1, -1]]))
- class TestTrilIndicesFrom:
- def test_exceptions(self):
- assert_raises(ValueError, tril_indices_from, np.ones((2,)))
- assert_raises(ValueError, tril_indices_from, np.ones((2, 2, 2)))
-
- class TestTriuIndicesFrom:
- def test_exceptions(self):
- assert_raises(ValueError, triu_indices_from, np.ones((2,)))
- assert_raises(ValueError, triu_indices_from, np.ones((2, 2, 2)))
-
- class TestVander:
- def test_basic(self):
- c = np.array([0, 1, -2, 3])
- v = vander(c)
- powers = np.array([[0, 0, 0, 0, 1],
- [1, 1, 1, 1, 1],
- [16, -8, 4, -2, 1],
- [81, 27, 9, 3, 1]])
-
- assert_array_equal(v, powers[:, 1:])
-
- m = powers.shape[1]
- for n in range(6):
- v = vander(c, N=n)
- assert_array_equal(v, powers[:, m-n:m])
- def test_dtypes(self):
- c = array([11, -12, 13], dtype=np.int8)
- v = vander(c)
- expected = np.array([[121, 11, 1],
- [144, -12, 1],
- [169, 13, 1]])
- assert_array_equal(v, expected)
- c = array([1.0+1j, 1.0-1j])
- v = vander(c, N=3)
- expected = np.array([[2j, 1+1j, 1],
- [-2j, 1-1j, 1]])
-
-
-
- assert_array_equal(v, expected)
|